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Abstract. We present an algorithm for the constrained saddle point problem with a convex-

concave function L and convex sets with nonempty interior. The method consists of moving

away from the current iterate by choosing certain perturbed vectors. The values of gradients of L

at these vectors provide an appropriate direction. Bregman functions allow us to define a curve

which starts at the current iterate with this direction, and is fully contained in the interior of the

feasible set. The next iterate is obtained by moving along such a curve with a certain step size.

We establish convergence to a solution with minimal conditions upon the function L, weaker than

Lipschitz continuity of the gradient of L, for instance, and including cases where the solution

needs not be unique. We also consider the case in which the perturbed vectors are on certain

specific curves starting at the current iterate, in which case another convergence proof is provided.

In the case of linear programming, we obtain a family of interior point methods where all the

iterates and perturbed vectors are computed with very simple formulae, without factorization of

matrices or solution of linear systems, which makes the method attractive for very large and sparse

matrices. The method may be of interest for massively parallel computing. Numerical examples

for the linear programming case are given.
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1 Introduction

In this paper, we discuss methods for solving constrained saddle point problems.

Given closed convex sets X, Y contained in R
n, R

m respectively, and a function

L : X × Y → R, convex in the first variable and concave in the second one,

the saddle point problem SPP(L,X,Y ) consists of finding (x∗, y∗) ∈ X ×Y such

that

L(x∗, y) ≤ L(x∗, y∗) ≤ L(x, y∗) (1)

for all (x, y) ∈ X × Y . SPP(L,X,Y ) is a particular case of the variational

inequality problem, which we describe next. Given a closed convex set C ⊂ R
p

and a maximal monotone operator T : R
p → P(Rp), VIP(T ,C) consists of

finding z ∈ C such that there exists u ∈ T (z) satisfying

ut(z′ − z) ≥ 0 (2)

for all z′ ∈ C. If ∂xL, ∂yL denote the subdifferential and superdifferential of L

in each variable (i.e. the sets of subgradients and supergradients) respectively,

and we define T : R
n ×R

m → P(Rn ×R
m) as T = (∂xL, −∂yL) then VIP(T ,C)

coincides with SPP(X,Y ) if we take p = m + n and C = X × Y . It is easy to

check that this T is maximal monotone.

It is well known that when T = ∂f for a convex function f (x) then VIP(T ,C)

reduces to min f (x) s.t. x ∈ C. This suggests the extension of optimization

methods to variational inequalities. In the unconstrained case C = R
n, for which

VIP(T ,C) consists just of finding a zero of T , i.e. a z∗ such that 0 ∈ T (z∗), one

could attempt the natural extension of the steepest descent method, i.e.

zk+1 = zk − αuk

with uk ∈ T (zk) and α > 0. This simple approach works only under very restric-

tive assumptions on T (strong monotonicity and Lipschitz continuity, see [1]).

An alternative one, which works under weaker assumptions, is the following:

move in a direction contained in −T (zk) finding an auxiliary (or perturbed)

point wk and then move from zk in a direction contained in −T (wk), i.e.

wk = zk − αku
k (3)

zk+1 = zk − ᾱkd
k (4)
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with uk ∈ T (zk), dk ∈ T (wk), and αk,ᾱk > 0. In the constrained case, one must

project onto C in order to preserve feasibility, i.e., one takes

wk = PC(zk − αku
k) (5)

zk+1 = PC(zk − ᾱkd
k) (6)

where PC is the orthogonal projection onto C. If T is Lipschitz continuous with

constant π , then convergence of {zk} to a solution of VIP(T ,C) is guaranteed by

taking αk = ᾱk = α ∈ (0, 1/π). This result can be found in [16], where the

method was first introduced. In the absence of Lipschitz continuity (or when

the Lipschitz constant exists but is not known beforehand) it has been proven

in [11] that the algorithm still converges to a solution of VIP(T ,C) if αk, ᾱk are

determined through a certain finite bracketing procedure. A somewhat similar

method has been studied in [15].

When C has nonempty interior, it is interesting to consider interior point meth-

ods, i.e. such that {wk} and {zk} are contained in the interior Co of C, thus doing

away with the projection PC . This can be achieved if a Bregman function g with

zone Co is available. Loosely speaking, such a g is a strictly convex function

which is continuous in C, differentiable in Co and such that its gradient diverges

at the boundary of C. With g we construct a distance Dg on C × Co as

Dg(w, z) = g(w) − g(z) − ∇g(z)t (w − z) (7)

and instead of the half line {z − tu : t ∈ R+} we consider the curve {sg(z, u, t) :
t ∈ R+} where sg(z, u, t) is the solution of minw∈C{utw + (1/t)Dg(w, z)} for

t > 0, or equivalently sg(z, u, t) is the solution w of

∇g(w) = ∇g(z) − tu, (8)

which allows us to extend the curve to t = 0. Under suitable assumptions on g

(see Section 2), sg(z, u, 0) = z, the curve is uniquely defined for t ∈ [0, ∞) and

it is fully contained in Co. The idea is to replace (5) and (6) by

wk = sg(z
k, uk, αk) (9)

zk+1 = sg(z
k, dk, ᾱk) (10)
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with uk, dk, αk and ᾱk as in (3) and (4). This algorithm was proposed in [3], where

it is proved that convergence of {zk} to a solution of VIP(T ,C) is guaranteed if

αk is chosen through a given finite bracketing procedure and ᾱk solves a certain

nonlinear equation in one variable. A slight improvement is presented in [12],

where it is shown that convergence is preserved when ᾱk is also found through

another finite bracketing search. The main advantage of these interior point

methods with Bregman functions as compared e.g. to Korpelevich’s algorithm

lies in the fact that no orthogonal projections onto the feasible set are needed,

since all iterates belong automatically to the interior of this set. A detailed

discussion of the computational effects of this advantage in the case in which C

is an arbitrary polyhedron with nonempty interior can be found in Section 6 of [3].

For SPP(L,X,Y ), when either X or Y is an arbitrary polyhedron with nonempty

interior, the method introduced in this paper presents the same advantage over

the algorithm in [13], discussed in the next paragraph, which requires orthogonal

projections onto X and Y .

Going back to SPP(L,X,Y ), another related method is presented in [13]. Given

a point (xk, yk), a rather general perturbed vector wk = (ξ k, ηk) is computed,

and then

xk+1 = PX(xk − ᾱkd
k
x ) (11)

yk+1 = PY (yk + ᾱkd
k
y ) (12)

with dk
x ∈ ∂xL(xk, ηk) and dk

y ∈ ∂yL(ξk, yk). In this case no search is required

for the step size ᾱk, which is given by a simple formula in terms of the gap

L(xk, ηk)−L(ξk, yk). The difficulty is to some extent transferred to the selection

of (ξ k, ηk), which must satisfy certain conditions in order to ensure convergence

to a solution of SPP(L,X,Y ). One possibility is to adopt (5) so that ξk = PX(xk −
αku

k
x), ηk = PY (yk + αku

k
y), with uk

x ∈ ∂xL(xk, yk), uk
y ∈ ∂yL(xk, yk). In

this case the method is somewhat similar to Korpelevich’s (see [16]), but not

identical: in linear programming, for instance, a closed expression for αk is

easily available for the method of [13] even when a Lipschitz constant for ∇L is

not known beforehand. Other differences between the method in [13] with this

choice of (ξ k, ηk) and Korpelevich’s are commented upon right after Example 6

in Section 3.

Besides (5), the method in [13] includes other options for the selection of
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(ξ k, ηk). Taking advantage of this fact, we will combine the approaches in [3]

and [13], producing an interior point method for the case of nonempty Xo × Y o.

We will consider two independent modifications upon the method in [13]. The

first one to be discussed in Section 3 is the following: assuming that Bregman

functions gX, gY with zones Xo, Y o respectively are available, we will use (10)

instead of (11) and (12), setting

xk+1 = sgX
(xk, dk

x , τk) (13)

yk+1 = sgY
(yk, −dk

y , τk). (14)

We will show that if the perturbation pair (ξ k, ηk) satisfies conditions required

in [13] and the stepsizes τk are chosen in a suitable way then convergence to a

solution follows.

It is clear that the algorithm becomes practical only when sgX
, sgY

have explicit

formulae, i.e., in view of (8), when ∇gX, ∇gY are easily invertible. Bregman

functions with this property are available for the cases in which C is an orthant,

a box, or certain polyhedra (in the latter case, inversion of the gradient requires

solution of two linear systems) and are presented in [3]. Examples of realizations

of this method are given are Section 4.

The second modification presented in Section 5 consists of an interior point

procedure for the determination of (ξ k, ηk), namely

ξk = argmin
u∈X

{L(u, yk) + (1/λ)DgX
(u, xk)} (15)

ηk = argmax
v∈Y

{L(xk, v) − (1/µ)DgY
(v, yk)} (16)

where λ, µ are positive constants. Definitions (15) and (16) imply

ξk = sgX
(xk, d̃k

x , λ) (17)

ηk = sgY
(yk, −d̃k

y , µ) (18)

with d̃k
x ∈ ∂xL(ξk, yk), d̃k

y ∈ ∂yL(xk, ηk). Equivalently with (17) and (18) we

have

(1/λ)[∇gX(xk) − ∇gX(ξk)] ∈ ∂xL(ξk, yk) (19)

(1/µ)[∇gY (ηk) − ∇gY (yk)] ∈ ∂yL(xk, ηk). (20)
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Differently from (13) and (14), equations (17) and (18) are implicit in ξk, ηk,

which appear in both sides of (19) and (20). These equations cannot be in general

explicitly solved, even when ∇gX, ∇gY are easily invertible. On the other hand,

no search is needed for perturbation stepsizes λ and µ even when ∇L is not

Lipschitz continuous. This choice of (ξ k, ηk) does not satisfy the conditions in

[13], so that the general convergence result for the sequence defined by (13) and

(14) cannot be fully used. A special convergence proof will be given assuming

that the Bregman functions are separable and the constraint sets X and Y are the

nonnegative orthants.

It is immediate that (19) and (20) become explicit equations (up to the inversion

of ∇gX and ∇gY ) when ∂xL(·, y), ∂yL(x, ·) are constant. This happens in the

case of linear programming. For this case, combining both modifications, we

obtain an interior point method with explicit updating formulae both for the

perturbed points and the primal and dual iterates. The curvilinear stepsize τk

requires a simple search. We analyze the linear programming case in detail in

Section 6, where we present also some numerical illustration of the method.

2 Bregman functions and distances

Let C ⊂ R
p be a closed and convex set and let Co be the interior of C. Consider

g : C → R differentiable in Co. For w ∈ C and z ∈ Co, define Dg : C×Co → R

by (7). Dg is said to be the Bregman distance associated to g.

We say that g is a Bregman function with zone C if the following conditions

hold:

B1. g is continuous and strictly convex on C.

B2. g is twice differentiable on Co, and in any bounded subset of Co the

eigenvalues of ∇2g(z) are bounded below by a strictly positive number.

B3. The level sets of Dg(w, · ) and Dg( · , z) are bounded, for all w ∈ C,

z ∈ Co, respectively.

B4. If {zk} ⊂ Co converges to z∗, then limk→∞ Dg(z
∗, zk) = 0.

B5. For all v ∈ R
n there exists z ∈ Co such that ∇g(z) = v.
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The definition of Bregman functions and distances originates in [2]. They have

been widely used in convex optimization, e.g. [4], [5], [6], [7], [8]. Condition

B2 in these references is weaker than here; only differentiability of g in Co is

required. On the other hand, such references included an additional condition

which is now implied by our stronger condition B2, namely the result of Propo-

sition 1 below. Condition B5 is called zone coerciveness in [3]. From (7) and

B1 it is immediate that for all w ∈ C, z ∈ Co, Dg(w, z) ≥ 0 and Dg(w, z) = 0

if and only if w = z.

We present next some examples of Bregman functions.

Example 1. C = R
p, g(x) = ‖x‖2. Then Dg(w, z) = ‖w − z‖2.

Example 2. C = R
p
+, g(z) = ∑p

j=1 zj log zj , continuously extended to the

boundary of C with the convention that 0 log 0 = 0. Then

Dg(w, z) =
p∑

j=1

[wj log(wj/zj ) + zj − wj ]. (21)

Dg is the Kullback-Leibler information divergence, widely used in statistics.

Example 3. C = R
p
+, g(z) = ∑p

j=1(z
α
j − z

β

j ), with α > 1, β ∈ (0, 1).

Examples of Bregman functions satisfying these conditions for the cases of C

being a box or a polyhedron can be found in [3]. We now proceed to a result

which will be employed in the convergence analysis.

Proposition 1. If g is a Bregman function with domain Co, and {zk} and {wk}
are sequences in Co such that {zk} is bounded and limk→∞ Dg(w

k, zk) = 0, then

lim
k→∞ ‖ zk − wk ‖= 0.

Proof. Let B ⊂ Rn be a closed ball containing {zk} such that, for any z on

the boundary of B, ‖zk − z‖ > 1, for all k. For ν ∈ [0, 1] define zk(ν) =
νwk + (1 − ν)zk. Let νk be the largest ν ∈ [0, 1] such that zk(ν) ∈ B. For
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each k, define uk = zk(νk). Since Co is convex and ν ∈ [0, 1], we get that

zk(νk) ∈ Co. By convexity of Dg(·, zk),

0 ≤ Dg(u
k, zk) ≤ Dg(w

k, zk).

Because Dg(w
k, zk) converges to zero, so does Dg(u

k, zk). We shall show that

‖ zk − uk ‖ converges to zero. Then, from the definition of B it follows that

there exists k′ such that, for all k > k′, uk is in the interior of B, such that νk = 1

and uk = wk; hence the assertion follows.

Define uk(ω) = ωuk + (1 − ω)zk, for ω ∈ [0, 1]. By Taylor’s Theorem,

g(uk) = g(zk) + ∇g(zk)t (uk − zk)

+ 1

2
(uk − zk)t

[∇2g(uk(ω))
]
(uk − zk)

(22)

for some ω ∈ [0, 1]. The quadratic term in (22) is equal to Dg(u
k, zk), which

converges to zero. Because of boundedness of {zk} and {uk}, B2 implies that

Dg(u
k, zk) is bounded below by θ‖uk − zk‖2 for some θ > 0 and independent

of k. Therefore ‖uk − zk‖ converges to zero. �

3 An interior point method for saddle point computation

In this section we assume that X and Y have nonempty interior and that gX and

gY are Bregman functions with zones X and Y , respectively. L : R
n × R

m → R

is continuous on X × Y , convex in the first variable and concave in the second

one.

Following [13] we introduce perturbation sets � : X × Y → P(X), 
 : X ×
Y → P(Y ). We consider the following properties of �, 
.

A1. If (x, y) ∈ Xo × Y o and (ξ, η) ∈ �(x, y) × 
(x, y) then L(x, η) −
L(ξ, y) ≥ 0, with strict inequality if (x, y) is not a saddle point.

A2. If E ⊂ Xo × Y o is bounded then ∪(x,y)∈E�(x, y) and ∪(x,y)∈E
(x, y) are

bounded.

A3. If {(u�, v�)} ⊂ X × Y converges to (u, v) as � goes to ∞, ξ� ∈ �(u�, v�),

η� ∈ 
(u�, v�) and lim�→∞[L(u�, η�)−L(ξ�, v�)] = 0 then (u, v) solves

SPP(L,X,Y ).
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We give next a few examples of sets �, 
, taken from [13].

Example 4. Assume that X and Y are compact and define �(x, y) =
argminξ∈X L(ξ, y) and 
(x, y) = argmaxη∈Y L(x, η).

Example 5. Let λ > 0, µ > 0 and define �(x, y) = argmin ξ ∈ X[L(ξ, y) +
λ‖ξ − x‖2] and 
(x, y) = argmaxη∈Y [L(x, η) − µ‖η − y‖2], for x ∈ X,

y ∈ Y . Due to strict convexity (concavity) of the minimand (maximand), �(x, y)

(
(x, y)) is uniquely determined.

Example 6. Assume that ∇xL and ∇yL are Lipschitz continuous with con-

stant π and let 0 < α < 1/π . Define �(x, y) = {PX(x − α∇xL(x, y))}
and 
(x, y) = {PY (y + α∇yL(x, y))}. It corresponds to the perturbed vector

wk of Korpelevich’s method ([16]) in (5). But we must point out that when

we use the method in [13] (i.e. (11)-(12)) with this perturbation we obtain

something quite different from Korpelevich’s method, because Korpelevich’s

method, with T = (∇xL, −∇yL), would then choose dk
x = ∇xL(ξk, ηk) and

dk
y = ∇yL(ξk, ηk), while the method in [13] takes dk

x = ∇xL(xk, ηk) and

dk
y = ∇yL(ξk, yk). This choice of dk

x , dk
y is possible only in the case of a

saddle point problem, where we have two variables x and y, while Korpelevich’s

method is devised for a general variational inequality problem, where we only

have the vector wk, instead of the pair (ξ k, ηk).

It is not difficult to prove that the choices of � and 
 made in Examples 4-6

satisfy conditions A1-A3.

Next we present the algorithm generating the sequence {(xk, yk)}. We denote

zk = (xk, yk), C = X × Y and Co = Xo × Y o, and define Dg : C × Co → R

employing

g(z) = gX(x) + gY (y). (23)

It is a matter of routine to check that g is a Bregman function with zone C. The

algorithm of this section is defined as follows:

Step 0: Initialization. Choose parameters β and γ , 1 > β ≥ γ > 0, and take

z0 ∈ Co. (24)
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Step 1: Perturbation. Begin iteration with zk = (xk, yk). Choose perturba-

tion vectors (ξ k, ηk) ∈ �(xk, yk) × 
(xk, yk) and define

σk = L(xk, ηk) − L(ξk, yk). (25)

Step 2: Stopping test. If σk = 0 then stop.

Step 3: Direction. Choose dk
x ∈ ∂xL(xk, ηk), and dk

y ∈ ∂yL(ξk, yk), and

denote dk = (dk
x , −dk

y )
t .

Step 4: Stepsize. For t ≥ 0 define functions

z(t) = sg(z
k, dk, t) (26)

and

φk(t) = tσk − Dg(z
k, z(t)). (27)

Search for a step size τk ≥ 0 satisfying

γ σkτk ≤ φk(τk) ≤ βσkτk. (28)

Step 5: Update. Set

zk+1 = z(τk), (29)

increment k by one and return to Step 1.

Theorem 1 below shows that φk(t) is a concave function with φk(0) = 0 and

φ′
k(0) = σk > 0. For iteration k and a potential stepsize t , this function provides

a lower bound for the decrease in the Bregman distance to a solution. Thus the

left inequality in (28) aims to guarantee that such a distance is suitably decreased

while the right inequality aims to bound the stepsize from below. To shorten the

search for an acceptable stepsize, one may begin with the stepsize employed in

the preceding iteration. Also, we will show that the stopping criterion of Step 2

is appropriate, in the sense that when termination occurs zk is a solution of the

problem. The convergence properties of the algorithm are formalized as follows.

Comp. Appl. Math., Vol. 23, N. 1, 2004
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Theorem 1. Assume that SPP(L,X,Y ) has solutions. Let g be a Bregman

function with zone Co and let {zk} be a sequence generated by the algorithm of

this section, where ξk ∈ �(zk) and ηk ∈ 
(zk), with � and 
 satisfying A1

and A2. If the algorithm stops at iteration k, then zk solves SPP(L,X,Y ). If the

sequence {zk} is infinite, then

i) zk is well defined and belongs to Co, for all k,

ii) for any solution z∗ of SPP(L,X,Y ), the Bregman distance Dg(z
∗, zk) is

monotonically decreasing,

iii) {zk} is bounded,

iv) limk→∞ σk = 0;

v) limk→∞ ‖zk+1 − zk‖ = 0;

vi) if additionally A3 is satisfied, then the sequence {zk} converges to a

solution of SPP(L,X,Y ).

Proof. We prove first (i) by induction. z0 belongs to Co by (24). Assuming

that zk belongs to Co, note that (26) is equivalent to

∇g(z(t)) = ∇g(zk) − tdk, (30)

so that by B1 and B5, z(t) is uniquely defined by (30) and belongs to Co for all

t ≥ 0. By (29), zk+1 belongs to Co and (i) holds. Now we consider the case of

finite termination, i.e. when, according to Step 2, σk = 0. In such a case, since

zk belongs to Co by (i), it follows from A1 that zk is a saddle point. From now

on we assume that {zk} is infinite. We proceed to prove (ii). Since z(t) ∈ Co for

all t ≥ 0, using (7) and (30) we get

Dg(z
∗, zk) − Dg(z

∗, z(t)) = −t (dk)t (z∗ − zk) − Dg(z
k, z(t)). (31)

By convexity/concavity of L, since (x∗, y∗) is a saddle point,

−(dk)t (z∗ − zk) ≥ −L(x∗, ηk) + L(xk, ηk) + L(ξk, y∗) − L(ξk, yk)

= σk − L(x∗, ηk) + L(ξk, y∗) ≥ σk

(32)

Comp. Appl. Math., Vol. 23, N. 1, 2004



12 AN INTERIOR POINT METHOD FOR CONSTRAINED SADDLE POINT PROBLEMS

Combining (27), (31) and (32) yields

Dg(z
∗, zk) − Dg(z

∗, z(t)) ≥ φk(t). (33)

Differentiating (30) yields

∇2g(z(t))
d

dt
z(t) = −dk

so that the first two derivatives of φk(t) in (27) are

φ′
k(t) = σk + (dk)t (z(t) − zk) (34)

and

φ′′
k (t) = −ϕk(t), (35)

with ϕk defined as

ϕk(t) = (dk)t [∇2g(z(t))]−1dk. (36)

Since z(0) = zk, φk(0) = 0. By A1 and (34), φ′
k(0) = σk > 0, in view of

the stopping criterion, and so (32) implies dk �= 0. Consequently by B2, (35)

and (36), φ′′
k (t) < 0. Therefore φk(t) is a concave function of t ∈ [0, ∞)

with a positive slope at t = 0. Inequality (33) implies that φk(t) is bounded

above. Hence there exists a stepsize τk satisfying (28), so that zk+1 is well

defined, and therefore item (i) follows from (30). Furthermore, for some γk ∈
[γ, β], φk(τk) = γkτkσk which together with (33) implies item (ii). Denote by

Bo the set {z ∈ Co : Dg(z
∗, z) ≤ Dg(z

∗, z0)}. By B3, Bo is bounded. Item (ii)

implies that zk+1 ∈ Bo if zk ∈ Bo. Therefore, item (iii) follows then by induction

from (24).

Since {zk} is bounded, we get from A2 that {(ξ k, ηk)} is bounded. The oper-

ator (∂xL, −∂yL) is maximal monotone, therefore bounded over bounded sets

contained in the interior of its domain, which in this case is R
n × R

m (e.g. [18]).

It follows that {dk} is bounded.

By Taylor’s theorem and (28), for some τ̂ ∈ [0, τk], φk(τk) = τkσk− τ 2
k

2 ϕk(τ̂ ) ≤
βτkσk. Consequently, and because B2, A2 and item (iii) imply ϕk(τ̂ ) ≤ θ , for

some θ > 0, we have

τk ≥ 2(1 − β)σk

ϕk(τ̂ )
≥ 2(1 − β)σk

θ
. (37)
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By (28) and (33), ∑
k

τkσk < ∞. (38)

By (38), limk→∞ τkσk = 0, and then, multiplying both sides of (37) by σk, we

conclude that limk→∞ σk = 0, i.e. (iv) holds. From (27) and (28) we have

0 ≤ Dg(z
k, zk+1) ≤ τkσk, where the right side converges to zero. Therefore,

item (v) follows from item (iii) and Proposition 1. By item (iii) the sequence

{zk} has an accumulation point z̄. By item (iv) and A3, z̄ solves SPP(L,X,Y ).

By item (ii) the Bregman distance Dg(z̄, z
k) is non-increasing. If {zjk } is a

subsequence of {zk} which converges to z̄, by B4 limk→∞ Dg(z̄, z
jk ) = 0. Since

{Dg(z̄, z
k)} is a nondecreasing and nonnegative sequence with a subsequence

which converges to 0, we conclude that the whole sequence converges to 0. Now

we apply Proposition 1 with wk = z̄, and conclude that limk→∞ zk = z̄. �

4 Particular realizations of the algorithm

In the unrestricted case (X = R
n, Y = R

m) we can take g as in Example 1 so that

z(t) = zk − t

2
dk and φk(t) = tσk − t2

4
‖dk‖2.

In this case, with β = γ = 0.5, we may choose τk to maximize φk(t) yielding

τk = 2σk

‖dk‖2
and zk+1 = zk − σk

‖dk‖2
dk,

which is a special case of the method considered in [13].

Next, consider the case in which X, Y are the nonnegative orthants. For g as

in Example 2 we have

∇g(z)j = 1 + log zj (39)

∇2g(z)−1 = diag(z1, . . . , zn) (40)

z(t)j = zk
j exp(−tdk

j ) (41)

φk(t) = tσk −
∑

j

zk
j

[
tdk

j − 1 + exp(−tdk
j )

]
(42)

In this case, a search is needed for determining the stepsize τk in Step 3 of

the algorithm. For further illustration, see the case of linear programming in

Section 6.
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5 An interior point procedure for perturbation

In this section we analyze a selection rule for specifying ξk and ηk which extends

the proposal of Example 6 in Section 3. Let gX and gY be Bregman functions with

zones Xo and Y o, respectively. Take λ > 0 and µ > 0, and for (x, y) ∈ Xo ×Y o

define

ξ = ξ(x, y) = argmin
u∈X

{
L(u, y) + 1

λ
DgX

(u, x)

}
(43)

η = η(x, y) = argmax
v∈Y

{
L(x, v) − 1

µ
DgY

(v, y)

}
. (44)

We shall restrict the discussion to the following special case of SPP(L,X,Y ):

X = R
n+, Y = R

m+, L twice continuously differentiable on R
n × R

m and g

separable, i.e.

gX(x) =
n∑

j=1

g̃j (xj ), gY (y) =
m∑

i=1

ĝi(yi).

We will show that the perturbation sets defined by (43)-(44) satisfyA1 andA2. A3

does not hold in general for this perturbation, but we will establish convergence

of the method under a nondegeneracy assumption on the problem, and, in the case

of linear programming, without such assumption. Our proof can be extended to

nondifferentiable L and to box, rather than positivity, constraints, at the cost of

some minor technical complications.

Proposition 2. Assume that L is continuously differentiable, X×Y = R
n+×R

n+,

and that g is a separable Bregman functions with zone Xo × Y o. Consider

(x, y) ∈ Xo × Y o and (ξ, η) as in (43)-(44). Then

i) (ξ, η) is uniquely determined and (ξ, η) ∈ Xo × Y o;

ii) if (x, y) is not a saddle point, then L(x, η) − L(ξ, y) > 0;

iii) if B ⊂ Xo×Y o is nonempty and bounded, then the set {(ξ(x, y), η(x, y)) :
(x, y) ∈ B} is bounded.
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Proof. Let f (u) = L(u, y) + 1/λDgX
(u, x). Take w = ∇xL(x, y) and define

f̄ (u) = L(x, y) + wt(u − x) + 1/λDgX
(u, x). By convexity of L(·, y) we have

f̄ (u) ≤ f (u) (45)

for all u ∈ X. Consider the unrestricted minimization problem min f̄ (u), whose

optimality conditions are ∇gX(u) = ∇g(x) − λw. By B5, this equation in u

has a unique solution ū which belongs to Xo. It follows easily from (7) that

DgX
(·, x) is strictly convex, and the same holds for f̄ , so that ū minimizes f̄ in

R
n. A strictly convex function which attains its minimum has bounded level sets,

and it follows from (45) that f also has bounded level sets (see [19, Corollary

8.7.1]), and therefore it attains its minimum in X. Being the sum of a convex

function and a strictly convex one, f is strictly convex and so the minimizer is

unique, by convexity of X. The fact that this minimizer belongs to Xo follows

from B5 and has been established in [10, Theorem 4.1]. By definition of f ,

this minimizer is ξ(x, y). A similar proof holds for η(x, y) so that the proof of

item (i) is complete.

For item (ii), assume that (x, y) is not a saddle point. Then ∇xL(x, y) �= 0

or ∇yL(x, y) �= 0. Assume that the former case holds; the latter one can be

analyzed similarly. Observe that

∇f (u) = ∇xL(u, y) + 1

λ
[∇gX(u) − ∇gX(x)] (46)

so that ∇f (x) = ∇xL(x, y) �= 0. Hence x is not a solution of (43) and conse-

quently

f (x) = L(x, y) > L(ξ, y) + 1

λ
DgX

(ξ, x) > L(ξ, y).

This implies L(x, y) − L(ξ, y) > 0. Similarly, L(x, η) − L(x, y) ≥ 0 and

therefore L(x, η) − L(ξ, y) > 0. This completes the proof of item (ii).

To prove item (iii), we will prove boundedness of {ξ(x, y) : (x, y) ∈ B}. A

similar argument holds for η(x, y). The proof relies on successive relaxations

for optimization problems, whose optimal objective function values are upper

bounds for ‖ξ‖2. Since ∇f (ξ) = 0 by (46), ξ is unique by item (i), and we have

‖ξ‖2 = max{‖u‖2| u ≥ 0, ∇gX(u) − ∇gX(x) = −λ∇xL(u, y)}.
Comp. Appl. Math., Vol. 23, N. 1, 2004
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Note that

{u ≥ 0| ∇gX(u) − ∇gX(x) = −λ∇xL(u, y)}
⊂ {

u ≥ 0| ut
(∇gX(u) − ∇gX(x)

) = −λut∇xL(u, y)
}

⊂ {
u ≥ 0| ut

(∇gX(u) − ∇gX(x)
) ≤ −λut∇xL(u, y)

}
⊂ {

u ≥ 0| gX(u) − gX(0) ≤ ut
(∇gX(x) − λ∇xL(0, y)

)}
,

(47)

using the facts that ut
(∇xL(u, y) − ∇xL(0, y)

) ≥ 0 and gX(u) − gX(0) ≤
ut∇gX(u), which result from convexity of gX and L(·, y), in the last inclusion

of (47).

Let now ρ = maxj {sup(x,y)∈B[g̃′
j (xj )−λ∇xL(0, y)j ]}. We claim that ρ < ∞.

It suffices to show that sup(x,y)∈B[g̃′
j (xj ) − λ∇xL(0, y)j ] < ∞ for all j , which

follows from the facts that ∇xL(0, y) is continuous as a function of y, g̃′
j is

continuous in R++, limt→0 g̃′
j (t) = −∞, because of B5, and B is bounded. The

claim is established.

It follows from (47) that

{u ≥ 0| ∇gX(u) − ∇gX(x) = −λ∇xL(u, y)}
⊂ {u ≥ 0| gX(u) − gX(0) ≤ ρstu} = {u ≥ 0| gX(u) − ρstu ≤ gX(0)}.

where st = (1, 1, . . . , 1). We claim that the set {u ≥ 0|gX(u) − ρstu ≤ gX(0)}
is bounded. Note that this set is a level set of the convex function ḡX(u) =
gX(u) − ρstu and that ∇ḡX(u) = ∇gX(u) − ρs. By B5, there exists z > 0 such

that ∇gX(z) = ρs, i.e. ∇ḡX(z) = 0, so that z is an unrestricted minimizer of ḡX.

Since ∇2ḡX = ∇2gX, we get from B2 that ∇2ḡX(u) is positive definite for all

u > 0, and hence ḡX is strictly convex and z is its unique minimizer. Thus, the

level set of ḡX corresponding to the value ḡX(z) is the singleton {z}. It is well

known that if a convex function has a bounded level set, then all its nonempty

level sets are bounded, which establishes the claim. It follows that

‖ξ‖2 = max {‖u‖2| u ≥ 0, ∇gX(u) − ∇gX(x) = −λ∇xL(u, y)}
≤ max {‖u‖2| u ≥ 0, gX(u) − ρstu ≤ gX(0)} < ∞,

(48)

where the last inequality in (48) results from boundedness of the feasible set and

continuity of the objective of the corresponding optimization problem. �
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We use now (43) and (44) to define perturbation sets � and 
 consisting of

single elements ξ and η, respectively. In view of Proposition 2, this rule of

perturbation satisfies conditions A1 and A2. However, the following example

demonstrates that A3 may not hold.

Take m = n = 1, λ = µ = 1, g as in Example 2 and L(x, y) = (x − 1)2 −
(y −1)2, whose only saddle point is (1, 1). In this case the optimality conditions

for (43)-(44) become

2(ξ − 1) + log ξ = log x (49)

2(η − 1) + log η = log y. (50)

Take a sequence {(xk, yk)} convergent to (0, 0). Then the right hand sides of

(49)-(50) diverge to −∞, implying that log ξk and log ηk also diverge to −∞;

i.e. {(ξ k, ηk)} also converges to (0, 0). It follows that

lim
k→∞[L(xk, ηk) − L(ξk, yk)] = L(0, 0) − L(0, 0) = 0,

but (0, 0) is not a saddle point of L.

This example shows that the convergence argument of Theorem 1 is no longer

valid for our algorithm with perturbation sets chosen according to (43)-(44).

Instead, we provide another convergence argument, which can be more easily

formulated in terms of variational inequalities and nonlinear complementarity

problems. We need two results on these problems. The first one is well known,

while the second one is, to our knowledge, new, and of some interest on its own.

Proposition 3.

i) If T : R
p → R

p is monotone and continuous, and C ⊂ R
p is closed and

convex, then the solution set of VIP(T ,C), when nonempty, is closed and

convex.

ii) If C = R
p
+ then VIP(T ,C) becomes the nonlinear complementarity prob-

lem NCP(T ), consisting of finding z ∈ R
p such that

T (z)j ≥ 0 (1 ≤ j ≤ p) (51)

zj ≥ 0 (1 ≤ j ≤ p) (52)

T (z)j zj = 0 (1 ≤ j ≤ p) (53)
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Proof. Elementary (see, e.g. [9]). �

Corollary 1. If X × Y = R
n+ × R

m+ then (x̄, ȳ) is a solution of SPP(L,X,Y ) if

and only if

x̄ ∈ X, ȳ ∈ Y (54)

∇xL(x̄, ȳ)j = 0 for x̄j > 0 (55)

∇xL(x̄, ȳ)j ≥ 0 for x̄j = 0 (56)

∇yL(x̄, ȳ)i = 0 for ȳi > 0 (57)

∇yL(x̄, ȳ)i ≤ 0 for ȳi = 0 (58)

Proof. Follows from Proposition 3 with T = (∇xL, −∇yL). �

Before presenting our new result, we need some notation.

Definition. We say that NCP(T ) satisfies the strict complementarity assump-

tion (SCA from now on) if for all solutions ẑ of NCP(T ) and for all j between

1 and p it holds that either ẑj > 0 or T (ẑ)j > 0. �

For z ∈ R
p, let J (z) = {j ∈ {1, . . . , p} : zj = 0} and I (z) = {1, . . . , p} \

J (z).

Proposition 4. Assume that T is monotone and continuous and that NCP(T )

satisfies SCA. If z̄ ∈ R
p satisfies (52) and (53), and J (z̄) ⊂ J (z∗) for some

solution z∗ of NCP(T ), then z̄ solves NCP(T ).

Proof. Let z(α) = z̄ + α(z∗ − z̄). We will prove that z(α) satisfies (52)-(53)

for all α ∈ [0, 1], and also (51) for α close to 1; then we will show that if

(51) is violated for some α ∈ [0, 1] then SCA will be violated too. In order

to prove that z(α) satisfies (53) for all α ∈ [0, 1] we must make a detour. Let

U = {z ∈ R
p
+ : zj = 0 for all j ∈ J (z̄)}. A vector ẑ solves VIP(T ,U ) if and

only if ẑ ∈ U and

T (ẑ)t (z − ẑ) ≥ 0 (59)
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for all z ∈ U . Note that z̄ ∈ U . Since J (z̄) ⊂ J (z∗), z∗ also belongs to U . We

claim that both z̄ and z∗ satisfy (59). This is immediate for z∗ which satisfies

(59) for all z ∈ R
p
+, since it solves NCP(T ), equivalent, by Proposition 3(ii), to

VIP(T ,Rp
+). Regarding z̄, we have z̄j = zj = 0 for all z ∈ U and all j ∈ J (z̄),

so that terms with j ∈ J (z̄) in the summation of (59) vanish. For j /∈ J (z̄),

we have T (z̄)j = 0 because z̄ satisfies (53), so that terms with j /∈ J (z̄) in the

summation of (59) also vanish. Therefore both z̄ and z∗ solve VIP(T ,U ), and so

z(α) solves VIP(T ,U ) for all α ∈ [0, 1] by Proposition 3(i). In particular z(α)

satisfies (52) for all α ∈ [0, 1]. We look now at (53). Since z(α) ∈ U , we have

z(α)j = 0 for j ∈ J (z̄), i.e. (53) holds for such j ’s. If j ∈ I (z̄), we take z1

and z2 defined as z1
� = z2

� = 0 for � �= j , z1
j = 2z(α)j , z2

j = (1/2)z(α)j , so

that z1 and z2 belong to U . Looking at (59) with ẑ = z(α), z = z1 or z2 we get

T (z(α))j z(α)j ≥ 0, −(1/2)T (z(α))j z(α)j ≥ 0, so that z(α) satisfies (53) for

all α ∈ [0, 1]. Finally we look at (51). For j ∈ I (z̄), we have z(α)j > 0 for

α ∈ [0, 1), and therefore, since z(α) satisfies (53), T (z(α))j = 0, i.e. (51) holds

for j ∈ I (z̄), α ∈ [0, 1). If j ∈ J (z̄) then j ∈ J (z∗), i.e. z∗
j = 0. By SCA,

0 < T (z∗)j = T (z(1))j . By continuity of T , T (z(α))j > 0 for j ∈ J (z̄) and

α close to 1, i.e., defining A = {α ∈ [0, 1) : T (z(α))j > 0 for all j ∈ J (z̄)},
we get that A �= ∅. It follows that for α ∈ A, z(α) satisfies (51)-(53), i.e. it

solves NCP(T ). Let ᾱ = inf A. By continuity of T , z(ᾱ) also solves NCP(T ).

We claim now that ᾱ = 0. If ᾱ �= 0, then, by the infimum property of ᾱ, there

exists j ∈ J (z̄) such that T (z(ᾱ))j = 0, and also z(ᾱ)j = 0 because z(ᾱ) ∈ U ,

in which case SCA is violated at z(ᾱ). The claim is established and therefore

ᾱ = 0 and z̄ = z(0) solves NCP(T ). �

We will also use the following elementary result for bilinear L.

Proposition 5. For a bilinear function L(x, y) and for any (x, y) and (x ′, y ′)
in R

n × R
m, it holds that

(∇xL(x ′, y ′) − ∇xL(x, y))(x ′ − x) − (∇yL(x ′, y ′) − ∇yL(x, y))(y ′ − y) = 0.

Proof. Elementary. �

We will consider SCA for SPP(L,Rn+,Rm+), which is just NCP(T ) with T =
(∇xL, −∇yL). It is clear that in this case SCA means that, for all solutions
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(x, y) of SPP(L,Rn+,Rm+), xj = 0 implies ∂L(x, y)/∂xj > 0 and yi = 0 implies

∂L(x, y)/∂yi < 0.

Theorem 2. Assume that SPP(L,X,Y ) has solutions, L is continuously differ-

entiable, X × Y = R
n+ × R

n+, and g is a separable Bregman function with zone

R
n+ × R

m+, satisfying B1-B5. Consider the algorithm of Section 3 with the per-

turbation vectors ξk and ηk defined according to (43) and (44). If either SCA is

satisfied or L is bilinear then the sequence {(xk, yk)} generated by the algorithm

converges to a solution (x̄, ȳ) of SPP(L,X,Y ).

Proof. Proposition 2 implies that our choice of (ξ k, ηk) satisfies A1 and A2,

so that the results of Theorem 1(i)-(v) hold. Therefore {(xk, yk)} has an accu-

mulation point z̄ = (x̄, ȳ) ∈ X × Y , i.e. (54) holds for (x̄, ȳ). We prove next

that (x̄, ȳ) satisfies also (55) and (57). Under SCA, we then show that (x̄, ȳ)

solves SPP(L,X,Y ). For the bilinear case we show directly that {zk} converges

to (x̄, ȳ).

First we show that ‖ξk − xk‖ and ‖ηk − yk‖ converge to zero. Using (7), (19)

and (20), we have

1

λ

[
DgX

(xk, ξ k) + DgX
(ξk, xk)

] = 1

λ

[∇gX(xk) − ∇gX(ξk)
]t

(xk − ξk)

= ∇xL(ξk, yk)t (xk − ξk) ≤ L(xk, yk) − L(ξk, yk), (60)

1

µ

[
DgY

(yk, ηk) + DgY
(ηk, yk)

] = 1

µ

[∇gY (yk) − ∇gY (ηk)
]t

(yk − ηk)

= −∇yL(xk, ηk)(yk − ηk) ≤ L(xk, ηk) − L(xk, yk). (61)

Add (60)-(61) to get

0 ≤ 1

λ
[DgX

(xk, ξ k) + DgX
(ξk, xk)] + 1

µ
[DgY

(yk, ηk) + DgY
(ηk, yk)]

≤ L(xk, ηk) − L(ξk, yk)

(62)

By Theorem 1(iv), the rightmost expression in (62) tends to 0 as k goes to ∞ so

that

lim
k→∞ DgX

(ξk, xk) = lim
k→∞ DgY

(ηk, yk) = 0. (63)
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Since {(xk, yk)} is bounded, by Proposition 1 and (63),

lim
k→∞ ‖ξk − xk‖ = 0 (64)

and

lim
k→∞ ‖ηk − yk‖ = 0. (65)

We check now that (55) holds at (x̄, ȳ). In the case of separable gX and differ-

entiable L, (43) with (x, y) = (xk, yk) and ξ = ξk implies

g̃′
j (x

k
j ) − g̃′

j (ξ
k
j ) = λ∇xL(ξk, yk)j . (66)

Consider now j such that x̄j > 0. Let {x�k

k }, {ξ�k

j } be subsequences of {xk
j }, {ξk

j }
respectively such that limk→∞ x

�k

j = limk→∞ ξ
�k

j = x̄j > 0. Since gj and L

are continuously differentiable for xj > 0, we can take limits in (66) along the

subsequence and obtain

0 = g̃′
j (x̄j ) − g̃′

j (x̄j ) = λ∇xL(x̄, ȳ)j . (67)

Hence (55) follows. A similar argument shows that (57) holds. In terms of

NCP(T ), we have proved that z̄ = (x̄, ȳ) satisfies (52) and (53). It remains to be

proved that z̄ satisfies (51), i.e. that (x̄, ȳ) satisfies (56) and (58).

From now on we will consider separately the case of general L under SCA,

for which we will use Proposition 4, and the case of bilinear L, which will result

from Proposition 5.

Consider first the case in which SCA holds. In view of Proposition 4, it is

enough to check that J (z̄) ⊂ J (z∗) for some solution z∗ of SPP(L,X,Y ). Take

any solution z∗ of SPP(L,X,Y ). If the result does not hold, there exists j such

that z̄j = 0 and z∗
j > 0. By Theorem 1(ii)

gj (z
∗
j ) − gj (z

k
j ) − g′

j (z
k
j )(z

∗
j − zk

j )

≤
p∑

�=1

g�(z
∗
�) − g�(z

k
�) − g′

�(z
k
�)(z

∗
� − zk

�) = Dg(z
∗, zk)

≤ Dg(z
∗, z0) < ∞.

(68)
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Taking limits in (68) along a subsequence {zik } converging to z̄, we get

gj (z
∗
j ) − gj (z̄j ) − z∗

j lim
k→∞ g′

j (z
ik
j ) < ∞. (69)

Since z∗
j > 0 and limk→∞ z

ik
j = z̄j = 0, (69) implies that limt→0+ g′

j (t) >

−∞. On the other hand, B5 in the case of separable g means that g′
j (0, ∞) =

(−∞, +∞), which in turn implies, since g′
j is increasing by B1, that limt→0+

g′
j (t) = −∞ . This contradiction establishes that J (z̄) ⊂ J (z∗). Thus, all the

hypotheses of Proposition 4 hold for z̄ and so z̄ solves SPP(L,X,Y ).

Now we proceed exactly as at the end of the proof of Theorem 1. Since z̄ is

a solution, {Dg(z̄, z
k)} is nonincreasing by Theorem 1(ii). By B4 this sequence

has a subsequence (corresponding to the subsequence of {zk} which converges to

z̄) which converges to 0, so that the whole sequence converges to 0, and therefore

limk→∞ zk = z̄ by Proposition 1.

Finally, consider a bilinear L, i.e., L(x, y) = ctx + bty − ytAx with c ∈ R
n,

b ∈ R
m and A ∈ R

m×n. In this case we will invert the procedure of the previous

case: we will establish first convergence of the whole sequence to a unique

cluster point and then use this uniqueness to prove optimality. In this case L is

the Lagrangian of the linear programming problem minx{ctx|Ax ≥ b, x ≥ 0}. It

is well known that the saddle points of L and the optimal primal-dual pairs (x, y)

of the linear programming problem coincide. Denote the gradient components

of L by

dx(y) = ∇xL(x, y) = c − Aty, dy(x) = ∇yL(x, y) = b − Ax,

and d(z) = (dx(y), −dy(x))t with z = (x, y).

Let I 0 be the set of indices such that for j ∈ I 0 it holds that zj = 0 for all saddle

points z. If a saddle point exists, Tucker [20] shows that for all j ∈ I 0 there exists

a saddle point z such that dj (z) > 0. Now for each index j ∈ {1, . . . , m + n},
we pick up a saddle point ẑj in the following way: if j belongs to I 0, we choose,

using Tucker’s result, ẑj so that dj (ẑ
j ) > 0. If j does not belong to I 0, we choose,

using the definition of I 0, ẑj so that ẑ
j

j > 0. Let z∗ be a convex combination of

ẑ1, . . . , ẑm+n with strictly positive coefficients. It follows that z∗ = (x∗, y∗) is a

saddle point with the following additional property:

z∗
j = 0 ⇒ dj (z

∗) > 0

Comp. Appl. Math., Vol. 23, N. 1, 2004



ALFREDO N. IUSEM and MARKKU KALLIO 23

(note that z∗
j > 0 for j /∈ I 0). From (27), (32) and (37) we obtain

�∗
k ≡ Dg(z

∗, zk) − Dg(z
∗, zk+1)

= − τkd
k(z∗ − zk) − Dg(z

k, zk+1)

= − τkd
k(z∗ − wk) − τkd

k(wk − zk) − (1 − γk)τkσk,

where wk = (ξ k, ηk). For a bilinear L,

dk
x ≡ ∇xL(xk, ηk) = ∇xL(ξk, ηk) (70)

and

dk
y ≡ ∇yL(ξk, yk) = ∇yL(ξk, ηk), (71)

so that

−(dk)t (wk − zk) = − [L(ξk, ηk) − L(xk, ηk)]
+ [L(ξk, ηk) − L(ξk, yk)] = σk ≥ 0

(72)

and, by Propositions 5 and 3,

−(dk)t (z∗ − wk) = −d(z∗)t (z∗ − wk) = d(z∗)twk.

Combining the equations above we obtain

�∗
k = τkd

t (z∗)wk + γkτkσk. (73)

By Theorem 1(iii) {zk} is bounded, which implies easily that
∑∞

k=0 �∗
k < ∞.

Consequently, by nonnegativity of all terms in (73),∑
k

τkw
k
j < ∞ (74)

for all j such that dj (z
∗) > 0. Let z̄ be a cluster point of {zk}. Next, we use (74)

to show that the absolute values of increments of the sequence {Dg(z̄, z
k)} have

a finite sum.

As in (73), using (27) and (37), we obtain

�̄k ≡ Dg(z̄, z
k) − Dg(z̄, z

k+1)

= − τkd
k(z̄ − zk) − Dg(z

k, zk+1)

= − τkd
k(z̄ − wk) − τkd

k(wk − zk) − (1 − γk)τkσk

= τkd
t (z̄)wk + γkτkσk
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so that

|�̄k| ≤
∑

j

τkw
k
j |dj (z̄)| + γkτkσk. (75)

Consider j such thatdj (z̄) �= 0. Since we have already proved that z̄ satisfies (54),

(55) and (57), we get z̄j = 0. {Dg(z
∗, zk)} is bounded by Theorem 1(ii), so that

{Dg̃j
(z∗

j , z
k
j )} is bounded. By B5 in the one dimensional case, limt→0+ g̃′

j (t) =
−∞. Since there exists a subsequence of {zk

j } which converges to z̄j = 0,

boundedness of {Dg̃j
(z∗

j , z
k
j )} implies that z∗

j = 0. It follows from the special

choice of z∗ that dj (z
∗) > 0. It follows from (74) that

∑∞
k=0 τkw

k
j < ∞. By (38),∑∞

k=0 τkσk < ∞. Hence we have proved that the rightmost expression of (75) is

summable in k, and therefore {Dg(z̄, z
k)} is a Cauchy sequence which converges

to 0 by B4. Hence limk→∞ zk = z̄ by Proposition 1 with wk = z̄.

We have established that the whole sequence {zk} converges to a unique point

z̄. In view of Corollary 1, since we have shown above that z̄ satisfies (54), (55)

and (57), it only remains to prove that z̄ = (x̄, ȳ) satisfies (56) and (58). We

start with (56). Take j such that x̄j = 0. Suppose that (56) does not hold;

i.e. ∇xL(x̄, ȳ)j < 0. By (64), limk→∞(xk, ηk) = (x̄, ȳ) so that by continuous

differentiability of L there exists k̄ such that ∇xL(xk, ηk)j < 0 for all k ≥ k̄. In

the separable case (30) becomes

g̃′
j (x

k+1) = g̃′
j (x

k) − τk(d
k
x )j (76)

and Step 3, under the differentiability assumption, asserts that dk
x = ∇xL(xk, ηk)

so that (dk
x )j is negative for k ≥ k̄. Since τk > 0 it follows from (76) that

g′
j (x

k+1) > g′
j (x

k), and, since gj is strictly increasing by B2, we get xk+1
j > xk

j ,

for all k ≥ k̄. Therefore, we have x̄j = limk→∞ xk
j > xk̄

j ≥ 0. This is a

contradiction, so that (56) holds for x̄j . The proof of (58) is virtually

identical. �

6 An application to linear programming

In this section we present the iterative formulae of the algorithm in the case of

linear programming problems, with ξk and ηk chosen as in Section 5, and with
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g chosen as in Example 2. Consider the problem in the form

min ctx (77)

s.t. Ax ≥ b (78)

x ≥ 0 (79)

with c ∈ R
n, b ∈ R

m and A ∈ R
m×n, so that the Lagrangian is L(x, y) =

ctx + bty − ytAx and the constraint sets are X = R
n+, Y = R

m+.

The Bregman functions are defined as

gX(x) =
n∑

j=i

xj log xj , gY (y) =
m∑

i=1

yi log yi.

Note that in this case the perturbation vectors ξ and η defined by (43) and (44)

can be explicitly solved, and, given the stepsize τk, the updated primal and dual

solutions can be stated explicitly:

ξk
j = xk

j exp
[
λ(Atyk − c)j

]
(80)

ηk
i = yk

i exp
[
µ(b − Axk)i

]
(81)

xk+1
j = xk

j exp
[
τk(A

tηk − c)j

]
(82)

yk+1
i = yk

i exp
[
τk(b − Aξk)i

]
. (83)

With zk = (xk, yk), employing φk(t) in (42) and

σk = ct (xk − ξk) + bt (ηk − yk) − (ηk)tAxk + (yk)tAξk,

the stepsize τk satisfying (28) is obtained via Armijo search.

Based on our method, an experimental code called Bregman was written. It is

not intended to fully explore the computational capabilities of our method, or its

competitiveness with other algorithms, but just its plausibility, showing that its

performance is compatible with other methods. Thus we chose to test on a well

known and easily accessible collection of LP problems, though we don’t claim

that our method will be competitive with algorithms specific for LP; in fact, our

article is intended to address primarily nonlinear saddle point problems.
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Computational results are compared with those obtained from the saddle point

method of [13]. The latter code is called Saddle and it employs the following

iterative scheme:

xk+1
j = max

[
0, xk

j + τk(A
tηk − c)j

]
(84)

yk+1
i = max

[
0, yk

i + τk(b − Aξk)i

]
, (85)

with τk proportional to σk.

As is the case with Saddle, scaling is crucial for efficiency of Bregman. Our

experience indicates that static (initial) data scaling via equilibration, which

traditionally have been employed in LP codes, is not helpful for Bregman. That

is why the dynamic scaling procedure in Saddle adopted from Kallio and Salo

[14] was further developed for Bregman. In Saddle, auxiliary reference quantity

and value vectors εk = (εk
i ) ∈ Rm and δk = (δk

j ) ∈ Rn are defined in each

iteration so that

εk
i =

∑
j

∣∣xk
j aij

∣∣ (86)

δk
j =

∑
i

∣∣yk
i aij

∣∣, (87)

where xk
j and yk

i denote primal and dual solutions at the beginning of the iteration

k. If either εk
i or δk

j is smaller than certain safeguard values, then the safeguard

value is used instead of the reference quantity smaller than it. These safeguard

values are equal to one tenth of the average of εk
i and δk

j over all variables. The

scaling heuristic of Saddle employs two phases as follows. In phase one, each

row i of A is divided by εk
i and each column j by δk

j . Let A′ = (a′
ij ) be the

resulting matrix. Let āi be the mean of nonzero values |a′
ij | in row i and let āj

be the corresponding column average, for each column j . Then, in the second

phase of scaling, each element a′
ij is divided by the geometric mean of āi and āj .

This procedure defines row and column scaling factors for rows and columns

in A as well as for rows of b and columns of ct . Primal and dual variables are

scaled by the inverses of these factors. Formulae (80)-(83) are applied in the

scaled space. For Bregman, the scaling factors of Saddle are adjusted in such a

way, that the update direction at (xk, yk) > 0 (obtained by differentiating (82)-

(83) with respect to τk, at τk = 0 ) is the same as the update direction of Saddle
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obtained from (84)-(85). For example, if Di is the scaling factor of row i obtained

for Saddle and we denote by Gi the scaling factor for that row to be applied in

Bregman, then (83) yields yk+1
i = yk

i exp [τkGi(b − Aξk)i] and (85) yields

yk+1
i = max[0, yk

i + τkD
2
i (b − Aξk)i]. Differentiating these at (xk, yk) > 0

with respect to τ k, and evaluating the derivatives at τ k = 0, yields directional

components, which we require to be equal. This implies that Gi = D2
i /y

k
i .

As a termination test for Bregman and Saddle, we use V (xk, yk) ≤ φ|ctxk|,
where

V (xk, yk) =
∑

i

|yk
i (b − Axk)i | +

∑
j

|xk
j (c − AT yk)j |

is an error measure, and φ > 0 is a stopping parameter. If (b − Axk)i > 0,

then |yk
i (b − Axk)i | is the value (in units of the objective function) of the primal

error; otherwise |yk
i (b−Axk)i | is the value of complementarity violation. Terms

|xk
j (c − AT yk)j | have similar interpretation, so that V (xk, yk) is interpreted as

the total value of primal, dual and complementarity violations. Our experience

indicates that, if φ = 10−k, then we may expect k + 1 significant digits in the

optimal objective function value. Using our termination test, final infeasibilities

are usually small, although they do not enter the stopping criterion directly (see

Table 4 below).

For computational illustration, Bregman was tested against Saddle on ten prob-

lems from the Netlib library [17]. For the purpose of this comparison, each prob-

lem was first cast in the form given in (77)-(79). Problem names and dimensions

are given in Table 1.

All primal and dual variables are set to one initially. We set the perturbation

step size parameters in (43)-(44) to λ = µ = 0.5, the stepsize test parameters

in (28) to γ = 0.3 and β = 0.7. Two values for the stopping parameter were

applied: φ = 10−4 and φ = 10−6.

Table 2 shows the iteration count for φ = 10−4 and φ = 10−6, both for

Bregman and Saddle. Table 3 shows the corresponding relative objective errors

|ct x̄−ctx∗|/|ctx∗|, where x̄ is the primal solution obtained at the end of iterations

and x∗ is a true optimal solution. We observe that the iteration counts for both

methods are of the same order of magnitude. Also the precision in both cases

is approximately the same (five and seven significant digits as predicted for
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φ = 10−4 and φ = 10−6, respectively). Due to function evaluations (for the

exponent functions) and due to the search for step sizes, work per iteration for

Bregman is somewhat larger than for Saddle. The computational tests show

that the performance of Bregman appears quite equivalent to Saddle. One may

speculate that a better scaling method for Bregman may improve its performance.

Problem Rows Columns Non-zeros

stocfor2 2157 2031 9492

sctap3 1480 2480 10734

ship12l 1151 5427 21597

ship12s 1151 2763 10941

sctap2 1090 1880 8124

ship08l 778 4283 17085

agg2 516 302 4515

degen2 444 534 4449

scsd8 397 2750 11334

sctap1 300 480 2052

Table 1 – The number of rows, columns and non-zeros in the test problems.

Problem Bregman Bregman Saddle Saddle

φ = 10−4 φ = 10−6 φ = 10−4 φ = 10−6

stocfor2 29697 63289 11973 40605

sctap3 1761 3907 2726 5623

ship12l 6703 49554 4842 73510

ship12s 6973 43230 4489 51034

sctap2 7282 17456 8143 19574

ship08l 8931 39012 5576 39106

agg2 47023 49856 42997 46769

degen2 8260 31714 6119 32293

scsd8 8419 83400 45413 146610

sctap1 17860 38041 10946 30513

Table 2 – Number of iterations.
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Problem Bregman Bregman Saddle Saddle
φ = 10−4 φ = 10−6 φ = 10−4 φ = 10−6

stocfor2 1E-05 6E-07 1E-06 4E-07
sctap3 1E-06 1E-08 4E-06 1E-10
ship12l 2E-05 2E-07 2E-06 2E-07
ship12s 1E-05 5E-08 1E-05 2E-07
sctap2 7E-05 4E-07 2E-05 4E-07
ship08l 6E-05 3E-07 4E-05 6E-08
agg2 3E-06 5E-07 4E-06 8E-08
degen2 3E-05 4E-08 2E-05 2E-08
scsd8 2E-05 2E-08 3E-06 3E-08
sctap1 1E-05 2E-07 8E-06 2E-08

Table 3 – Relative error in the optimal objective function value.

For each iteration k, define relative primal and dual infeasibilities, denoted by

ek
P and ek

D, respectively, as follows:

ek
P = max

i
{0, (b − Axk)i/(|bi | + εk

i )},
ek
D = max

j
{0, (Atyk − c)j/(|cj | + δk

j )}.

Table 4 reports the final infeasibilities in terms of max{ek
P , ek

D} for Bregman

and Saddle, with φ = 10−6.

Problem Bregman Saddle

stocfor2 3E-05 3E-06
sctap3 2E-05 1E-05
ship12l 1E-05 3E-05
ship12s 3E-05 6E-06
sctap2 1E-05 9E-06
ship08l 8E-06 4E-04
agg2 1E-04 6E-04
degen2 1E-06 2E-06
scsd8 8E-05 4E-05
sctap1 1E-06 4E-06

Table 4 – Maximal final infeasibilities of Bregman and Saddle; φ = 10−6.

Comp. Appl. Math., Vol. 23, N. 1, 2004



30 AN INTERIOR POINT METHOD FOR CONSTRAINED SADDLE POINT PROBLEMS

To see the importance of scaling, we ran Bregman for a dozen of small Netlib

problems without scaling for φ = 10−4. Five out our twelve test problems

failed to converge in one million iterations, while for the others the number of

iterations was increased by a factor ranging from 3 to 22 as compared with the

scaled version.

Our convergence results apply if the scaling factors are updated during a pre-

specified number of iterations only. To demonstrate that it pays off to update

scaling until the end, we run our smallest problem sctap1 fixing scaling after

5000 iterations. As a result, the number of iterations is 26088, for φ = 10−4, and

63631, for φ = 10−6. Hence, the iteration count almost doubles as compared

with results for sctap1 in Table 2. In conclusion, our theoretical results apply

if scaling is fixed after a given number of iterations; however, it is plainly more

efficient to update scaling factors until the termination criterion is met.

Finally, it is important to note that for small problems both of these approaches

often turn out to be inefficient. Their comparative advantage is expected to

appear for large-scale problems, and in particular, our method may be of interest

for massively parallel computing.
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