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Abstract. Reservoir fractures and deformation bands are capable of affecting fluid flow and

storage in a variety of ways. In terms of flow effects, we typically encounter an unchanged

or increased permeability when considering flow parallel to a fracture, whereas we expect a

noticeably reduced permeability when considering flow across (perpendicular to) a deformation

band. For this paper, we refine our efforts and focus on the effects of deformation bands on

multi-component porous medium flow. The main assumption is that the width of the band is a

random (uncertain) variable that follows a certain statistical distribution from which a number of

realizations can be generated. Monte Carlo simulations can then be performed to obtain statistical

representations of the transport quantity in relation to the nature of uncertainty. As analytical

expressions are available for this quantity of interest, we are able to compare them with the

Monte Carlo results. Furthermore, we derive a stochastic perturbation model as an alternative

to Monte Carlo simulations. Finally, a set of numerical examples is presented to illustrate the

performance of these approaches.
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1 Introduction

Deformation bands typically represent sections of porous media with signifi-

cantly reduced permeability and porosity resulting from cementation [8]. The

decreased permeability inhibits fluid flow, contributes to a higher pressure drop,

and as a result, deformation bands can play a role in reservoir fluid flow [8].

The study of deformation bands extends to various areas of academia and in-

dustry, and in this paper we address the topic within a mathematical framework

[1, 8, 17, 18]. For our particular petroleum industry application, we are inter-

ested in quantifying the effects of deformation bands on oil production. This

can be done by assigning uncertainty to various parameters that describe a band.

The effects of deformation band permeability, orientation, and width (aperture)

have been studied in a non-mathematical framework [8]. As a result, we as-

sume that the above parameters can represent random variable candidates in the

initial problem formulation.

In this study, we treat the width of a deformation band as the random variable

of interest. This is a natural choice since variation in the width of a band is

often guaranteed in a subsurface reservoir [8]. In other words, knowledge that

deformation bands exist in a reservoir does not offer much information about

the width(s) of the bands. We also point out that wider bands progressively

inhibit flow (due to the reduced permeability), and thus the width is a pa-

rameter that can most directly affect oil production in a porous medium [8].

With width as the random variable, we make deterministic assumptions on the

permeability and location of a vertically oriented deformation band in an ideal-

ized porous medium. These initial assumptions offer a foundation in describing

the physical model. The multi-component flow under consideration is mod-

eled by a hyperbolic partial differential equation coupled with Darcy’s Law

[2, 3, 4, 16]. Within this setting, the velocity and saturation become functions

of a random variable due to their dependence on the deformation band’s width.

In turn, the oil production is also random.

By appending a source of uncertainty to the width of the band, we can analyze

the oil production in a variety of ways. To address the uncertainty of the width

we initially assume the parameter is governed by a given probability density

function. By considering idealized models that offer the luxury of analytical so-
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lutions we can use the probability density function to compute exact statistical

mean values. These exact values give a benchmark of comparison with numeri-

cal methods that assess the effects of uncertainty. One such method is the Monte

Carlo method. This method involves generating a number of realizations of a

random variable and then averaging over the realizations to obtain effective solu-

tions [9]. In the scope of our problem, we choose a probability density function,

generate a number of realizations for the width of a deformation band, and com-

pute the statistical mean production curves. Monte Carlo is a widely used tool

and much of today’s computing power is devoted to calculating Monte Carlo

solutions [6]. However, one main disadvantage is that Monte Carlo is a very

expensive method to implement, particularly if a large number of realizations is

required. It is this disadvantage that leads us to explore more efficient methods

of computing expectations.

In order to address the costly aspect of Monte Carlo, we introduce a stochastic

perturbation model. The derivation of the model hinges on the assumption that

the saturation and velocity can be expressed as first order stochastic perturbations

(see, for example [13, 14, 19]). Using this assumption we can then reintroduce

the variables into the original equations to obtain a governing equation for the

saturation statistical mean. In deriving the model we make two main assump-

tions. First, we assume that a first spatial derivative does not change significantly

along a characteristic. Second, we assume that any third order stochastic terms

can be neglected. The resulting model is, in general, more efficient than Monte

Carlo and offers solutions that very closely match Monte Carlo for low devi-

ations. We note that this approach has been previously introduced by Glimm

and Sharp, and Zhang [11, 21] (see also [20]). Within the context of upscal-

ing in heterogeneous flow a similar approach has been used in [5, 7, 10, 15].

However, for higher deviations we encounter solutions that stray slightly from

Monte Carlo. This is due to the fact that we neglect a third order stochastic

term in the model derivation. We classify the latter results as a limitation of

the model, however, we remark that the model still performs reasonably well

regardless of some discrepancies found for higher deviations.

In §2 we introduce the physical transport model and coupled pressure equa-

tion for multi-component flow. Under the assumption that the width of the de-
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formation band is random we solve the respective set of equations analytically.

By doing so, we eliminate any errors that may arise from numerical approxima-

tion and focus solely on the effects of uncertainty. In §3 we use the analytical

solutions to calculate the Monte Carlo production curves using both Uniform

and Gaussian distributions [12]. As the exact statistical mean is available in

these cases, we can make a comparison with the Monte Carlo results. In §4 we

derive a stochastic perturbation model which hinges on expressing the saturation

and velocity as first order stochastic perturbations. In §5 we solve the model

numerically and compare the results with the Monte Carlo solutions from §3.

In addition, we perform a probability density function comparison. Finally, we

offer some concluding remarks in §6.

2 Model equations

In this section we begin by introducing the hyperbolic saturation equation that

models a general two-component system. Letting S denote the saturation of a

displacing fluid, we consider





∂S

∂t
+ v(t)

∂S

∂x
= 0

S(x, 0) = 0

S(0, t) = 1,

(1)

where x ∈ [0, L], t ∈ [0, ∞), and v(t) = −
k

μ(S)

dp

dx
is the flux obtained

through the pressure equation





−
d

dx

(
k(x)

μ(S)

dp

dx

)
= 0,

p(0) = p0,

p(L) = pL ,

(2)

which is coupled to (1) through the viscosity

μ(S) =
μo

[M
1
4 S + (1 − S)]4

. (3)

The parameter M =
μo

μd
is the viscosity ratio, μo denotes the viscosity of the

oil component and μd denotes the viscosity of a displacing fluid. In the general
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two-component flow, we assume that M < 1. This models a polymer flood

situation where the polymer (displacing fluid) component is more viscous than

the oil component. A single phase flow is a special case in which, M = 1,

i.e., there is only one fluid present.

Within this framework, we use β to denote the random width of the deforma-

tion band and assume a piecewise constant permeability structure

k(x; β) =






k1 if x ∈ [0,
L−β

2 )

k2 if x ∈ [ L−β

2 ,
L+β

2 ]

k3 if x ∈ (
L+β

2 , L].

(4)

See Figure 1. We are particularly interested in the situation where k1 = k3 = k f

and k2 = kb < k f . Here k f represents the field permeability, and kb represents

the permeability within a deformation band.
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Figure 1 – General permeability structure.

We point out that β, is now explicitly present in the problem, and combining

all these equations ensures that the resulting saturation solution is random. We

can describe the general idea in a simple flow chart: β ⇒ k(x; β) ⇒ v(t; β) ⇒

S(x, t; β).
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In solving (1) analytically we ultimately want to derive an expression for

the location of the saturation front. We denote this location by ξ(t; β). Upon

successfully finding this quantity, the saturation solution is

S(x, t; β) =

{
1 if x < ξ(t; β)

0 if x > ξ(t; β).
(5)

Furthermore, we eventually want to analyze the uncertainty effects of the pro-

duction curve F(t; β) defined as

F(t; β) = 1 − S(L , t; β). (6)

The production curve essentially shows us the saturation of oil at the right bound-

ary, L , of our interval. See Figure 2 for an example of a production curve plotted

against time.
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Figure 2 – Production curve for a given value of v.

Generally speaking, to solve for ξ(t; β), we must first derive the flux. Then

we set
dξ

dt
= v(ξ). From here we arrive at an equation for ξ which can easily

be solved. Initially, it is important to note that we must consider a number of
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“main” — 2009/10/20 — 12:34 — page 297 — #7

MICHAEL PRESHO, VICTOR GINTING and SHAOCHANG WO 297

LL+β
2

L−β
20

μ(1)

ξ1

k3k2 μ(0)k1
LL+β

2
L−β
20

μ(1)

k3k2 μ(0)k1

ξ2

Figure 3 – Front locations ξ1 and ξ2 advancing in time. ξ1 describes the movement of

the front to the left of the deformation band, and ξ2 describes the movement of the front

within the deformation band.

cases for the flux and front location. See Figure 3. In particular, we have three

separate flux values

v(ξ) = v(ξi ) for ξi ∈ (xi−1, xi ), i = 1, 2, 3, (7)

where x0 = 0, x1 = L−β

2 , x2 = L+β

2 , and x3 = L depending on where ξ lies

in the spatial interval. In addition, when the porous medium is fully saturated,

v = vs for ξ > x3, (8)

i.e., the front has passed the right boundary. Treating each case separately,

using (2) and (4), and ensuring continuity at ξ we obtain

v(ξi (t; β)) =
1p

miξi + niβ + qi
for ξi ∈ (xi−1, xi ), i = 1, 2, 3, (9)

where 1p = p0 − pL , and mi , ni , and qi are deterministic values depending

on the parameters k f , kb, L , and M . As a representative example,

m1 =
μ(1) − μ(0)

k f
, n1 =

μ(0)

kb
−

μ(0)

k f
, and q1 =

Lμ(0)

k f
. (10)

Furthermore,

vs(β) =
1p

nsβ + qs
for ξ > x3 (11)

is the fully saturated flux value, where ns and qs are similarly deterministic.

Using (9) we can now set
dξ

dt
= v(ξ). Essentially, we have a first order, separable
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differential equation for each case. Treating each case separately and ensuring

continuity we arrive at a quadratic equation for ξi for i = 1, 2, 3. In addition,

we can solve for the β dependent times when the front values shift:

t1(β) =
{
t : ξ1(t; β) = ξ2(t; β) = x1

}
,

t2(β) =
{
t : ξ2(t; β) = ξ3(t; β) = x2

}
, and

t3(β) =
{
t : ξ3(t; β) = x3

}
.

(12)

See Figure 4 for a plot of the front locations and time values. Of particular

interest, ξ3 takes the form

ξ3(t; β) =
−(n3β + q3) +

√
(n3β + q3)2 + 2m3 ∙ σ(m3, n3, q3, t; β)

m3
, (13)

where σ is readily accessible.

Then (13) is appropriately used to evaluate S(L , t) from (1). We remark

that we are considering a model that yields a random fluid velocity. In turn,

(1) gives a random, analytical saturation solution. With this solution we can

now implement the Monte Carlo method and compute statistical mean values

of production.

3 Monte Carlo results

The Monte Carlo simulation is implemented for two-component and single phase

flows. We generate N = 10, 000 positive realizations of β from Gaussian and

Uniform distribution, with fixed 〈β〉 = 10 and various standard deviations, σβ .

For each realization βi we compute ξ3i (t; β), i = 1, . . . , N from (13), and

subsequently a production curve Fi (t) from (1). We then average the values at

each time level and plot the resulting statistical mean production curve given by

〈F(t)〉MC =
1

N

N∑

i=1

Fi (t). (14)

The deterministic data are k f = 500, kb = 100, L = 100, p0 = 1000, pL = 0,

μo = 2.7, and μd = 3 (for two-component flow) and μo = μd = 1 (for single

phase flow).

Comp. Appl. Math., Vol. 28, N. 3, 2009



“main” — 2009/10/20 — 12:34 — page 299 — #9

MICHAEL PRESHO, VICTOR GINTING and SHAOCHANG WO 299

0 0.05 0.1 0.15 0.2 0.25
0

10

20

30

40

50

60

70

80

90

100
Front locations

Time

ξ(
t;β

)

ξ
1

ξ
2

ξ
3

β =0

β=25

β=50
β=75

β=10

β=100

0 20 40 60 80 100
0

0.05

0.1

0.15

0.2

0.25

0.3
Time Plots

β

t(
β)

t
1

t
2

t
3

Figure 4 – Front locations and times.

For the problem we consider, convergence of the Monte Carlo simulation

can be accessed by way of comparison to the exact production curve statistical

mean expressed as

〈F(t)〉 =
∫ L

0

(
1 − S(L , t; β)

)
fβ(β) dβ,

Comp. Appl. Math., Vol. 28, N. 3, 2009
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where fβ(β) is the respective probability density function of the Gaussian or

Uniform distribution [12]. This comparison is presented in Figure 5, showing

for single phase flow and two-component flow. We chose σβ = 10 as a mid-

dle ground for comparison. The two results are indistinguishable from each

other which indicates the convergence of Monte Carlo for the N = 10, 000

realizations.
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Figure 5 – Comparison of Monte Carlo and Exact Statistical Mean of Production

Curve with σβ = 10: Single Phase (top), Two-Component (bottom).

Next, we present in Figure 6 the behavior of the production curve for various

standard deviation σβ . All plots indicate that for increasing σβ’s we see a more

predominant deviation from the deterministic solution (σβ = 0) near the break-

through times. For realizations from Gaussian distribution, we see solutions

that predictably deviate smoothly in time. However, we see sharper drops to
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“main” — 2009/10/20 — 12:34 — page 301 — #11

MICHAEL PRESHO, VICTOR GINTING and SHAOCHANG WO 301

0 0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08

0

0.5

1

1.5
Single Phase, Gaussian Distribution

Time

‹F
(t

)›

σ
β
 = 0

σ
β
 = 2

σ
β
 = 5

σ
β
 = 10

σ
β
 = 15

0 0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08

0

0.5

1

1.5
Single Phase, Uniform Distribution

Time

‹F
(t

)›

σ
β
 = 0

σ
β
 = 2

σ
β
 = 3

σ
β
 = 5

σ
β
 = 10

0 0.05 0.1 0.15 0.2

0

0.5

1

1.5
Two−Component, Gaussian Distribution

Time

‹F
(t

)›

σ
β
 = 0

σ
β
 = 2

σ
β
 = 5

σ
β
 = 10

σ
β
 = 15

0 0.05 0.1 0.15 0.2

0

0.5

1

1.5
Two−Component, Uniform Distribution

Time

‹F
(t

)›
σ

β
 = 0

σ
β
 = 2

σ
β
 = 3

σ
β
 = 5

σ
β
 = 10

Figure 6 – Monte Carlo Statistical Mean Production Curves for various σβ : Single

Phase (top), Two-Component (bottom).

the left of breakthrough time for higher deviations. We generally expect earlier

breakthrough when assuming more uncertainty. In the case of the realizations

from the Uniform distribution, we see solutions that sharply deviate from the

deterministic solution. Higher deviations lead to predictably increased variation

after breakthrough and earlier breakthrough times. In general, we see similar

pattern for higher deviations only with sharper curves.

We note that for higher deviations, negative realizations are more likely occur

[12]. This is physically unrealistic for the application under consideration. Thus,

in the process we exclude all these negative values in the Monte Carlo simulation.

Consequently, this leads to a situation where the Monte Carlo curves are non-

symmetric with respect to the σβ = 0 curves.

Comp. Appl. Math., Vol. 28, N. 3, 2009



“main” — 2009/10/20 — 12:34 — page 302 — #12

302 THE UNCERTAINTY EFFECTS OF DEFORMATION BANDS

4 Stochastic perturbation expansion

Thus far we have computed statistical mean of the production curves using Monte

Carlo simulation and gave comparison with their exact counterparts. We reiterate

the fact that Monte Carlo is, in general, an expensive computational approach.

This is particularly the case when a large number of realizations is desired. To

address this issue we now consider a separate, less costly method of comput-

ing statistical values in relation to our problems. In particular, we will derive

an equation governing the statistical mean of the saturation S using the notion

of Stochastic perturbation expansion. Recall the fact that v(t) and S(x, t) are

random functions due to their dependence on β. To simplify notations, we will

now use

〈S(x, t)〉 = S̄(x, t) and 〈v(t)〉 = v̄(t).

Stochastic perturbation assumption allows us to express these variables as

S(x, t) = S̄(x, t) + S′(x, t) and v(t) = v̄(t) + v′(t), (15)

where S′(x, t) and v′(t) are stochastic fluctuation terms. Substitution of (15)

into (1) and appropriately rearranging the resulting equation yield
(

∂ S̄

∂t
+ v̄(t)

∂ S̄

∂x

)
+

(
∂S′

∂t
+ v̄(t)

∂S′

∂x

)
= −v′(t)

(
∂ S̄

∂x
+

∂S′

∂x

)
. (16)

By taking the expected value of (16) and using S′ = v′ = 0, we get

∂ S̄

∂t
+ v̄(t)

∂ S̄

∂x
+ v′(t)

∂S′

∂x
= 0. (17)

Here we have obtained a governing equation for statistical mean of the saturation.

Our next task is to model the second order effect v′(t)S′
x . To accomplish this

we now work on the characteristics v̄(t) = dx/dt . Using the notion of a total

derivative, (16) becomes

d S̄

dt
+

dS′

dt
+ v′(t)

∂ S̄

∂x
= −v′(t)

∂S′

∂x
. (18)

Integration along the characteristic, with the assumption that S̄x does not signif-

icantly change along the characteristics yield

S̄(x(t), t) + S′(x(t), t) +
∂ S̄

∂x

∫ t

0
v′(τ ) dτ = −

∫ t

0
v′(τ )

∂S′

∂x
dτ .
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Multiplying by v′(t), taking expectation, and neglecting the higher order stochas-

tic term give

v′(t)S′(x(t), t) ≈ −v′(t)
∫ t

0
v′(τ ) dτ

∂ S̄

∂x
,

and therefore,

v′(t)
∂S′

∂x
≈ −v′(t)

∫ t

0
v′(τ ) dτ

∂2 S̄

∂x2
. (19)

Substitution of (19) into (17) yields

∂ S̄

∂t
+ v̄(t)

∂ S̄

∂x
− α(t)

∂2 S̄

∂x2
= 0, (20)

where

α(t) = v′(t)
∫ t

0
v′(τ ) dτ . (21)

For single phase flow, the flux is independent of time and thus α(t) = σ 2
v ∙ t .

The above differential equation is completed by imposing a natural boundary

condition
∂ S̄

∂x
(L , t) = 0,

in addition to the existing initial and boundary conditions from the original

problem.

We note that more general equations were derived in [11] and [21] for single

phase flow. In particular, Glimm and Sharp (see [11]) and Zhang (see [21]) ob-

tained related results in the context of a multi-length-scale, random permeability

field. For two phase flow, we refer the reader to [20].

5 Comparison of approaches

This section is devoted for comparison between the Monte Carlo simulation

and the Stochastic Perturbation Expansion described in the previous section.

To solve (20) we use a Backward Euler, centered finite difference scheme where

∂S

∂t
(xi , tn) ≈

Sn
i − Sn−1

i

1t
,

∂S

∂x
(xi , tn) ≈

Sn
i+1 − Sn

i−1

21x
and

∂2S

∂x2
(xi , tn) ≈

Sn
i+1 − 2Sn

i + Sn
i−1

1x2
.
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The equation is solved on a very fine grid and very small time steps in order to

minimize any sources of error from numerical discretization. In particular, we

want to focus solely on the effects of uncertainty. We point out that the first step

in solving the model is the computation of v̄(t) and α(t).

Comparison for single phase flow is presented in Figure 7. We use a relatively

low deviation, σβ = 2, and a relatively high deviation, σβ = 10. In addition, the

Gaussian and Uniform distributions are used for modeling the random behavior

of β.
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Figure 7 – Comparison of Stochastic Perturbation to Monte Carlo for Single Phase Flow.

We point out that for σβ = 2 in the Gaussian case, the numerical solution and

the Monte Carlo solution coincide nearly exactly. Thus, the model accurately

portrays the Monte Carlo solution for a low deviation. This also indicates that

the assumption that S̄x does not significantly change along characteristics in §4
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is reasonable. For σβ = 10 we see an accurate portrayal of the breakthrough

time, yet there is a noticable smoothing at the drop. This is expected as the

model is parabolic. We recall that in §4 we also made the assumption that a third

order stochastic term could be neglected. For σβ = 10 we simply see the natural

breakdown of this assumption.

We now shift our attention to the Uniform case. In this case, we encounter

similar behavior of the model solutions (with respect to the Gaussian model

solutions). The main difference is that we see pronounced smoothing as com-

pared to the Uniform Monte Carlo curves. Again, this is expected since the

model is parabolic, whereas the Monte Carlo curves are inherently sharper in

the Uniform case. Similarly, we see an accurate portrayal of breakthrough time

even for a higher deviation, yet a discrepancy after that.

The results for the model applied to the two-component case are shown in

Figure 8. We use a relatively low deviation, σβ = 2, and a relatively high

deviation, σβ = 10 for the Gaussian disbribution, while for the Uniform distri-

bution we use σβ = 3 and σβ = 10.

The stochastic perturbation model agrees with the Monte Carlo solutions for

a low deviation, while similar behavior as in single phase flow occurs for a

higher deviation. We encounter similar behavior of the model solutions for the

Uniform distribution (see Fig. 8). The main difference is that we see pronounced

smoothing as compared to the Monte Carlo curves. Again, this is not a surprise

since the model is parabolic, whereas the Monte Carlo curves are inherently

sharper in the Uniform case.

Next we offer a comparison between the Gaussian and Uniform distribu-

tion results. At this point, we have treated each case separately in comput-

ing the Monte Carlo and numerical solutions. However, we think it is bene-

ficial to offer a side by side comparison. For these comparisons we only con-

sider the two-component case, although the same conclusions hold in the single

phase case.

The left side of Figure 9 compares the respective Monte Carlo solutions for

the arbitrary case when σβ = 10. As mentioned earlier, the Gaussian distribu-

tion gives inherently smoother Monte Carlo solutions. Nevertheless, we see that

the breathrough time is identical regardless of what distribution we use.

Comp. Appl. Math., Vol. 28, N. 3, 2009



“main” — 2009/10/20 — 12:34 — page 306 — #16

306 THE UNCERTAINTY EFFECTS OF DEFORMATION BANDS

0 0.05 0.1 0.15 0.2

0

0.5

1

1.5

Gaussian Distribution, σ
β
=2

Time

‹F
(t

)›

 Stochastic Perturbation
 Monte Carlo

0 0.05 0.1 0.15 0.2

0

0.5

1

1.5

Gaussian Distribution, σ
β
=10

Time

‹F
(t

)›

 Stochastic Perturbation
 Monte Carlo

0 0.05 0.1 0.15 0.2

0

0.5

1

1.5

Uniform Distribution, σ
β
=3

Time

‹F
(t

)›

 Stochastic Perturbation
 Monte Carlo

0 0.05 0.1 0.15 0.2

0

0.5

1

1.5

Uniform Distribution, σ
β
=10

Time

‹F
(t

)›
 Stochastic Perturbation
 Monte Carlo

Figure 8 – Comparison of Stochastic Perturbation to Monte Carlo for Two-Compo-

nent Flow.
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Figure 9 – Comparison for Different Distributions: (left) Monte Carlo, (right) Stochas-

tic Perturbation.
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We also compare the solutions of (20) as solved with both the Gaussian and

Uniform distributions (right side of Figure 9). Interestingly, the numerical so-

lutions are quite similar to one another. This indicates that the model is not

very sensitive to the probability density function we use to calculate the required

coefficients. The curves are identical near the breakthrough time, and differ ever

so slightly after breakthrough.

6 Conclusion

In this paper we introduce a stochastic perturbation model to quantify the effect

of uncertainty of the deformation band width to oil production. By expressing

our saturation and velocity quantities in terms of first order stochastic pertur-

bations we are able to obtain from the original equations a parabolic equation

modeling the statistical mean values of saturation. For low deviations we en-

counter solutions that almost exactly coincide with the Monte Carlo results. For

higher deviations we see discrepancies with the Monte Carlo results that can be

attributed to the assumptions in the model derivation. We ultimately obtain a

more efficient method for computing expected saturation values and we verify

the accuracy by first computing Monte Carlo production curves (with a variety of

deviations) for the single phase and two-component saturation equations. In ad-

dition, we conclude that the model is not sensitive with respect to the probability

density functions of interest (Gaussian or Uniform).
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