
SYNTHESIS OF AN LMI-BASED FUZZY CONTROL SYSTEM WITH
GUARANTEED COST PERFORMANCE: A PIECEWISE LYAPUNOV

APPROACH

Natache S. D. Arrifano∗

natachea@sel.eesc.usp.br
Vilma A. Oliveira∗

vilmao@sel.eesc.usp.br
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ABSTRACT

A new stability analysis and design of a fuzzy switching
control based on uncertain Takagi-Sugeno fuzzy systems are
proposed. The fuzzy system adopted is composed by a fam-
ily of local linear uncertain systems with aggregation. The
control design proposed uses local state feedback gains ob-
tained from an optimization problem with guaranteed cost
performance formulated in the context of linear matrix in-
equalities and a fuzzy switching scheme built from local Lya-
punov functions. The global stability is guaranteed by con-
sidering a class of piecewise quadratic Lyapunov functions.
Examples are given to illustrate the applicability of the pro-
posed approach.
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RESUMO

Neste trabalho, uma nova análise de estabilidade e projeto de
controle fuzzy chaveado baseado em sistemas fuzzy Takagi-
Sugeno com incertezas são propostos. O sistema fuzzy ado-
tado é composto por uma famı́lia de sistemas lineares in-
certos locais com agregação fuzzy. O projeto de controle
proposto utiliza ganhos de realimentação de estado locais
obtidos da solução de um problema de otimização com de-
sempenho de custo garantido formulado em termos de de-
sigualdades matriciais lineares e um esquema de chavea-
mento fuzzy baseado em funções de Lyapunov, que são usa-
das quando a trajetória do estado do sistema está na fronteira
de subespaços definidos do espaço de estado. A estabili-
dade global é garantida considerando uma classe de funções
de Lyapunov quadráticas por partes. Exemplos ilustram a
aplicação da abordagem proposta.

PALAVRAS-CHAVE: Controle fuzzy chaveado, Controle
fuzzy de custo garantido, Sistemas fuzzy Takagi-Sugeno com
incertezas, Funções de Lyapunov quadráticas por partes.
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1 INTRODUCTION

Takagi-Sugeno (TS) fuzzy-model-based control has been
successful used to control nonlinear systems in several ap-
plications (Tanaka et al., 1999; Feng et al., 1997; Wang
et al., 1996). Most of the techniques of robust control
have been used in the TS fuzzy-model-based control due
to the fact that the TS fuzzy systems can be interpreted as
differential inclusions (Jadbabaie et al., 1998a; Cao et al.,
1997; Tanaka et al., 1996). However, when treating uncer-
tain nonlinear systems, we need to distinguish nonlinear-
ity from uncertainty, otherwise, the results obtained are in
general conservatives. Several approaches have appeared to
the robust stabilization of uncertain nonlinear systems (Lee
et al., 2001; Cao et al., 2001; Teixeira and Żak, 1999; Tanaka
et al., 1996). In the framework of TS fuzzy systems, paramet-
ric uncertainty can be represented by norm-bounded or poly-
topic uncertain sets. Different robust control solutions for
the TS fuzzy system with norm-bounded and polytopic un-
certainty representations can be found in Tanaka et al. (1996)
and Lee et al. (2001), and Cao et al. (2001), respectively.

Stability is one of the most important issues when analyzing
control systems. Most of the methods of fuzzy-model-based
control yields stability analysis and design procedures by
means of the parallel distributed compensation (PDC) using a
common quadratic Lyapunov function (Teixeira et al., 2000;
Tanaka et al., 1998; Tanaka et al., 1997). This approach
requires a common positive definite matrix that is a solu-
tion of all the Lyapunov inequalities built from the local lin-
ear systems of the global feedback TS fuzzy system, which
are usually formulated in terms of linear matrix inequalities
(LMI’s) in both the state feedback gain and Lyapunov matrix.
However, when applied to uncertain nonlinear systems, this
approach may not provide feasible results because it is not
possible to find a common positive definite Lyapunov ma-
trix as a solution of several Lyapunov inequalities. To re-
move this deficiency, recently, attractive stability results for
the TS fuzzy-model-based control using piecewise quadratic
Lyapunov functions appeared (Zhang et al., 2001; Johansson
et al., 1998). These results explore the gain-scheduled na-
ture of the fuzzy controllers and have found application in
the stability analysis of systems whose dynamics depends on
the subspace of the state space their trajectory is.

This paper presents a fuzzy switching controller for uncer-
tain nonlinear systems which are represented by a class of
TS fuzzy systems with uncertainties. The controller pro-
posed uses local guaranteed cost control laws and a switching
scheme based on local quadratic Lyapunov functions when
the state is on the boundary of defined subspaces of the state
space. A sufficient condition for the stability of the uncertain
nonlinear system with state feedback is given in terms of a
piecewise quadratic Lyapunov function. This approach pro-

duces less conservative results than those obtained with the
fuzzy blending controller for TS fuzzy systems with uncer-
tainties. In addition, this approach may be applied to con-
trol highly nonlinear systems, where available robust control
techniques are not successful.

The remainder of the paper is organized as follows. In Sec-
tion 2, the fuzzy system modeling for a class of uncertain
nonlinear systems, the fuzzy switching control and the guar-
anteed cost control design are presented. The stability anal-
ysis of the feedback fuzzy system is the subject of the Sec-
tion 3. In Section 4, simulation results are presented to illus-
trate the effectiveness of the proposed approach. Finally, the
paper concludes with brief remarks in Section 5.

2 FUZZY SYSTEM MODELING AND CON-
TROL

We consider a class of uncertain nonlinear dynamic systems
which are described by the differential inclusion

ẋ ∈ Co {fk(x) + gk(x)u} , x(0) = x0, (1)

where x is the system state vector, u is the input vector, Co
denotes the convex hull, fk(·), gk(·) are smooth nonlinear
functions which define the called vertex systems, fk(0) = 0,
gk(0) = 0, and v is the number of vertexes, k = 1, 2, ..., v,
with fk : R

n → R
n and gk : R

n → F(Rm, Rn) for
F(Rm, Rn) = {h : D(h) → R

n : D(h) ⊆ R
m.

Considering an uncertain parameter vector p ∈ R
s, a poly-

topic representation of (1) has the form

ẋ =

v
∑

k=1

ηk(p)(fk(x) + gk(x)u), (2)

where ηk : R
s → R with ηk(p) ≥ 0, k = 1, 2, ..., v,

∑v
k=1 ηk(p) = 1.

2.1 Fuzzy system modeling

The TS fuzzy system is described by fuzzy IF-THEN rules
representing local input-output relations of the nonlinear sys-
tem (Takagi and Sugeno, 1985). The basic idea of this ap-
proach is decompose the input space into many subspaces,
approximating the nonlinear system by a blending of the lo-
cal linear systems associated to each subspace. In fact, it is
proved that the TS fuzzy systems are universal approxima-
tors (Tanaka and Wang, 2001). In order to consider uncer-
tainties in the TS fuzzy system, we use a fuzzy system built
from local uncertain linear systems whose the ith inference
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rule is given by

Rule i :

If x1 is F i
1 and x2 is F i

2 and . . . xn is F i
n

Then ẋ = Ai(p)x + Bi(p)u

i = 1, 2, . . . , r, (3)

where F i
j , j = 1, 2, . . . , n are fuzzy sets, r is the number

of inference rules, and matrices Ai(p) ∈ M(Rn, Rn) and
Bi(p)) ∈ M(Rn, Rm) have a polytopic representation, that
is, Ai(p) =

∑v
k=1 ηk(p)Aik and Bi(p) =

∑v
k=1 ηk(p)Bik ,

for ηk(p) ≥ 0, k = 1, 2, ..., v,
∑v

k=1 ηk(p) = 1. Matrices
Ai(p) and Bi(p), i = 1, 2, . . . , r can be obtained from (2)
using the linearization formula proposed by Teixeira and Żak
(1999), which yields a good linear approximation of nonlin-
ear systems in the vicinity of an operating point even if it is
not an equilibrium point. The Teixeira & Żak linearization
formula used in this paper is presented in Appendix A.

Given the pair (x, u), the overall fuzzy system with uncer-
tainties is inferred as a weighted average of all local uncertain
linear approximations (Ai(p), Bi(p)), i = 1, 2, . . . , r of (3),
which is given by

ẋ =

r
∑

i=1

αi(x)(Ai(p)x + Bi(p)u), (4)

where

αi(x) =

∏n
j=1 F i

j (xj)
∑r

i=1

∏n
j=1 F i

j (xj)
(5)

denotes the normalized membership function, with F i
j (xj) ∈

[0, 1] the grade of membership of xj , j = 1, 2, . . . , n, in the
fuzzy set F i

j . Considering the fact that in (5) F i
j (xj) ≥ 0,

i = 1, 2, . . . , r and j = 1, 2, . . . , n, we have αi(x) ≥ 0 and
∑r

i=1 αi(x) = 1, ∀t ≥ 0 .

2.2 Fuzzy switching control

In this section we propose a switching scheme so that local
controllers are switched according to the subspace that the
state vector x enters. For this purpose, let S◦

i denote the ith
subspace in the state space

S◦
i := {x|αi(x) > α`(x); i 6= `; i, ` = 1, 2, . . . , r} , (6)

where the superscript ◦ in Si denotes an open subspace, let
∂Si` denote the transition subspace in the state space

∂Si` := {x|αi(x) = α`(x); i 6= `; i, ` = 1, 2, . . . , r} , (7)

and let Si = So
i

⋃

∂Si`. Using (6) and (7), we define the
switching scheme for each rule i

Rule i :

If x ∈ S◦
i

Then βi(x) = 1
If x ∈ ∂Si` and Vi(x) ≤ V`(x)
Then βi(x) = 1 and β`(x) = 0

i 6= `, i, ` = 1, 2, . . . , r, (8)

where Vi(x) = xT Pix is a local quadratic Lyapunov func-
tion, with Pi = P T

i , Pi > 0 and βi(x) ∈ {0, 1} a crisp func-
tion which changes as x leaves subspace S◦

i following the
membership function changes. Thus, βi(x) = 1 only when
x ∈ Si = S◦

i ∪∂Si` and βi(x) = 0, otherwise. Additionally,
∑r

i=1 βi(x) = 1, ∀t ≥ 0.

Adopting (8) and following the idea of the PDC scheme, we
propose the fuzzy switching control as

u = −

r
∑

i=1

βi(x)Kix, (9)

where Ki ∈ M(Rm, Rn), i = 1, 2, . . . , r are the state feed-
back gains to be designed for rule i. In order to obtain the
state feedback fuzzy system, we substitute (9) in (4), which
gives

ẋ =
r

∑

i=1

αi(x)



Ai(p) −





r
∑

j=1

βj(x)Bi(p)Kj







 x

r
∑

i=1

r
∑

j=1

αi(x)βj(x) (Ai(p) − Bi(p)Kj) x. (10)

Recalling that from (8) βi(x) = 1 only when x ∈ Si, we can
write (10) as

ẋ =
r

∑

i=1

αi(x)(Ai(p) − Bi(p)Ki)x. (11)

The state feedback fuzzy system (11) is recognized as an ag-
gregation of r local feedback uncertain systems described in
a polytopic form.

2.2.1 Guaranteed cost control design

In this section, we propose a robust control design in terms
of the optimal quadratic guaranteed cost problem as in Costa
and Oliveira (2002). This approach is based on the local sta-
bility of each feedback fuzzy system of (11) in the subspace
of the state space. In order to obtain a systematic control de-
sign, we formulate the problem in the context of the convex
analysis using LMI’s.
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Definition 1 The ith feedback uncertain linear system of
(11) is said to be asymptotically stable, if there exists a stabi-
lizing control u = −Kix, i = 1, 2, . . . , r, such that an upper
bound on the quadratic performance index

Ci(x0, u) =

∫ ∞

0

(xT Qix + uT Riu)dt, x0 ∈ S◦
i , (12)

along the system trajectory is minimized, with Qi ∈ R
n×n,

Ri ∈ R
m×m, Qi > 0, and Ri > 0 weighting symmetric

matrices which are chosen to yield the desired performance.

Definition 2 If there exist a stabilizing control law u =
−Kix, i = 1, 2, . . . , r and a positive scalar Ĉi, such that,
Ci(x0, u) ≤ Ĉi along the system trajectory, then Ĉi is a
guaranteed cost and u is a guaranteed control law.

Proposition 1 Consider the ith uncertain linear system of
(4), control law u = −Kix, i = 1, 2, . . . , r and cost per-
formance (12). If there exist symmetric positive definite ma-
trices Xi and matrices Yi, i = 1, 2, . . . , r of appropriate di-
mensions satisfying the LMI’s

Qi > 0, Ri > 0, Xi > 0,
[

Uik Zi

ZT
i −W

]

< 0,

∀i = 1, 2, . . . , r; k = 1, 2, . . . , v, (13)

where

Uik = XiA
T
ik + AikXi − Y T

i BT
ik − BikYi,

Zi =
[

XiQ
1/2
i Y T

i R
1/2
i

]

,

W = diag
{

In, Im

}

,
Xi = P−1

i ,
Yi = KiXi,

then u = −Kix, with Ki = YiX
−1
i , i = 1, 2, . . . , r

is a guaranteed control law and the cost given by Ĉi =
xT

0 X−1
i x0 is a guaranteed cost for the ith feedback uncer-

tain system of (11).

Proof: Consider a local quadratic Lyapunov function candi-
date as

Vi(x) = xT Pix, (14)

which is a continuous-time function along the trajectory of
(11) in the subspace S◦

i . Taking its derivatives, it results

V̇i(x) = ẋT Pix + xT Piẋ,

= xT
{

αi(x)
[

(Ai(p) − Bi(p)Ki)
T

Pi

+Pi (Ai(p) − Bi(p)Ki)]}x,

= xT

{

v
∑

k=1

αi(x)ηk(p)
[

(Aik − BikKi)
T

Pi

+Pi (Aik − BikKi)]}x. (15)

Now assume that there exist symmetric positive definite ma-
trices Pi = X−1

i and matrices Ki = YiX
−1
i satisfying

LMI’s in (13). Then, using the Schur complement (Boyd
et al., 1994) after performing some algebraic manipulations,
(13) can be reduced to

(Aik − BikKi)
T Pi + Pi (Aik − BikKi)

+Qi + KT
i RiKi < 0,

i = 1, 2, . . . , r, k = 1, 2, . . . , v. (16)

Using
∑v

k=1 ηk(p) = 1, after some algebraic manipulations,
(16) can be written as

v
∑

k=1

ηk(p)
[

(Aik − BikKi)
T

Pi + Pi (Aik − BikKi)
]

+Qi + KT
i RiKi < 0,

i = 1, 2, . . . , r. (17)

Using (17) in (15), as αi(x) ≥ 0, we have V̇i(x) < 0,
∀x 6= 0, x ∈ S◦

i . Now, substituting (9) in (12) and using
the fact that βi(x)βj(x) = 0, i 6= j, i, j = 1, 2, . . . , r and
βi(x)βi(x) = 1, for x ∈ S◦

i it results

Ci(x0, u) <

∫ ∞

0

xT (Qi + KT
i RiKi)x dt

<

∫ ∞

0

V̇i(x) dt

= xT
0 Pix0. (18)

The results then follows by Definitions 1 and 2. 2

The optimal quadratic guaranteed cost control problem in-
volves the minimization of the cost bounds given by Ĉi =
xT

0 Pix0, i = 1, 2, . . . , r which depends on the initial con-
dition x0 ∈ S◦

i . To remove this dependence on x0 one
may assume it is a zero mean random variable satisfying
E[xT

0 x0] = 1 and consider the minimization of Tr(Pi) as
E[Ci] ≤ E[xT

0 x0] = Tr(Pi), with E[·] the expectancy oper-
ator and Tr(·) is the trace (Jadbabaie et al., 1998b; Petersen
and Macfarlane, 1994). Instead, we construct an optimiza-
tion problem for the guaranteed cost control by minimizing
an upper bound on the guaranteed cost Ĉi.

Lemma 1 If Ĉi is a guaranteed cost for the ith state feed-
back uncertain linear system of (11) under performance in-
dex (12) then for x0 ∈ S◦

i

ĈBi = λmax[X−1
i ] ‖x0‖

2
, (19)

i = 1, 2, . . . , r, is a guaranteed cost for the ith state feedback
uncertain linear system of (11) and an upper bound for (12),
with λmax[·] the maximum eigenvalue and ‖·‖ the Euclidean
vector norm.
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Proof: Using singular value decompositions the result fol-
lows straightforward. 2

Using both Proposition 1 and Lemma 1, we can construct the
generalized eigenvalue problem (GEVP) (Boyd et al., 1994)
for the guaranteed cost control design as

min
Xi,Yi

γi subject to In ≤ γi Xi and (13). (20)

If (20) is feasible, we have γi > λmax[X−1
i ] and Ki =

YiX
−1
i , i = 1, 2, . . . , r.

3 STABILITY ANALYSIS

In Section 2 an approach to obtain the feedback gains and the
quadratic Lyapunov functions associated is presented. Now,
we establish a condition for the global stability of the feed-
back fuzzy system (11) by considering a class of piecewise
quadratic Lyapunov functions and the fuzzy switching con-
trol proposed.

Theorem 2 The equilibrium x = 0 of the global feedback TS
fuzzy system with uncertainties (11) is asymptotically stable
in the large if each uncertain linear system of (4) is locally
stabilizable by the fuzzy switching controller (9) with βi(·)
as defined in (8) and Ki resulting from (20), which is time
continuous in the open subspace S◦

i .

Proof: Let

V (x) =

r
∑

i=1

βi(x)Vi(x) (21)

be a piecewise quadratic Lyapunov function candidate with
Vi(x) as in (14) and Pi = X−1

i , Xi resulting from (20) for
each subspace S◦

i of the state space. In order to evaluate
the derivative of (21) along the system trajectory, we replace
V̇ (·) by the Dini derivative D∗V (·), where the superscript ∗

in DV (·) represents any of the four Dini derivatives (Rouche
et al., 1977). At any point where V̇ (·) exists, all four Dini
derivatives have a common value equal to the derivative V̇ (·)
at that point. See Apendix B for more details on the Dini
derivatives. Let us consider the stability at the switching
time. In the sequence, we use x(t) to emphasize the anal-
ysis.

Suppose that for some particular time t, x(t) ∈ S◦
i which

yields βi(x(t)) = 1 using (8). Also, suppose that the sys-
tem equilibrium x(t) = 0 does not exclusively belong to S◦

i ,
otherwise there might be no switching of controllers. Af-
ter a period of time, a switching occurs, say at t = t1, and
x(t) leaves the subspace S◦

i and enters the `th subspace S◦
` .

We can thus write limt→t−
1

βi(x(t)) = βi(x(t1)) = 1 and

limt→t+
1

β`(x(t)) = β`(x(t1)) = 1. The corresponding up-
per and lower Dini derivatives of (21) in the transition region
∂Si` are thus as

D+V (x(t1)) = D+V (x(t1)) = lim
ε → 0+

0 < t − t1 ≤ ε

sup

1

t − t1

r
∑

`=1

[β`(x(t))V`(x(t)) − β`(x(t1))V`(x(t1))] ,

(22)

D−V (x(t1)) = D−V (x(t1)) = lim
ε → 0−

ε ≤ t − t1 < 0

sup

1

t − t1

r
∑

i=1

[βi(x(t))Vi(x(t)) − βi(x(t1))Vi(x(t1))] .

(23)

To have V (·) decreasing along the system trajectory any of
the four Dini derivatives must be negative definite on the
open subspace S◦

i (see Corollary 7 in Appendix B). By the
switching scheme (8), D+V (·) in (22) is equal to V̇`(·) which
is negative definite as x ∈ S◦

` . Then, as βi(·) is a crisp func-
tion associated to each subspace S◦

i , i = 1, 2, . . . , r, we can
write

D+V (x(t)) =
r

∑

i=1

βi(x)V̇i(x)

=

r
∑

i=1

βi(x)[ẋT Pix + xT Piẋ]. (24)

Now, using (11) we can write (24) as

D+V (x(t)) =
r

∑

i=1

βi(x)xT

{

r
∑

i=1

v
∑

k=1

αi(x)ηk(p)

[(Aik − BikKi)
T Pi + Pi(Aik − BikKi)]

}

x, (25)

with Ki = YiX
−1
i , Xi and Yi, i = 1, 2, . . . , r resulting from

(20). Using the proof of Proposition 1, for βi(·) given by (8)
we have D+V (x) < 0, ∀x, x 6= 0, which assures that system
(11) is stable.

We proceed with the proof showing the stability in the large.
Let us define

−Nik := (Aik − BikKi)
T Pi + Pi(Aik − BikKi), (26)

where Nik = NT
ik, Nik > 0. For x ∈ S◦

i , x 6= 0,
i = 1, 2, . . . , r, we have V̇i(x) < −ρVi(x) where ρ is a posi-
tive number defined by ρ := min

i
{λmin[Nik]/λmax[Pi]},

λmin[·] and λmax[·] denote the minimum and maximum
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eigenvalues, respectively. By the well-known Gronwall-
Bellman lemma (Khalil, 1996) we can show that for x0 ∈ S◦

i ,
Vi(x) ≤ Vi(x0)e

−ρt. Thus, from (24), it follows that

D+V (x(t)) =

r
∑

i=1

βi(x)V̇i(x)

≤ −ρ

r
∑

i=1

βi(x)Vi(x)

≤ −ρ

r
∑

i=1

βi(x0)Vi(x0)e
−ρt

= −ρV (x0)e
−ρt (27)

as βi(·) is a crisp function associated to each subspace S◦
i ,

i = 1, 2, . . . , r, which completes the proof. 2

Remark 1 In order to compare the results given, we include
in Appendix C, a fuzzy blending control approach which
is also formulated as an optimal quadratic guaranteed cost
control problem but adopting a common quadratic Lyapunov
function (Arrifano and Oliveira, 2002).

Remark 2 To consider the stability of an uncertain nonlin-
ear system for the case the origin x = 0 is not the equilib-
rium, one should perform a change of coordinates to make it
the equilibrium, before designing the fuzzy switching control
(9) with βi(·) as defined in (8). This change of coordinates
is important because real systems, in general, have equilib-
rium different from the origin and the control design pro-
posed considers asymptotic stability around the equilibrium
x = 0.

4 SIMULATION RESULTS

In this section, the usefulness of the switching fuzzy control
is illustrated. We consider the stabilization of a magnetic sus-
pension system and a mass-spring-damper system using the
optimal quadratic guaranteed cost control. A feasible solu-
tion for the latter system can be obtained with the blending
fuzzy control by means of a common Lyapunov function (see
Appendix C) but no feasible solution is found for the former
system.

Example 3 Nonlinear magnetic suspension system. We
consider the same example as in Costa and Oliveira (1999),
a nonlinear magnetic suspension system depicted by

ẋr1 = xr2

ẋr2 = g −
(

Lbo(xr1)
2am

)(

xr3

1+(xr1)/a

)2

ẋr3 = −
(

Rb

Lb

)

xr3 +
(

1
Lb

)

ur,

(28)

Table 1: Magnetic suspension system parameters.

g M Rb Lb Lb0 a

9.81 2.26 × 10−2 19.91 470 0.0245 6.07 × 10−3

where xr1 is the ball vertical position [m], xr2 is the ball ver-
tical speed [m/s], xr3 is the coil current [A], ur is the coil ap-
plied voltage [V], g is the acceleration due to gravity [m/s2],
m is the ball mass [Kg], Lb is the coil inductance [H], Rb is
the coil resistance [Ω], a is a constant [m], and Lb0 expresses
the relationship between the inductance and the ball vertical
position [H]. Table 1 shows the numerical values of phys-
ical parameters. Note that the equilibrium of (28) (xe, ue)
is not the origin. As mentioned in Remark 2, it is neces-
sary to perform a change of coordinates to bring the equilib-
rium of the system to the origin. For this purpose, we adopt
z = xr − xe and v = u − ue, with xe = [0.010 0 0.8775]
and ue = 17.4621 the equilibrium of (28). Using these new
coordinates, we may write (28) as

ż1 = z2 + xe2

ż2 = g −
(

Lb0(z1+xe1)
2am

) (

z3+xe3

1+(z1+xe1)/a

)2

ż3 = −
(

Rb

Lb

)

(z3 + xe3) +
(

1
Lb

)

(v + ue).

(29)

The uncertain linear systems are obtained using the lineariza-
tion formula given in Appendix A considering Lb0 as the
uncertain parameter with deviations of about ±80% from
its nominal value. Adopting r = 2 as the number of lin-
earization points chosen and x̄(r=1) = [0.005 0 0.6045] and
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Figure 1: Membership functions adopted with “-” the F 1
j (xj)

and “· · · ” F 2
j (xj)
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x̄(r=2) = [0.015 0 1.1505] as the linearization points, we
found the matrices representing the extreme linearized sys-
tems of each vertex system as

A11 = 10
3
×

2

4

0 0.001 0

1.2676 0 −0.0334

0 0 −0.0423

3

5 , B11 =

2

4

0

0

2.124

3

5 ,

A12 = 10
3
×

2

4

0 0.001 0

2.7677 0 −0.0305

0 0 −0.0423

3

5 ; B12 = B11,

A21 = 10
3
×

2

4

0 0.001 0

6.9881 0 −0.0583

0 0 −0.0423

3

5 ; B21 = B11,

A22 = 10
3
×

2

4

0 0.001 0

1.8819 0 −0.0115

0 0 −0.0423

3

5 ; B22 = B11.

Figure 1 shows the membership functions adopted for xr1 ∈
[0, 0.020] and xr3 ∈ [0, 1.5]. Following, we present sim-
ulation results which are organized in two cases: (Case
1) Lb0(xr1) = Lb0 as in Costa and Oliveira (1999) and
(Case 2) Lb0(xr1) = Lb0(0.85 + 0.5/(1 + xr1/a)), with
Lb0 = 0.0245H , the nominal value for Lb0(·). The pro-
posed approach is systematically accomplished by using the
Matlab LMI solver as well as the ordinary differential equa-
tion (ODE) solver. We adopt the initial condition as x0 =
[0.005 0 0.6045].

In Case 1 we adopt the weighting matrices

Qi =

2

4

106 0 0

0 1 0

0 0 1

3

5 and Ri = 0.05, for i = 1, 2

as in Costa and Oliveira (1999). In Case 2 we adopt the
weighting matrices

Q1 =

2

4

105 0 0

0 1 0

0 0 1

3

5; Q2 =

2

4

5 × 104 0 0

0 1 0

0 0 1

3

5;

R1 = 0.001 and R2 = 0.05.

The numerical results are summarized in Table 2 and 3 for
Cases 1 and 2, respectively. Figures 2 and 3 show the re-
sponses of system (28) for Case 1 and Figures 4 and 5 present
the responses for Case 2. Using the fuzzy switching control
approach, the switching in the control law can be flattered by
adjusting the width and the type of the membership functions
adopted as well as the matrices Qi and Ri, i = 1, 2, . . . , r.
Therefore, the proposed solution can yield smother solutions
than the one given in Costa and Oliveira (1999) using attrac-
tion domains for the switching control scheme. Other charac-
teristic of this approach is that the switching is related to the
smaller value of the associated Lyapunov function when the

Table 2: (Case 1) Numerical results of the control design.

Subspace S1

K1 = 104 ×
[

−1.4059 −0.0271 0.0080
]

xT
0 P1x0 = Ĉ1 = 9.103× 10−1

Upper bound: CB1 = 3.2452× 104

Subspace S2

K2 = 104 ×
[

−4.1134 −0.0700 0.0181
]

xT
0 P2x0 = Ĉ2 = 2.9634

Upper bound: CB2 = 1.0585× 105

Table 3: (Case 2) Numerical results of the control design.

Subspace S1

K1 = 104 × [−2.1864 − 0.0388 0.0100]

xT
0 P1x0 = Ĉ1 = 7.15× 10−2

Upper bound: CB1 = 1.7002× 103

Subspace S2

K2 = 104 × [−3.5301 − 0.0608 0.0167]

xT
0 P2x0 = Ĉ2 = 1.5781

Upper bound: CB2 = 7.5344× 103

state is on the boundary of the defined subspaces, but the sys-
tem solution always returns to the subspace that better repre-
sents the dynamics of the nonlinear system. After the state
vector enters the subspace where the equilibrium point xe

is, the switching occurs if the resulting Lyapunov functions
have not reached the origin or if the system are subjected to
perturbations.

Example 4 Nonlinear mass-spring-damper system. We con-
sider now the same example as in Tanaka et al. (1996), a
nonlinear mass-spring-damper system with an uncertain pa-
rameter, which is described as

Mÿ + g(y, ẏ) + f(y) = φ(ẏ)u, (30)

where M is the mass [Kg], u is the force [N], y is the verti-
cal position [m], ẏ is the speed [m/s], g(y, ẏ) = c1y + c2ẏ,
f(y) = c, and φ(ẏ) = 1 + c5ẏ

3 are the nonlinear or un-
certain terms with respect to the spring, the damper and the
input system, respectively. The control purpose is to achieve
the equilibrium (x, u) = (0, 0) with the minimization of an
upper bound on the guaranteed cost. Considering the param-
eters M = 1, c ∈ [c3, c4], c1 = 0, c2 = 1, c3 = 0.5,
c4 = 1.81 and c5 = 0.13, and defining x := [y ẏ]T , we can
write (30) in the state space representation

[

ẋ1

ẋ2

]

=

[

−1 −c
1 0

] [

x1

x2

]

+

[

1 + 0.13x3
1

0

]

u.

(31)
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Figure 2: (Case 1) Magnetic suspension system state xr and
control u.

As system (31) presents one uncertain parameter, we have
two vertexes in the polytopic description. We adopt r = 2
and again we obtain the uncertain linear systems using the
linearization formula for the following linearization points x̄:
x̄(r=1) = [1.9740 0]T and x̄(r=2) = [−1.9740 0]T , which
gives

A11 =

»

−1 −0.5

1 0

–

, B11 =

»

1.4387

0

–

,

A12 =

»

−1 −1.81

1 0

–

, B12 = B11,

A21 = A11, B21 =

»

0.5613

0

–

,

A22 = A12, B22 = B21.

The performance of the proposed approach can be verified
adopting α1(x) = 0.5 + x3

1/6.75, α2(x) = 0.5 − x3
1/6.75

and c = 1.155+0.655 cos(3x
10 sin(x1)
2 ) for x1 ∈ [−1.5, 1.5]

and x2 ∈ [−1.5, 1.5]. The control design is systematically
developed by solving the optimization problem (50). We
choose Q = I2 and R = 0.07 for both rules and adopt
initial condition x0 = [−0.5 − 1.0]T . Using the Matlab
LMI solver, we obtain the main results summarized in Table
4. Figure 6 shows the feedback uncertain nonlinear system
responses. The proposed approach is comparable to the one
given in Tanaka et al. (1996). Its advantage is that it follows
a systematic procedure and minimizes an upper bound on the
quadratic performance cost.

5 CONCLUSION

In this paper we propose a fuzzy switching control design to
stabilize a class of uncertain nonlinear systems represented
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Figure 3: (Case 1) Lyapunov functions and their derivatives
along the system trajectory.

Table 4: Numerical results of the control design.

K1 = [1.60 1.08]
K2 = [4.10 2.77]

xT
0 Px0 = Ĉ = 1.7885

Upper bound: CB = 1.7947

by uncertain TS fuzzy systems. A sufficient condition for
the stability of the state feedback fuzzy system is given in
terms of a piecewise quadratic Lyapunov function. The con-
trol design is formulated in the context of the guaranteed cost
control problem with the minimization of an upper bound on
the guaranteed cost. The fuzzy switching control produces
less conservative results than the fuzzy blending control ap-
proach which uses a common quadratic Lyapunov function.
In addition, the approach given may be applied to highly non-
linear systems, where available robust control techniques are
not successful. The proposed approach yields a computa-
tionally tractable solution to the control design in the context
of LMI’s. Further, different control techniques to design the
local controllers can also be explored using the framework
presented.
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Figure 4: (Case 2) Magnetic suspension system state xr and
control ur.
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A LOCAL LINEAR APPROXIMATIONS OF
THE UNCERTAIN NONLINEAR SYS-
TEMS

Consider the uncertain nonlinear systems in its polytopic de-
scription as defined in (2). Following, we present the lin-
earization formula used to obtain the uncertain linear approx-
imations of the nonlinear functions which are the vertexes of
the polytope. For this purpose, let x̄ denote a linearization
point, which is not necessarily an equilibrium point. The
objective is to obtain matrices Ak and Bk such that in the
vicinity of x̄ we have

fk(x) + gk(x)u ≈ Akx + Bku

and
fk(x̄) + gk(x̄)u ≈ Akx̄ + Bku,

with fk(·), gk(·), x and u as defined before. Since u is arbi-
trary, we have gk(x̄) = Bk. Thus, the procedure reduces to
finding matrices Ak such that, in the vicinity of x̄, we have

fk(x) ≈ Akx (32)

and
fk(x̄) ≈ Akx̄. (33)
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Figure 5: (Case 2) Lyapunov function and their derivatives
along the system trajectory.

Following (Teixeira and Żak, 1999), let aT
jk denote the jth

row of matrix Ak. Then, conditions (32) and (33) can be
written as

fjk(x) ≈ aT
jkx (34)

and
fjk(x̄) ≈ aT

jkx̄ (35)

respectively, where fjk(·) : R
n → R is the jth component

of fk(·) for j = 1, 2, . . . , n. Expanding the left hand side of
(34) over x̄ and neglecting the second and higher order terms
we obtain

fjk(x̄) + ∇T fjk(x̄)(x − x̄) ≈ aT
jkx, (36)

where ∇fjk(·) : R
n → R

n is the gradient, a column vector
of fjk(·) computed with respect to x. Now, using (35) and
(36), we have

∇T fjk(x̄)(x − x̄) ≈ aT
jk(x − x̄), (37)

where x is arbitrary but “close” to x̄. Finally, we obtain a
constant vector ajk as close as possible to ∇fjk(x̄) satisfying
aT

jkx̄ = fjk(x̄) solving the constrained optimization problem

min
ajk

E =
1

2
‖∇fjk(x̄) − ajk‖

2
2 subjecto to aT

ikx̄ = fik(x̄).

According to Teixeira and Żak (1999), the first order condi-
tions to solve this optimization problem are

∇ajk
E + λ∇ajk

[aT
jkx̄ − fjk(x̄)] = 0 (38)
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Figure 6: Mass-spring-damper system state x and control u.

and
aT

jkx̄ = fjk(x̄), (39)

where λ in (38) is the Lagrange multiplier and the subscript
ajk in ∇ajk

indicates that the gradient ∇ is computed with
respect to ajk . Performing the required differentiation in
(38), it yields

ajk −∇fjk(x̄) + λx̄ = 0. (40)

Pre-multiplying (40) by x̄T and using (39), we obtain

λ =
x̄T∇fjk(x̄) − fjk(x̄)

‖x̄‖2 . (41)

Now, substituting (41) in (40), we obtain

ajk = ∇fjk(x̄) +
fjk(x̄) − x̄T∇fjk(x̄)

‖x̄‖
2 x̄, x̄ 6= 0, (42)

which are the columns of the vertex matrix Ak. This formula
produces linear approximations instead of affine approxima-
tions, which are in general obtained by the Taylor lineariza-
tion formula given by

Ak = ∇fk(x̄) :=
∂fk(x)

∂x

∣

∣

∣

∣

x=x̄

, (43)

and the approximation of fk(x) around x̄ is

fk(x) ≈ fk(x̄) + ∇fk(x̄)(x − x̄).

Note that for fk(x̄) 6= 0, this approach produces affine sys-
tems instead of linear ones, as mentioned before. Using (42),
several linear approximations of the uncertain linear system
(2) can be obtained for different linearization points, even if
these points are not equilibrium points.

B THE DINI DERIVATIVES

The Dini derivatives are a generalization of the classical
derivative and inherit some important properties from it. Be-
cause the Dini derivatives are point-wise defined, they are
more suited than some more modern approaches to general-
ize the concept of a derivative like Sobolev Space or Distri-
butions. The Dini derivatives are defined as follows (Rouche
et al., 1977).

Definition 3 Let ]a, b[ ⊂ R and consider a function
f : ]a, b[ → R and a point t0 ∈ ]a, b[.

(i) Let t0 be a limit point of ]a, b[ ∩ ]t0, +∞[. Then the
right-hand upper Dini derivate D+ of f at t0 is given by

D+f(t0) := lim sup
t→t+

0

f(t) − f(t0)

t − t0
=

lim
ε→0+













sup
t ∈ ]a, b[ ∩ ]t0, +∞[
0 < t − t0 ≤ ε

f(t) − f(t0)

t − t0













,

and the right-hand lower Dini derivate D+ of f at t0 is
given by

D+f(t0) := lim inf
t→t+

0

f(t) − f(t0)

t − t0
=

lim
ε→0+











inf
t ∈ ]a, b[ ∩ ]t0, +∞[
0 < t − t0 ≤ ε

f(t) − f(t0)

t − t0











where t → t+1 means simply that one considers, in the
limiting processes, only the values of t > t1. A similar
meaning is attached to t → t−1 .

(ii) Let t0 be a limit point of ]a, b[ ∩ ] − ∞, t0[. Then the
left-hand upper Dini derivate D− of f at t0 is given by

D−f(t0) := lim sup
t→t−

0

f(t) − f(t0)

t − t0
=

lim
ε→0−













sup
t ∈ ]a, b[ ∩ ] −∞, t0[
ε ≤ t − t0 < 0

f(t) − f(t0)

t − t0













,

and the left-hand lower Dini derivate D− of f at t0 is
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given by

D−f(t0) := lim inf
t→t−

0

f(t) − f(t0)

t − t0
=

lim
ε→0−











inf
t ∈ ]a, b[ ∩ ]t0, +∞[
ε ≤ t − t0 < 0

f(t) − f(t0)

t − t0











In the framework of the elementary calculus, if f :]a, b[ → R

is a function from a non-empty open subset ]a, b[ ⊂ R into
R and t0 ∈ ]a, b[, then all four Dini derivatives D+f(t0),
D+f(t0), D−f(t0), and D−f(t0) of f at the point t0 exist.
This means that if ]a, b[ is a non-empty open interval, then
the functions D+f , D+f , D−f and D−f :]a, b[→ R̄, where
R̄ := R ∪ {−∞} ∪ {+∞}, are all defined in the canonical
form. In this case, the classical derivative df/dt :]a, b[→ R

exists, if and only if the Dini derivatives are all real valued
and D+f = D+f = D−f = D−f .

Remark 3 We have the inequality for lim sup

lim sup
t→t+

0

[f(t) + g(t)] ≤ lim sup
t→t+

0

f(t) + lim sup
t→t+

0

g(t)

in which a derivative defined in this form is not a linear op-
eration at all; notwithstanding, if the right-hand limit of the
function g exists, then

lim sup
t→t+

0

[f(t) + g(t)] = lim sup
t→t+

0

f(t) + lim
t→t+

0

g(t).

These results also hold for lim inf .

The latter equality leads to the following lemma.

Lemma 5 Let f and g be real valued functions, the
domains of which are subsets of R and let D∗ ∈
{D+f, D+f, D−f, D−f} be a Dini derivative. Let t0 ∈ R

be such that the Dini derivative D∗f(t0) is properly defined;
that is D∗f(t0) ∈ R and g is differentiable at t0 in the clas-
sical sense. Then

D∗[f(t0) + g(t0)] = D∗f(t0) +
dg(t0)

dt
.

Theorem 6 Let I be a non-empty interval in R, C be a
countable subset of I and f : I → R be a continuous func-
tion. Let D∗ ∈ {D+f, D+f, D−f, D−f} be a Dini deriva-
tive and let J be an interval such that D∗f(t) ∈ J for all
t ∈ I/C. Then

f(t1) − f(t2)

t1 − t2
∈ J,

for all t1, t2 ∈ I , t1 6= t2.

Corollary 7 Let I be a non-empty interval in R, C be a
countable subset of I , f : I → R be a continuous function,
and D∗ ∈ {D+f, D+f, D−f, D−f} be a Dini derivative.
Then

D∗f(t) ≥ 0 for all t ∈ I/C implies that f is increasing on
I ,

D∗f(t) > 0 for all t ∈ I/C implies that f is strictly increas-
ing on I ,

D∗f(t) ≤ 0 for all t ∈ I/C implies that f is decreasing on
I ,

D∗f(t) < 0 for all t ∈ I/C implies that f is strictly de-
creasing on I .

C FUZZY BLENDING CONTROL

For the purpose of comparison, we present a fuzzy blending
control which is also used to stabilize (4). This stabilizing
control approach is given in terms of the PDC scheme and a
common quadratic Lyapunov function using the guaranteed
cost control optimization problem in the context of the con-
vex analysis using LMI’s (Arrifano and Oliveira, 2002).

According to the PDC scheme, a fuzzy blending control
shares the same structure of (3) in its premise part. As in
(4), this fuzzy control is also inferred as a weighted average
of all feedback gains Ki, i = 1, 2, . . . , r which is given by

u = −

r
∑

i=1

αi(x)Kix, (44)

with αi(·) as in (5). In order to obtain the state feedback
fuzzy system, we substitute (44) in (4), which gives

ẋ =

r
∑

i=1

r
∑

j=1

αi(x)αj(x) (Ai(p) + Bi(p)Kj) x. (45)

Defining Gi(p) := Ai(p)−Bi(p)Ki and Hij(p) := Ai(p)−
Bi(p)Kj + Aj(p) − Bj(p)Ki, i, j = 1, 2, . . . , r, after some
algebraic manipulations using

∑r
i=1 αi(x) = 1, we can

write (45) as

ẋ =

r
∑

i=1

α2
i (x)Gi(p)x +

r
∑

i<j

αi(x)αj(x)Hij(p)x. (46)

In (46),
∑r

i<j means, for instance for r = 3,
∑3

i<j aij ⇔
a12 + a13 + a23.
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C.1 Guaranteed cost control design via
LMI’s

In this section we summarize the optimal quadratic guaran-
teed cost control problem for the fuzzy blending control de-
sign.

Definition 4 The fuzzy system (4) is said to be stable if there
exists a stabilizing control law as in (44) such that an upper
bound on the quadratic performance index

C(x0, u) =

∫ ∞

0

(xT Qx + uT Ru)dt, (47)

along the feedback fuzzy system trajectory is minimized with
Q ∈ R

n×n, R ∈ R
m×m, Q > 0, and R > 0 weighting sym-

metric matrices which are chosen to yield the desired perfor-
mance.

Definition 5 If there exist a stabilizing control law as in (44)
and a positive scalar Ĉ such that C(x0, u) ≤ Ĉ along the
feedback fuzzy system trajectory then Ĉ is a guaranteed cost
and (44) is a guaranteed control law.

Proposition 2 Consider the fuzzy system (4), the fuzzy
blending control (44) and the performance index (47). If
there exist a common symmetric positive definite matrix X
and matrices Yi, i = 1, 2, . . . , r of appropriate dimensions
satisfying the LMI’s

Q > 0, R > 0, X > 0,
[

Uik Z
ZT −W

]

< 0,

∀i = 1, 2, . . . , r, k = 1, 2, . . . , v,
[

Vijk Z
ZT −W

]

< 0,

∀i < j, i, j = 1, 2, . . . , r, k = 1, 2, . . . , v ,
(48)

where

Uik = XAT
ik + AikX − Y T

i BT
ik − BikYi,

Vijk = XAT
ik + AikX − Y T

j BT
ik − BikYj ,

+XAT
jk + AjkX − Y T

i BT
jk − BjkYi,

Z =
[

XQ1/2 Y T
1 R1/2 Y T

2 R1/2 . . . Y T
r R1/2

]

,
W = diag

{

In, Im, Im, . . . , Im

}

Yi = KiX,
X = P−1.

then (44) with Ki = YiX
−1, i = 1, 2, . . . , r is a guaran-

teed control law and the cost given by Ĉ = xT
0 X−1x0 is a

guaranteed cost.

Proof: The proof can be obtained following the proof of
Proposition 1, considering a common quadratic Lyapunov

function candidate as

V (x) = xT Px, (49)

along the feedback fuzzy system trajectory. 2

As in Section 2.2.1, using both Proposition 2 and Lemma 1,
we can construct the following GEVP for the guaranteed cost
control design to the feedback fuzzy system (46):

min
X,Yi

γ subject to In ≤ γX and (48). (50)

If (50) is feasible, we have γ > λmax[X−1] and Ki =
YiX

−1 for i = 1, 2, . . . , r.
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