
AN OPTICAL FLOW-BASED SENSING SYSTEM FOR REACTIVE MOBILE
ROBOT NAVIGATION

Eliete Maria de Oliveira Caldeira∗

eliete@ele.ufes.br
Hans Jörg Andreas Schneebeli∗

hans@ele.ufes.br

Mário Sarcinelli-Filho∗

mario.sarcinelli@ele.ufes.br

∗Departamento de Engenharia Elétrica - Universidade Federal do Espírito Santo
Av. Fernando Ferrari, 514, 29075-910 Vitória/ES Brazil

Voice: +55 27 4009 2684 Fax: +55 27 4009 2737

ABSTRACT

This work discusses the use of optical flow to generate the
sensorial information a mobile robot needs to react to the
presence of obstacles when navigating in a non-structured
environment. A sensing system based on optical flow and
time-to-collision calculation is here proposed and experi-
mented, which accomplishes two important paradigms. The
first one is that all computations are performed onboard the
robot, in spite of the limited computational capability avail-
able. The second one is that the algorithms for optical flow
and time-to-collision calculations are fast enough to give the
mobile robot the capability of reacting to any environmen-
tal change in real-time. Results of real experiments in which
the sensing system here proposed is used as the only source
of sensorial data to guide a mobile robot to avoid obstacles
while wandering around are presented, and the analysis of
such results allows validating the proposed sensing system.

KEYWORDS: Optical flow; Mobile robots; Autonomous ve-
hicles; Obstacle avoidance; Mobile robot navigation; Com-
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1 INTRODUCTION

Many applications of mobile robots demand the use of a
CCD camera fixed onboard the mobile platform, like surveil-
lance, remote inspection, etc. Thus, most mobile platforms
include such sensor as part of its hardware resources.

In addition, vision is very likely to be the richest human sens-
ing subsystem, for the wide gamma of information it can pro-
vide (Farah, 2000; Ramel, 2000). Then, to make profit of the
vision system available onboard the mobile robot is quite rea-
sonable. However, for the sake of cost reduction, the vision
system frequently available onboard the robot is a monocular
one, thus imposing severe limitations on how to use vision to
get useful information about the surrounding environment.
Information about the amount of objects in the scene, for ex-
ample, could be generated by simply segmenting an acquired
image (Tekalp, 1995; Adams and Bischof, 1994; Bleau and
Leon, 2000), but the relative depth of such objects would not
be determined, thus making impossible to the robot to imple-
ment the necessary maneuvers to avoid them.

Techniques exist, however, that allow the mobile robot to
navigate without colliding to any obstacle. One of the most
well known among such techniques is the map of poten-
tials, which is a collection of range measurements defin-
ing preferential directions of movement so that the robot
reaches its goal and avoids obstacles (Barraquand, Langlois
and Latombe, 1992). The key variable to determine such vec-
tors is the distance from the robot to an obstacle (Barraquand,
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Langlois and Latombe, 1992), which can be measured using
sonar or laser range finder.

Regarding monocular vision, a technique exists that is able to
provide information about the distance from a camera fixed
onboard the robot to an object, which is based on the optical
flow vector field (Horn and Schunck, 1981). The optical flow
field is obtained by processing two or more sequential views
of the same scene. Such technique has been explored in many
applications, like plant growth monitoring (Barron and Lip-
tay, 1997), video compression (Wallach, Kunapalli and Co-
hen, 1994), automatic car driving (Giachetti, Campani and
Torre, 1998; Batavia, Pomerlau and Thorpe, 1998), and mo-
bile robot navigation (Ancona and Pogio, 1995; Carelli et.
al., 2002; Dev, Kröse and Groen, 1997a; Baratoff, Toepfer
and Neumann, 2000; Camus et. al., 1999; Coombs et. al.,
1998; Santos-Victor et. al., 1995; Stöfler, Burkert and Fär-
ber, 2000).

This paper addresses an application in mobile robot naviga-
tion that uses the optical flow technique to get all the informa-
tion the robot needs to safely navigate. In some applications
regarding the use of optical flow in mobile robot navigation,
a special camera arrangement (Coombs et. al., 1998; Santos-
Victor et. al., 1995), a single special camera (Camus et. al.,
1999; Coombs et. al., 1998) or specialized hardware pieces
(Ancona and Pogio, 1995; Stöfler, Burkert and Färber, 2000;
Carelli et. al., 2002; Dev, Kröse and Groen, 1997a; Coombs
et. al., 1998) has been adopted in order to get more accu-
rate information or to accelerate the optical flow calculation.
Such resources are not available here: the only sensor used is
a perspective camera with small aperture angle (48.8 degrees
in the horizontal direction) fixed on the robot. Therefore, the
solution adopted is to pay special attention to the calculation
of the optical flow vectors.

In other applications related to mobile platforms navigation,
for the restrictions on the computational capability, most re-
sults so far published consider some simplification: process-
ing just small parts of the acquired images (Carelli et. al.,
2002; Dev, Kröse and Groen, 1997a; Giachetti, Campani and
Torre, 1998; Batavia, Pomerlau and Thorpe, 1998), acquiring
and processing smaller images (Lorigo et. al., 1997), or even
performing the calculations off-board the robot (Carelli et.
al., 2002; Dev, Kröse and Groen, 1997a), are strategies com-
monly adopted. In the last case, a more efficient computer
off-board the robot receives the images it acquires, performs
the calculations and sends a control signal back to it. How-
ever, in such a case the robot autonomy is restricted, once the
robot is constrained to keep close the off-board computer, for
not loosing communication. Other strategy that has been re-
cently adopted is the pre-processing of the images acquired
to generate a more compact set of input data, which would
cause the processing time to be reduced. However, the re-

sults so far obtained have not allowed increasing the image
acquisition rate (Baratoff, Toepfer and Neumann, 2000). No
simplifications like those above mentioned are adopted here:
the images used are 240x320 pixels grey level bitmaps, and
all the calculations are performed onboard the mobile plat-
form.

The optical flow-based sensing system here proposed gener-
ates a one-dimensional map of depths corresponding to the
horizon in front of the robot, covering its entire field of vi-
sion. The behavior wandering (Brooks, 1986), meaning that
the robot moves itself around just avoiding obstacles, is im-
plemented, in order to demonstrate the capability of the opti-
cal flow-based sensing system proposed to deal with obstacle
detection and avoidance. Moreover, no other sensing appa-
ratus than the CCD camera is used, once the optical flow
technique is able to provide the necessary sensorial informa-
tion. Finally, the entire system is implemented in a computer
onboard the mobile platform, thus guaranteeing its full au-
tonomy.

The tests with the system here developed were performed
with the ActivMedia Pioneer 2-DX mobile robot (see Fig-
ure 1), whose onboard computer is based on the Intel Pen-
tium MMX 233 MHz processor, and includes 128 Mbytes
of RAM memory. The CCD camera onboard the robot is
a SONY D30/D31 analog one, attached to a PC Imagena-
tion frame grabber. The robot also embeds Saphira, an API
that allows the programmer to get sensorial information and
to actuate on the robot motors, through passing setup val-
ues for the heading angle and the linear speed. Actually,
Saphira delivers to the robot embedded microcontroller (a
Siemens 20 MHz 88C166 one) the low-level actuation sig-
nals, in accordance with the high level commands it receives.
It also allows the programmer to get information from the
robot odometry, which is here used to recover the trajectory
the robot followed.

For describing the system implemented, the paper is here-

Figure 1: A photograph of the robot used in the experiments.
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inafter structured in five sections. Section 2 discusses the
algorithm adopted to perform the optical flow calculation,
which is one of the main responsible for guaranteeing the
real-time characteristic of the whole system. In the sequence,
Section 3 discusses an algorithm adopted to perform the mo-
tion segmentation (Tekalp, 1995), based on the optical flow
vectors calculated, which produces the map of depths used
by the robot to avoid obstacles, here referred to as the vector
of times to collision or times to contact. Next, Section 4 deals
with a state-machine implemented to allow the robot to avoid
obstacles in some different contexts, which is based on the
vector of times to collision generated in Section 3. Finally,
Section 5 shows some experimental results, while Section 6
highlights the main conclusions.

2 OPTICAL FLOW CALCULATION

The main paradigm to be considered here is to implement
an algorithm that calculates the optical flow vectors as fast
as possible, in order to preserve the capability of the sys-
tem of reacting to any environmental change in real time.
As images should be acquired in an acquisition rate of thirty
frames per second, the acquisition of several image frames
would demand a lot of time, so that the first step of choos-
ing a suitable algorithm was to impose that no more than two
image frames should be acquired. Also, only gradient-based
methods for optical flow calculation (Barron, Fleet and Beau-
chemin, 1993) were considered. Another strong limitation
was not to consider iterative algorithms, like the classical one
due to Horn and Schunck (1981), for the large computation
time demanded to get a good optical flow vectors estimate.

Then, starting from the analysis of the methods for optical
flow calculation presented in (Barron, Fleet and Beauchemin,
1993), the least-squares algorithm proposed by Lucas and
Kanade (1981) was selected as the candidate to estimate the
optical flow vectors. In such an algorithm, the optical flow
is considered constant in a region of N by N pixels. Thus,
writing the optical flow constraint for each pixel in the region
one gets the set of observations

Ixp
u + Iyp

v + Itp
= 0 for p = 1, ..., N × N, (1)

from which the least squares estimate

(û, v̂) =
(
A

T
A

)
−1

A
T
b (2)

of the optical flow vector is obtained, where

A =

[
Ix1

, Ix2
, ..., IxN×N

Iy1
, Iy2

, ..., IyN×N

]T

and

b = −
[
It1 , It2 , ..., ItN×N

]T
.

Other algorithms available in the more recent literature were
also tested, like those proposed in (Grossmann and Santos-
Victor, 1997), (Nesi, Bimbo and Ben-Tzvi, 1995) and (Lai
and Vemuri, 1998), mainly for the robust and high-quality
estimate they generate.

Tests run with this group of algorithms are reported in
(Sarcinelli-Filho et. al., 2002b), and the main result is that
the more robust algorithms demand a computation time that
is much higher than that demanded to get the least-squares
estimate. Hence, as low computation time is a main paradigm
in the application here considered, the least squares optical
flow vectors estimate was selected as the most suitable one
for onboard implementation. However, to reduce the num-
ber of pixels of each one of the two image frames used when
writing the observation equations, like it is done in (Gross-
mann and Santos-Victor, 1997), showed to be very interest-
ing. Following this strategy, our implementation adopts re-
gions of 10x10 pixels (24x32 regions in each image frame)
and adopts 12 observations for processing the optical flow
estimate associated to each region. The computation time as-
sociated to such a modified least squares estimate is summa-
rized in Table I. The main result of such an implementation
is that real-time performance is assured to the sensing system
here proposed.

However, experiments have shown that such an algorithm
generates rougher estimates of the optical flow vectors, in
comparison with the classical least-squares estimate. Actu-
ally, in all the experiments run it generated an underestimated
time to contact when the robot approached an obstacle. Nev-
ertheless, the rougher estimate of the optical flow vectors,
from which the time to contact emerges (Dev, Kröse and
Groen, 1997a), does not represent any danger to the robot,
in this case, once any evasive maneuver is started in advance.

3 OPTICAL FLOW-BASED IMAGE SEG-
MENTATION

With the objective of making easier to get information about
the environment surrounding the robot, it was implemented
an image segmentation step entirely based on the optical flow
vectors previously calculated. The result of such segmenta-
tion is to disclose the distinct objects present in the scene.

The optical flow-based image segmentation is also called
segmentation of movement, which consists in grouping the
image pixels that perform the same movement. Thus, distinct
groups of pixels emerging from the segmentation are associ-

Revista Controle & Automação/Vol.18 no.3/Julho, Agosto e Setembro 2007 267



ated to different moving objects in the 3D scene (Borshukov
et. al., 1997; Tekalp, 1995). Therefore, the optical flow-
based segmentation corresponds to group pixels whose opti-
cal flow vectors are similar, thus corresponding to the same
movement in the image frame considered. Then, considering
that the optical flow field is a good representation of the field
of movement, each group of pixels emerging from the seg-
mentation is associated to a single 3D structure. An impor-
tant aspect, in this sense, is that the accuracy of the result of
the segmentation is straightforwardly connected to the accu-
racy of the optical flow vectors previously calculated (Stöfler,
Burkert and Färber, 2000). Actually, after calculating the op-
tical flow vectors as described in Section 2, each vector rep-
resents a region of 10x10 pixels in the image, such that a ma-
trix of 24x32 different optical flow vectors is the data to be
analyzed in order to detect objects in the image frame. There-
fore, the image segmentation process is not time-consuming.

Table 1: Computation time associated to the least squares
estimates of the optical flow.

Least squares estimate
Normalized Computation

time (%)

Classical one 100

Modified one 6.25

The methods available in the literature for optical flow-based
image segmentation can be grouped in three main categories
(Borshukov et. al., 1997). The first one corresponds to the
use of affine clustering (Wang and Adelson, 1994), mean-
ing to cluster pixels based on an affine optical flow model.
For the second category, the segmentation is based on the
dominant movement (Bergen, Burt and Hanna, 1992), where
in the current iteration the region of dominant movement is
identified and the movement it performs is estimated. The
procedure is repeated in the next iteration, not including re-
gions previously identified as regions of dominant move-
ment. The third category executes simultaneously the esti-
mation and the segmentation of movements.

The method proposed by Wang and Adelson (1994) is an ex-
ample of the use of affine clustering to segment movements.
It supposes that the optical flow corresponding to an image
frame can be described as a set of planar regions in the space
of velocity, what means that the optical flow has an affine
model in such regions. This way, the optical flow is estimated
for the entire image, which is divided in rectangular regions,
where the parameters of the affine model of the optical flow
are estimated. As the models of regions corresponding to the
same object in the real world, they are grouped in a small
number of classes by using an adaptive k-means algorithm.
An affine model is obtained for each group of regions with
similar models, and then each optical flow vector is grouped

in one of the resulting classes.

The multistage affine segmentation method proposed by Bor-
shukov et al. (1997) combines the method of segmentation
based on the dominant movement of Bergen et al. (1992)
and the clustering using the affine model adopted by Wang
and Adelson (1994). The image is divided in rectangular
blocks for which the parameters of the affine model of the
optical flow are estimated. The parameters associated to the
dominant movement are then determined, by combining the
parameters of different regions. Then, the regions whose pa-
rameters are well represented by this model are identified and
grouped together. The procedure is repeated for the regions
not included in any group, thus generating another vector
characterizing a dominant movement, and so on.

The procedure proposed in this work uses a constant value as
the model of the optical flow in each region of 10x10 pixels,
in consonance with the algorithm adopted for optical flow
calculation discussed in Section 2. It groups the contiguous
regions characterized by optical flow vectors that are similar,
according to the metric used in (Borshukov et. al., 1997)
and (Wang and Adelson, 1994). Therefore, the optical flow
vectors corresponding to the regionsrij andrkl are similar if

(ukl − uij)
2

+ (vkl − vij)
2

< Tij , (3)

wherei andj indicate the row and the column of the region
rij under consideration in the matrix of optical flow vectors,
respectively,k and l indicate, respectively, the row and the
column of one of the regions in the neighborhood ofrij , u

andv are the components of the optical flow in the direc-
tions x andy, respectively, andTij is a threshold value for
the regionrij . Such condition corresponds to say that two
neighbor regions are similar if the squared magnitude of the
difference between their optical flow vectors is below a cer-
tain threshold.

Choosing the value ofTij is a very important issue, for a
very low value could cause regions corresponding to a single
3D object not to be grouped during the segmentation proce-
dure, as well as a very high value could cause the grouping
of regions corresponding to different 3D objects. Besides, as
the robot is most time approaching objects in the scene, the
optical flow is expected to be a radial field of vectors. More-
over, it is expected that the magnitude of the vectors diminish
when the region under consideration is close to the focus of
expansion of such field. Hence, it is not possible to use a sin-
gle value forTij for all regions. After several experiments,
it was decided to adopt 20% of the squared quadratic norm
of the optical flow vector corresponding to the regionrij for
the thresholdTij , which presented good results.

The algorithm adopted for performing the optical flow-based
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Initialize the counter n of objects in the scene (n = 0). 

Initialize the marker cij of each rij with the value –1. 

Define the number nl of regions in each column of the matrix of optical flow vectors. 

Define the number nc of regions in each row of the matrix of optical flow vectors. 

For i=1:nl 

For j=1:nc 

a) Mark the region rij as pertaining to an object: 

If rij is the first region considered (n = 0) then  

Make n = 1. 

Make cij = n. 

Go to b. 

Else if rij has a valid marker, which means that cij ≠ –1 then  

Go to b. 

Else  

Search the vicinity four of rij for a region with a valid marker whose optical  
  flow vector is similar to its one, by using the metric in equation (3.1) 

If there is no region similar to rij with a valid marker then 

Increase the number of objects detected (n = n + 1). 

Make cij = n. 

Go to b. 

Else 

Make cij equal to the least marker found in the vicinity four of rij. 

Go to b. 

End; 

b) Copy the marker cij to the regions in the neighborhood of rij with similar optical 
  flow vector that do not pertain to any object (with the marker -1) or with an 
  marker greater than cij. 

End for; 

End for. 

Figure 2: The optical flow-based image segmentation algorithm adopted.

image segmentation is presented in Figure 2. There, a certain
region in the image is identified asrij , wherei is the row and
j is the column of the matrix of optical flow vectors, and the
corresponding optical flow vector is characterized as (u, v)ij .
A markercij is associated to it (positive nonzero integers),
which defines an object such a region is part of.

The regions for which the optical flow vectors are not avail-
able (those in which Equation (2) has no solution) are dis-
regarded when running the algorithm of Figure 2, and their
markers remain with the value –1. As a result of running such
an algorithm, each distinct marker represents a different ob-
ject in the image frame considered, while the regions with a
–1 marker are regions detected as not pertaining to any ob-
ject. All the procedure is performed in a single sweep, thus

being extremely fast, once it is run over the matrix of 24x32
optical flow vectors (not over each pixel of the 240x320 pix-
els image frame). Such characteristic is a very important one,
when regarding that the robot should react to the presence of
obstacles in real-time.

In the sequence, the focus of expansion (FOE) corresponding
to the entire image frame is calculated, based on the set of
valid optical flow vectors available (Dev, Kröse and Groen,
1997a). It is the point from which all optical flow vectors
emerge, and both components of the optical flow vector are
null in such a point (u= 0 andv= 0). It is determined from
the optical flow field calculated, searching for the point in
which the directions of the vectors in the field cross each
other (Dev, Kröse and Groen, 1997a). Having the coordi-
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nates of the FOE and the optical flow field, one can calculate
the time to contact correspondent to each region of the image
under consideration. It is performed through the equation

τ =
(x − xFOE)

u
=

(y − yFOE)

v
,

which is equivalent to

τ =

√
(x − xFOE)2 + (y − yFOE)2

√
u2 + v2

, (4)

wherex andy are the coordinates of the center of the region
under consideration,u andv are the components of the opti-
cal flow vector in such a region, andxFOE andyFOE are the
coordinates of the FOE in the image.

Once the time to contact correspondent to each region in the
image is available, the time to contact associated to each ob-
ject is obtained by averaging the times to contact correspon-
dent to the regions associated to that object. Then, the least
time to contact corresponding to each column of the matrix
of 24x32 optical flow vectors isobtained, thus filling a vec-
tor of 32 positions, whose elements are the values of the least
time to contact corresponding to each vertical 10 pixels-wide
stripe in the image frame. This is equivalent to define a set of
32 visual sensors, each one measuring the time to contact in
an angle of 48.8/32=1.525 degrees in the visual field of the
robot. Such a vector, which is graphically depicted in Figure
3, is the sensorial information the sensing system delivers to
the control system in order to allow it to define the new head-
ing angle to be imposed to the robot to avoid the obstacles in
its visual field. Equal values of time to contact in contigu-
ous positions of such a vector represent the distance from the
robot to a single object in its field of vision. By its turn, dis-
tinct values of time to contact correspond to distinct objects.
This way, in part c of Figure 3 it is possible to identify two
different objects in the visual field of the robot, whose depths
are characterized for the two clearly distinct values of time to
contact.

The vector of times to contact and the magnitude of the op-
tical flow vector in the regions associated to an object can
provide rich information to a control system. In the sensing
system here proposed, objects for which the average magni-
tude of the optical flow vectors exceed a threshold of 1.2 are
understood as objects too close to the robot, thus demanding
a more drastic evasive maneuver.

Important information is also provided by the average value
and the standard deviation of the components of the vector of
times to contact. When the standard deviation is too low, it is
very likely that a single object spanning over the entire field

(a) 

(b) 
Time (s)

(c)

Figure 3: An example of the use of the optical flow-based
image segmentation algorithm. In (a) it is shown the first of
a set of two image frames acquired at the rate of 30 frames
per second. In (b) it is shown the result of the image seg-
mentation process (the white regions are those defined as not
pertaining to an object in the scene, and the other regions are
the objects detected - the darker the region is, the closer the
object is). Finally, (c) depicts the vector of times to contact
corresponding to such image frame.

of vision of the robot is in front of it. If the average time-to-
contact value is also low (below 2.5 s), this means that the
object in front of the robot is very close to it. In both cases,
to stop the robot is the safest reaction.

Finally, it is important to stress that the time spent to make
all these analysis over the vector of times to contact is very
small, because just a few elements are involved in the cal-
culations. An analysis of how to use all the information the
vector of times to contact provides, and how much time is
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consumed to do it, is presented in Section 5, in connection to
the discussion of the results of an experiment run.

4 CHECKING THE PERFORMANCE OF
THE PROPOSED SENSING SYSTEM

In this section a state-machine is designed in order to allow
checking how the sensing system described in the above sec-
tions performs. The robot is programmed to wander around
the lab, just avoiding colliding to any obstacle. It reacts to the
presence of an obstacle by changing its heading angle from
its current value (zero degrees, since the robot is just going
ahead) to a new value, which is determined by the sensorial
information embedded in the vector of times to contact de-
livered by the sensing system here proposed.

Three distinct situations are considered in the implementa-
tion of such a state-machine, which are labeled imminent
collision ahead, side obstacle and normal situation. Immi-
nent collision ahead is characterized either when the average
value of the components of the vector of times to contact is
below 2.5 s with a standard deviation close to zero (meaning
that a wide object is very close to the robot), or when an ob-
ject whose average magnitude of the optical flow vectors is
greater than the threshold adopted is detected in the middle
of an image frame (the elements 9 to 24 of the vector of times
to contact). In such cases, the action the robot takes is to go
back about 10 cm, to rotate 180 degrees and to move ahead
again. Those two situations are illustrated in Figure 4, were
a wall is detected in front of the robot, and Figure 5, where
the robot gets close to a waving hand, respectively.

Whenever the object whose average magnitude of the optical
flow vectors is greater than the threshold value is in the right
side (columns 25 to 32) or in the left side (columns 1 to 8) of
the visual field of the robot, the situation labeled side obsta-
cle is characterized. In such cases, the maneuver adopted is
to rotate 15 degrees in the opposite direction and to resume
moving ahead. Figure 6 illustrates a case of a side obstacle at
the right side of the image frame. If two objects are detected,
one in each side of the image frame, however, the system
characterizes the situation as imminent collision ahead.

The normal situation is characterized when neither objects
with high average optical flow magnitude nor objects span-
ning over all the visual field of the robot are detected in the
image frame. This means that an abrupt maneuver is not nec-
essary. When this is the case, a new small heading angle is
determined, the robot turns around its own axis according to
such angle and after continues moving ahead. This situation
is illustrated in Figure 7, which shows two images collected
by the camera onboard the robot. A certain time has elapsed
and six deviations have been performed, after getting the two
images shown in the figure. From the two images one can

(a) 

(b) 

(c) 

Figure 4: Exemplifying the detection of a wall. Part (a)
shows the wall, part (b) shows the optical flow vectors calcu-
lated, and part (c) shows the corresponding vector of times to
collision.

notice that the robot has deviated a little to the right, firstly
because of the chair leg and after because of the table leg,
both appearing in the first image and not in the second one.

In this case, the new heading angle to be imposed to the
robot is determined according to the proposal discussed in
(Sarcinelli-Filho et. al., 2002a). Like there, each element
of the vector of times to contact is considered as similar in-
formation coming from distinct sensors. The state-machine
associates to each sensor an angle, in order to make the robot
to deviate of an obstacle detected in such a direction. The
angle correspondent to a right turn, for thei-th component of
the vector of times to contact, is given by

θri = − αri

τi + 1
, for i = 0, 1, ..., 31, (5)

whereαri = ki, k being a constant. Thus, the more right the
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(a) 

(b) 

Figure 5: Illustrating the detection of a waving human hand
in the middle of the image. The real hand is in (a), while (b)
shows the regions whose average optical flow magnitude is
higher than the threshold adopted.

columni is, the greater the angleθri is. In a similar way, the
angle correspondent to a left turn, for thei-th component of
the vector of times to contact, is given by

θli =
αli

τi + 1
, for i = 0, 1, ..., 31, (6)

whereαli = k(31 − i), k being a constant. In opposition
to the right turn angles, the more right the columni is, the
smaller the angleθli is. In the experiments, the value adopted
for the constantk was 3.

The variances associated to such angles is given by

σ2

i = τi, for i = 0, 1, ..., 31, (7)

and represents an indication of the risk of a collision in the
direction corresponding to each sensor, or, in other words, of
the relevance of the obstacle in each column of the field of
vision of the robot in terms of the robot safety.

The anglesθri andθli, and the respective variances, are in-
putted to two distinct decentralized Kalman filter (Brown and
Hwang, 1997), which generates the overall left turn and right
turn anglesθl andθr, respectively (in the range from -15 de-
grees to +15 degrees), which are the two candidates to be the
new heading angle of the robot. The new value for the robot
heading angle is then defined asθ = min(θl,θr).

(a) 

(b) 

Figure 6: Detecting an object at the right side of the image.
The object - a human leg - is in part (a), while part (b) shows
the regions whose average optical flow magnitude is higher
than the threshold adopted.

(a) 

(b) 

Figure 7: Illustrating the situation in which the robot per-
forms smooth deviations (called normal situation). The im-
ages in parts (a) and (b) are two non-sequential images col-
lected by the camera onboard the robot during its navigation.
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Imminent 
collision 

ahead 

Go back Rotate Go ahead 
commandEvaluation

Side obstacle 

Calculate 
heading 
angle 

Normal situation 

End End

End 

Idle 

Start End

Figure 8: The state-machine corresponding to the control
system implemented.

The three maneuvers above described represent the state
changes of interest in the state machine implemented, which
is depicted in Figure 8. There, all the optical flow calcula-
tion and image segmentation, up to generating the vector of
times to contact and checking the average optical flow mag-
nitudes for the regions pertaining to the objects detected, are
performed when the robot gets into the state Evaluation. The
other circles in Figure 8 correspond to the three commands
above mentioned (to go back 10 cm, to rotate and to move
ahead), whose composition implements the above described
composite maneuvers.

The state Idle in Figure 8 characterizes the robot state before
being started. After the programmer starts the robot, it starts
moving ahead, thus entering the state Evaluation. All the
calculations necessary to determine the situation the robot
is facing (imminent collision ahead, side obstacle or normal
situation) are then performed, and, according to the situation,
the suitable maneuver is implemented. In the normal situa-
tion case, the next state is to calculate the new heading angle
(the current heading angle is always zero degrees).

It is also important to mention that the links included in Fig-
ure 8 are the only valid possibilities for our purposes. Any
other link is not meaningful in the context here considered,
and then is not included in the state-machine of Figure 8.

It should be emphasized, in such a context, that the command
execution is strictly sequential, as defined by the branches
End in Figure 8. Only after the system finishes the calcula-
tion of the new heading angle the corresponding turn around
can start, as well as only after finishing turning around the
robot can start moving ahead again. In particular, the action
to move ahead demands that the robot linear speed starts in
zero and gets its final value (in this work 100 mm/s), thus
demanding a certain time to be accomplished. Hence, the
image frames used in the optical flow calculation are always
acquired when the robot is performing pure translation, thus

guaranteeing that the FOE is always in the image, a necessary
condition to calculate any time to contact.

5 EXPERIMENTAL RESULTS

In order to check the performance of the sensing subsystem
discussed in Sections 2 and 3, under the coordination of the
state-machine discussed in Section 4, an experiment is now
presented and discussed. The robot is programmed to wan-
der around in the lab, avoiding all the chair legs, table legs,
people legs, walls, etc., it detects. Figure 9 shows the path
the robot followed during its navigation. The layout of the
lab has been over imposed to the figure in order to allow an-
alyzing the maneuvers the robot performed.

In such a figure one can see that the robot stopped and ro-
tated 180˚ when facing either a wall or a static person (points
A, B, and C). All the remaining time the maneuvers executed
corresponds to the normal situation. An analysis of all the ac-
tions the robot took shows that it was effectively able to avoid
the obstacles that appeared in its way, as expected, using only
the optical flow-based sensorial information, packed on the
vector of times to collision discussed in Section 3. Other ex-
amples have also shown that using optical flow it is possible
to detect the movement of people inside the lab, which sug-
gests the possibility of using such sensing system to follow a
person, for example.

In addition to Figure 9, Table II shows the times correspond-
ing to the definition of the new heading angle and to the exe-
cution of the evasive maneuvers defined some times the robot
got into the state Evaluation. There, a negative angle means
a turn to the right, while a positive angle means a turn to the
left. Also, the movements the robot executes are the compo-
sition of going back 10 cm, rotating 180˚ and going ahead
(lines 5, 8 and 11 of the table) and the composition of rotat-
ing much less than 180˚ and going ahead (the other lines of
the table), as discussed in connection to Figure 8. By to go
ahead, one should understand that the robot goes ahead, ac-
cording to the new heading angle established, and its linear
speed increases up to 100 mm/s, which consumes the time
specified in Table II (about 1 s).

As one can see, the time corresponding to the acquisition of
two image frames, the calculation of the optical flow vectors
plus the calculation of the new heading angle is compatible
with the robot dynamics, thus showing that the use of optical
flow for this kind of sensing is suitable, which is one of the
contributions of this paper.

Another feature to be mentioned is that the time correspond-
ing to each cycle varies from about 1.8 seconds to about 4.8
seconds (see Table II), thus characterizing an asynchronous
system. Therefore, it is not possible to define an image ac-
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C 

Figure 9: The path followed by the robot while wandering (distances are in mm).

quisition rate. In addition, each image acquisition, included
in the state Evaluation shown in Figure 8, corresponds to the
acquisition of two subsequent image frames, and the time to
capture both frames is also not constant. It depends on the
processes being executed in the onboard computer (a Win-
dows ME computer).

Another important result, regarding the time table corre-
sponding to the experiment, is summarized in Table III. It
illustrates the time spent to acquire the two image frames, to
calculate the optical flow vectors, to generate the vector of
times to collision, and to compare the average optical flow
magnitudes correspondent to the different objects detected
in the scene to the threshold adopted, for the same time in-
stants registered in Table II. From such table, one can see that
the most time consuming step of processing involved in the
sensing subsystem is just the acquisition of the two image
frames used to determine the optical flow vectors. Thus, the
restriction on the number of image frames used by the algo-
rithms for optical flow calculation is absolutely necessary, if
one wants to reduce the time spent to get the sensorial infor-

mation, as well as any attempt to improve the system reactiv-
ity should address a drastic change in the image acquisition
procedure.

Other meaningful feature emerging from the analysis of Ta-
ble II and Table III is that the whole time spent in the sensing
subsystem processing is different in the two tables, which
is due to the fact that such measures are performed in two
distinct threads of the software corresponding to the system
implementation, so that the measure presented in Table II in-
cludes the necessary passage of parameters from one to the
other thread.

6 CONCLUSION

An optical flow-based sensing system is here proposed,
which delivers to the robot control system a vector of times
to collision, which resembles a map of depths. Each element
in this vector represents the time within which the robot will
reach the closest object in a vertical stripe of 10 pixels in the
image frame considered. This way, the robot is able to make
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Table 3: The time table corresponding to the computations involved in the sensing subsystem.

Image
Acquisition

(ms)

Optical
Flow

Calculation
(ms)

Image
Segmentation

(ms)

Determination
of the FOE
Coordinates

(ms)

Analysis of
Characteristics

(ms)

Calculation of
the New
Heading

Angle (ms)

Total
(ms)

99 44 6 2 2 8 161

53 44 6 1 3 7 114

62 44 6 1 2 8 123

60 50 6 2 2 - 121

72 43 6 2 2 7 132

52 43 6 2 2 7 112

81 44 6 1 2 - 134

56 44 8 1 2 7 118

75 44 6 1 2 7 135

79 44 6 1 2 - 132

Table 2: The time-table corresponding to the experimenta-
tion.

Time to
acquire

two
image
frames
and to
deter-

mine the
new

heading
angle
(ms)

Time to
go back
10 cm
(ms)

Time to
rotate
(ms)

Rotation
angle
(de-

grees)

Time to
go

ahead
(ms)

178 - 592 -3 1004

124 - 1071 10 1006

131 - 733 7 1006

130 1005 2590 180 1005

141 - 504 6 1010

115 - 1020 12 1005

137 1003 2584 180 1006

121 - 1018 -10 1011

138 - 721 -4 1006

135 1005 2474 180 1007

a decision on how much it should vary its current heading
angle in order to avoid the closest obstacles in its visual field.

The two main paradigms in the conception of such a sensing
system were the full onboard calculation and the guarantee
that the robot were able to react to any environmental change
in real-time. Such aims were effectively accomplished, as
showed in the experiment reported.

As a result of the analysis of the experiments run, it is pos-
sible to conclude that the use of optical flow to implement
reactive strategies for mobile robot navigation is viable. Ac-
tually, in the implementation here proposed it is shown that
the main problem is not the computation time associated to
the optical flow, time to contact or heading angle calculation,
but the time consumed during the image acquisition.
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