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1 Introduction

Solving nonlinear equations of the form F(x) = 0, where F : � ⊆ X → X

is an operator defined on an open convex domain � of a Banach space X with

values in X, is one of the most known problems in mathematics. Undoubtedly,

Newton’s method ([2], [6], [8])

xn+1 = xn − [F ′(xn)]−1F(xn), n = 0, 1, 2, . . .

is one of the most best-known methods for solving these equations. However,

the application of the Newton method requires the existence of the operator
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[F ′(x)]−1 in each step and this is not always easy to do. Then, if we think in

iterative methods where the operator F ′(x) does not appear, the first one in that

one can think is the method of successive approximations [7]

xn+1 = G(xn) = xn − F(xn), n = 0, 1, 2, . . . (1)

which is also known as Picard’s iteration [10]. According to the fixed point the-

orem [9], the operator G must be a contraction so that method (1) is convergent.

The aim of this work is centered in modifying this condition, since the number

of equations that can be solved by the direct application of (1) is limited. For

example, if we consider the nonlinear integral equation ([5]):

x(s) = s + 1

20

∫ 1

0
K(s, t)x(t)5 dt, 0 ≤ s ≤ 1, (2)

for x ∈ C[0, 1], where K(s, t) is the Green function

K(s, t) =
{

(1 − s)t, t ≤ s,

(1 − t)s, s ≤ t,
(3)

then the operator

G(x)(s) = s + 1

20

∫ 1

0
K(s, t)x(t)5 dt, 0 ≤ s ≤ 1,

corresponding to equation (2) and appearing in (1) is not a contraction in the

space C[0, 1] with the max-norm. In this case, the fixed point theorem ([9])

does not guarantee the convergence of (1) to solve (2). In order to approximate

solutions of the equation F(x) = 0 in situations of this type, we study the

semilocal convergence of (1) under an alternating condition, where the operator

F satisfies the following condition:

‖F ′(x) − IX‖ ≤ ω(‖x‖), (4)

where ω : R+ → R+ is a non-decreasing function.

The study presented here belongs to the class of unbounded generalized con-

traction results, where the main idea is to generalize the fixed point theorem

using nonlinear majorant function in the contraction inequality, see [1]. In this
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way, condition (4) is connected with the definition of contractor ([1]), since if

ω ≡ constant < 1, then the identity operator IX is a contractor, so that the fixed

point theorem can be generalized.

Note that the convergence analysis given in this paper is semilocal. We replace

the strong condition, where the operator involved must be a contraction, which

appears in the fixed point theorem and guarantees the global convergence, by

condition (4), along with some conditions on the initial iterate x0 of the method.

We also obtain conclusions about the existence of solutions of the equation

F(x) = 0, along with the domain of location of them, without finding the solu-

tions themselves. This is sometimes more important than the actual knowledge

of a solution.

We observe that, under condition (4), we can guarantee the convergence of

method (1) to a solution of (2), which is approximated by Picard’s iteration.

Finally, an application to nonlinear integral equations of Fredholm type and

second kind is given.

2 Semilocal convergence

We analyse, under certain conditions for the operator F and the starting point x0,

the convergence of (1) to a solution of the equaiton F(x) = 0. Let us suppose

x0 ∈ � and the following conditions:

(C1) ‖x1 − x0‖ ≤ η.

(C2) ‖F ′(x) − IX‖ ≤ ω(‖x‖), x ∈ �, and ω : R+ → R+ is a non-decreasing

function.

(C3) Assume that R exists, the smallest positive root of the equation

(1 − ω(‖x0‖ + t))t − η = 0.

(C4) B(x0, R) ⊂ �.

Next, two technical lemmas are given.
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Lemma 2.1. From all (C1)–(C4), it follows

n∑
i=0

(
ω(‖x0‖ + R)i

)
η <

η

1 − ω(‖x0‖ + R)
= R.

Lemma 2.2. Taking into account all (C1)–(C4), we have

a) ‖xn+1 − xn‖ < ω(‖x0‖ + R)‖xn − xn−1‖, n ≥ 1,

b) ‖xn+1 − x0‖ <

[
1 +

n∑
i=0

ω(‖x0‖ + R)i

]
η < R, n ≥ 1.

Proof. Firstly, from (C1) and (C3), we have x1 ∈ B(x0, R), since ‖x1 − x0‖ ≤
η < R. Now, taking into account Taylor’s formula and (1), we have

F(x1) =
∫ 1

0

(
F ′(x0 + t (x1 − x0)) − IX

)
dt (x1 − x0).

Hence

‖F(x1)‖ ≤
(∫ 1

0
‖F ′(x0 + t (x1 − x0)) − IX‖ dt

)
‖x1 − x0‖

≤ ω(‖x0‖ + R)‖x1 − x0‖,

since x0 + t (x1 − x0) ∈ B(x0, R) and ω is a non-decreasing function. Thus

‖x2 − x1‖ ≤ ω(‖x0‖ + R)‖x1 − x0‖

and, by lemma 2.1,

‖x2 − x0‖ ≤ ‖x2 − x1‖ + ‖x1 − x0‖ < (1 + ω(‖x0‖ + R)) η < R.

Consequently, x2 ∈ B(x0, R).

Next, we suppose that a) and b) hold for every n = 1, 2, . . . , i − 1. Then,

using again Taylor’s formula and (1), we have

‖F(xi)‖ ≤
∫ 1

0
‖F ′(xi−1 + t (xi − xi−1)) − IX‖ dt ‖xi − xi−1‖

≤ ω(‖x0‖ + R)‖xi − xi−1‖,
(5)
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since xi−1 + t (xi −xi−1) ∈ B(x0, R) and ω is a non-decreasing function. There-

fore

‖xi+1 − xi‖ ≤ ω(‖x0‖ + R)‖xi − xi−1‖
and, by lemma 2.1,

‖xi+1 − x0‖ ≤ ‖xi+1 − xi‖ + ‖xi − x0‖

<

⎡
⎣1 +

i∑
j=1

ω(‖x0‖ + R)j

⎤
⎦ ‖x1 − x0‖

≤
⎡
⎣1 +

i∑
j=1

ω(‖x0‖ + R)j

⎤
⎦ η < R.

Mathematical induction now completes the proof. �

After that we can prove the semilocal convergence of method (1) when it is

applied to operators satisfying all (C1)–(C4).

Theorem 2.3. Let X be a Banach space and F : � ⊆ X → X a differenciable

operator on an open convex domain �. Assume all conditions (C1)–(C4). Then

iteration (1), starting at x0, converges to a solution x∗ ∈ B(x0, R) of the equation

F(x) = 0.

Proof. From lemma 2.2, it follows that the sequence defined by (1) is a Cauchy

one, since, for k ≥ 1 and n ≥ 1, we have

‖xn+k − xn‖ ≤ ‖xn+k − xn+k−1‖ + ‖xn+k−1 − xn+k−2‖ + · · · + ‖xn+1 − xn‖

≤
n+k−1∑

i=n

(
ω(‖x0‖ + R)i−n+1

)
ω(‖x0‖ + R)n−1‖x1 − x0‖

= 1 − ω(‖x0‖ + R)k

1 − ω(‖x0‖ + R)
ω(‖x0‖ + R)n‖x1 − x0‖

and ω(‖x0‖ + R) < 1. In consequence, limn xn = x∗, and by letting n → ∞ in

(5) for i = n, we obtain F(x∗) = 0 by the continuity of F in B(x0, R). �
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Example. We now illustrate the previous analysis to solve (2) by applying

method (1). Note that solving (2) is equivalent to solve F(x) = 0, where

F : C[0, 1] → C[0, 1] and

[F(x)](s) = x(s) − s − 1

20

∫ 1

0
K(s, t)x(t)5 dt. (6)

Thus

[F ′(x)y](s) = y(s) − 1

4

∫ 1

0
K(s, t)x(t)4y(t) dt

and ω(t) = t4/32.

Firstly, we obtain conclusions about the existence and the location of a solution

x∗ of (2), by means of Theorem 2.3. If we choose x0(s) = 0, then η = 1, the

equation appearing in (C3) is reduced to 32−32t + t5 = 0 and R = 1.03758 . . .

Consequently, by Theorem 2.3, equation (2) has the solution x∗ in

{u ∈ C[0, 1]; ‖u‖ ≤ 1.03758 . . . }.

After six iterations, the solution x∗(s) = 1.0012s − 0.00119048s7 is approxi-

mated by Picard’s method. See figure 1.
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Figure 1 – Approximation of x∗ by Picard’s iteration.
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3 Application

In this section we present an application where the analysis given in the previous

section is applied. The convergence condition given in (4) is easy to apply to

nonlinear integral equations of Fredholm type and second kind:

x(s) = f (s) + λ

∫ b

a

K(s, t)H(x)(t) dt, a ≤ s ≤ b, (7)

where λ is a real number, the kernel K(s, t) is a continuous function in [a, b] ×
[a, b], H : C[a, b] −→ C[a, b] is a differentiable operator, and f (s) is a given

continuous function defined in [a, b].
Note that solving (7) is equivalent to solve F(x) = 0, where F : C[a, b] →

C[a, b] and

[F(x)](s) = x(s) − f (s) − λ

∫ b

a

K(s, t)H(x)(t) dt.

Thus

[F ′(x)y](s) = y(s) − λ

∫ b

a

K(s, t)H ′(x)y(t) dt.

Therefore

‖F ′(x) − IC[a,b]‖ ≤ |λ|M‖H ′(x)‖,

where M = max[a,b]

∫ b

a

|K(s, t)| dt . Then, by giving conditions for ‖H ′(x)‖, con-

dition (4) can be satisfied. Note that the space of continuous functions on the

interval [a, b] is equipped with the max-norm

‖h‖ = max
s∈[a,b] |h(s)|, h ∈ C[a, b].

Firstly, we consider the following usual condition:

‖H ′(u) − H ′(v)‖ ≤ L‖u − v‖p, L ≥ 0 and p ∈ [0, 1],
namely, H ′ is (L, p)-Hölder continuous (see [3], [4]). Observe that H ′ is Lips-

chitz continuous if p = 1. For the former case, if x0 ∈ C[0, 1], we can consider

‖H ′(x)‖ ≤ ‖H ′(x0)‖ + L‖x − x0‖p.
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In this case,

‖F ′(x) − IC[a,b]‖ ≤ |λ|Mω̃(‖x − x0‖) ≡ ω(‖x − x0‖),

where ω̃ : R+ → R+ with ω̃(t) = N + Ltp and N = ‖H ′(x0)‖. This new

condition makes a slight variation in the previous semilocal convergence result.

From (5), we obtain

‖F(xi)‖ ≤ ω(R)‖xi − xi−1‖,

since xi−1 + t (xi − xi−1) ∈ B(x0, R), and condition (C3) is transformed in the

following one: Suppose R exists, the smallest positive root of the equation

|λ|MLt1+p − (1 − |λ|MN)t + η = 0. (8)

We illustrate these facts with the following example (see [5]):

x(s) = s + λ

∫ 1

0
K(s, t)x(t)2 dt, (9)

where K is the Green function given in (3). For this nonlinear integral equation,

the operator F is

F(x)(s) = x(s) − s − λ

∫ 1

0
K(s, t)x(t)2 dt

and

F ′(x)y(s) = y(s) − 2λ

∫ 1

0
K(s, t)x(t)y(t) dt.

Then, p = 1, H ′(x) is Lipschitz continuous,

‖F ′(x) − IC[0,1]‖ ≤ |λ|(N + 2‖x − x0‖)/8,

and equation (8) is reduced to the following polynomial of second degree:

|λ|
4

t2 −
(

1 − |λ|
8

N

)
t + η = 0, (10)

where η = ‖x0 − s‖+ |λ|M‖x0‖2 and the corresponding semilocal convergence

result is now.
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Corollary 3.1. Let R be the smallest positive root of equation (10). Then the

sequence defined in (1), starting at x0, converges to a root of (9), which is in

B(x0, R) ⊂ �.

If we choose x0(s) = s, then N = 2, η = |λ|/8 and equation (10) is

|λ|
4

t2 −
(

1 − |λ|
4

)
t + |λ|

8
= 0,

which has real solutions if |λ| ∈ (0, 4
√

2 − 4). Taking λ = 1, we obtain

R = 3−√
7

2 and equation (9) with λ = 1 has a solution in{
u ∈ C[0, 1]; ‖u − 1‖ ≤ 3 − √

7

2

}
.

By iteration (1), starting at x0(s) = s, the solution

x∗(s) = 1.10542 − 0.00184454s2 − 0.0202459s3 − 0.0833333s4

is reached at the iteration 10.

Secondly, we consider the more general situation

‖H ′(x)‖ ≤ ω̃(‖x‖),
where ω̃ : R+ → R+ is a non-decreasing function. In this case, ω(t) =
|λ|Mω̃(t). We illustrate this situation with the following boundary value problem⎧⎪⎨

⎪⎩
d2x(s)

ds2
+ λ ex(s) = 0, s ∈ [0, 1],

x(0) = 0 = x(1),

(11)

which can be written in the form of the next nonlinear integral equation

x(s) = λ

∫ 1

0
K(s, t) ex(t) dt, (12)

where K is the Green function given in (3). Moreover, solving (12) is equivalent

to solve F(x) = 0, where F : C[0, 1] → C[0, 1] and

[F(x)](s) = x(s) − λ

∫ 1

0
K(s, t) ex(t) dt. (13)
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In addition, η = ‖x0‖ + |λ| e‖x0‖ /8, Picard’s iteration is reduced to

xn+1(s) = λ

∫ 1

0
K(s, t) exn(t) dt

and the semilocal convergence result is now.

Corollary 3.2. Let R be the smallest positive root of the equation

(1 − |λ| e‖x0‖+t /8)t − ‖x0‖ − |λ| e‖x0‖ /8 = 0. (14)

Then the sequence defined in (1), starting at x0, converges to a zero of (13), which

is in B(x0, R) ⊂ �.

If we choose x0(s) = 1, equation (14) is

(1 − |λ| e1+t /8)t − 1 − |λ| e /8 = 0,

so that, as we can see in figure 2, the smaller the value |λ| is, the smaller the

value R is. Taking λ = 1/10, R = 1.15962 . . . is obtained and problem (11)

with λ = 1/10 has a solution x∗∗ in

{u ∈ C[0, 1]; ‖u − 1‖ ≤ 1.15962 . . . }.

-4 -2 2 4 6
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λ = 1
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Figure 2 – h1(t) = (1 − |λ| e1+t /8)t − 1 − |λ| e /8 for λ = 1/n (n = 1, 2, . . . , 10).
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The solution x∗∗(s) = 0.0508548s − 0.0508548s2 of (11) with λ = 1/10 is

approximated by Picard’s iteration in the sixth iteration.
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