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1 Introduction

The aim of this study is to present a high order computational method for solving

a special case of singular Fredholm integral equations of the second kind namely

Abel’s integral equation defined as follows:

y(x) = f (x)−
∫ b

a
K (x, t)|x − t |−α y(t)dt, (1)

0 < α < 1, a ≤ x ≤ b,

where f (x) and K (x, t) are known functions and y(x) is the unknown function

that to be determined.

#CAM-409/11. Received: 06/IX/11. Accepted: 05/IV/12.
∗Corresponding author.



“main” — 2012/8/28 — 11:17 — page 374 — #2

374 WAVELET GALERKIN METHOD FOR SOLVING INTEGRAL EQUATIONS

Abel’s equation is one of the integral equations derived directly from a con-

crete problem of mechanics or physics (without passing through a differential

equation). Historically, Abel’s problem is the first one that led to the study of

integral equations. The generalized Abel’s integral equations on a finite segment

appeared in the paper of Zeilon [1] for the first time.

A comprehensive reference on Abel-type equations, including an extensive list

of applications, can be found in [2]-[5].

The construction of high order methods for the equations is, however, not an

easy task because of the singularity in the weakly singular kernel. In fact, in

this case the solution y is generally not differentiable at the endpoints of the

interval [6]-[9], and due to this, to the best of the authors’ knowledge the best

convergence rate ever achieved remains only at polynomial order. For example,

if we set uniform meshes with n + 1 grid points and apply the spline method so

for order m, then the convergence rate is only O(n−2P) at most [10]-[11], and

it can not be improved by increasing m. One way of remedying this is to intro-

duce graded meshes [10]-[12]. Then the rate is improved to O(n−m) [12] which

now depends on m, but still at polynomial order. Fettis [13] proposed a numeri-

cal form of the solution to Abel equation by using the Gauss-Jacobi quadrature

rule. Piessens and Verbaeten [14] and Piessens [15] developed an approximate

solution to Abel equation by means of the Chebyshev polynomials of the first

kind. Numerical solutions of weakly singular Volterra integral equations were

introduced in [16]-[21]. Yanzhao et al. [22] applied hybrid collocation methods

for solving these equations. Rashit Ishik [23] used Bernstein series solution for

solving linear integro-differential equations with weakly singular kernels. In

[24] wavelet method is applied to solve noisy Abel-type equations. Wazwaz

[25] studied on singular initial value problems in the second-order ordinary dif-

ferential equations.

An algorithm for solving nonlinear singular perturbation problems is dis-

cussed in [26].

In this work we assume that the K (x, t) ∈ [a, b] × [a, b] and satisfies in

Lipschitz condition, that is:

|K (x1, t)− K (x2, t)| ≤ Ls |x1 − x2|, (2)

and Ls is the Lipschitz constant. In this paper, we use the semiorthogonal linear
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B-spline wavelets for solving weakly singular integral equations. Our method

consists of reducing the given weakly singular integral equation to a set of alge-

braic equations by expanding the unknown function by B-spline wavelets with

unknown coefficients. Galerkin method is utilized to evaluate the unknown co-

efficients. Because of semiorthogonality, compact support and having vanishing

moments properties of these wavelets, the operational matrix is very sparse.

Without loss of generality, we may consider [a, b] = [0, 1].

The structure of this paper is arranged as follows. The main problem and

brief history of some presented methods are expressed in Introduction 1. Linear

B-spline scaling and wavelet functions on bounded interval are introduced in

Section 2. Section 3 is devoted to function approximation by using B-spline

wavelets and respective theorems. In Section 4, linear B-spline wavelets are ap-

plied as testing and weighting functions of Galerkin method for efficient solution

of equation 1. In Section 5 sparsity of the operational matrix and thresholding

parameter is discussed. In Section 6, we report our numerical founds and com-

pare them with other methods in solving these integral equations, and Section 7

contains our conclusion.

2 Linear B-spline scaling and wavelet functions

Basic definitions and concepts of wavelets is given in [27]-[33].

Definition 2.1. Let m and n be two positive integers and

c = x−m+1 = ∙ ∙ ∙ = x0 < x1 < ∙ ∙ ∙ < xn = xn+1 = ∙ ∙ ∙ = xn+m−1 = d,

be an equally spaced knots sequence. The functions

Bm, j,X (x) =
x − x j

x j+m−1 − x j
Bm−1, j,X (x)+

x j+m − x

x j+m − x j+1
Bm−1, j+1,X (x),

j = −m + 1, . . . , n − 1,

and

B1, j,X (x) =

{
1 x ∈ [x j , x j+1),

0 O.W.

are called cardinal B-spline functions of order m ≥ 2 for the knot sequence

X = {xi }
n+m−1
i=−m+1, and Supp [Bm, j,X (x) = [x j , x j+m]

⋂
[c, d].
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For the sake of simplicity, suppose [c, d] = [0, n] and xk = k, k = 0, . . . , n.

The Bm, j,X = Bm(x − j), j = 0, . . . , n − m, are interior B-spline functions,

while the remaining Bm, j,X , j = −m +1, . . . ,−1 and j = n −m +1, . . . , n −1

are boundary B-spline functions, for the bounded interval [0, n]. Since the

boundary B-spline functions at 0 are symmetric reflections of those at n, it is

sufficient to construct only the first half functions by simply replacing x with

n − x .

By considering the interval [c, d] = [0, 1], at any level j ∈ Z+, the discretiza-

tion step is 2− j , and this generates n = 2 j number of segments in [0, 1] with

knots sequence

X ( j) =






x ( j)
−m+1 = ∙ ∙ ∙ = x ( j)

0 = 0,

x ( j)
k = k

2 j k = 1, . . . , n − 1,

x ( j)
n = ∙ ∙ ∙ = x ( j)

n+m−1 = 1.

Let j0 be the level for which 2 j0 ≥ 2m − 1; for each level j ≥ j0 the scaling

functions of order m can be defined as follows in [33]:

ϕm, j,i (x) =






Bm, j0,i (2
j− j0 x) i = −m + 1, . . . ,−1,

Bm, j0,2 j −m−i (1 − 2 j− j0 x) i = 2 j − m + 1, . . . , 2 j − 1,

Bm, j0,0(2
j− j0 x − 2− j0 i) i = 0, . . . , 2 j − m,

(3)

and the two-scale relation for the m-order semiorthogonal compactly supported

B-wavelet functions are defined as follows:

ψm, j,i−m =
2i+2m−2∑

k=i

qi,k Bm, j,k−m, i = 1, . . . ,m − 1, (4)

ψm, j,i−m =
2i+2m−2∑

k=2i−m

qi,k Bm, j,k−m, i = m, . . . , n − m + 1, (5)

ψm, j,i−m =
n+i+m−1∑

k=2i−m

qi,k Bm, j,k−m, i = n − m + 2, . . . , n, (6)

where qi,k = qk−2i .
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Hence, there are 2(m −1) boundary wavelets and (n −2m +2) inner wavelets

in the boundary interval [c, d]. Finally by considering the level j with j ≥ j0 ,

the B-wavelet functions in [0, 1] can be expressed as follows:

ψm, j,i (x)=






ψm, j0,i (2
j− j0 x) i = −m + 1, . . . ,−1

ψm,2 j −2m+1−i,i (1 − 2 j− j0 x) i = 2 j − 2m + 2, . . . , 2 j − m

ψm, j0,0(2
j− j0 x − 2− j0 i) i = 0, . . . , 2 j − 2m + 1

(7)

The scaling functions ϕm, j,i (x), occupy m segments and the wavelet functions

ψm, j,i (x) occupy 2m − 1 segments.

Therefore the condition 2 j ≥ 2m −1, must be satisfied in order to have at least

one inner wavelet. In the following, the scaling functions and wavelet functions

used in the paper, for j0 = j = 2 and m = 2, are reported in [35]:

Boundary scalings

ϕ2,−1 = 1 − 4x, x ∈
[

0,
1

4

)
(8)

ϕ2,3 = 4x − 3, x ∈
[

3

4
, 1

)
(9)

Inner scalings

ϕ2,0(x) =

{
4x, x ∈

[
0, 1

4

)

2 − 4x, x ∈
[

1
4 ,

1
2

) (10)

ϕ2,1(x) =

{
4x − 1, x ∈

[
1
4 ,

1
2

)

3 − 4x, x ∈
[

1
2 ,

3
4

) (11)

ϕ2,2(x) =

{
4x − 2, x ∈

[
1
2 ,

3
4

)

4 − 4x, x ∈
[

3
4 , 1

) (12)

Boundary wavelets

ψ2,−1 =






−1 + 46
3 x, x ∈

[
0, 1

8

)

7
3 − 34

3 x, x ∈
[

1
8 ,

1
4

)

−5
3 + 14

3 x, x ∈
[

1
4 ,

3
8

)

1
3 − 2

3 x, x ∈
[

3
8 ,

1
2

)

(13)
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ψ2,2 =






−1
3 + 2

3 x, x ∈
[

1
2 ,

5
8

)

3 − 14
3 x, x ∈

[
5
8 ,

3
4

)

−9 + 34
3 x, x ∈

[
3
4 ,

7
8

)

43
3 − 46

3 x, x ∈
[

7
8 , 1

)

(14)

Inner wavelets

ψ2,0 =






2
3 x, x ∈ [0, 1

8)

2
3 − 14

3 x, x ∈
[

1
8 ,

1
4

)

−19
6 + 32

3 x, x ∈
[

1
4 ,

3
8

)

29
6 − 32

3 x, x ∈
[

3
8 ,

1
2

)

−17
6 + 14

3 x, x ∈
[

1
2 ,

5
8

)

1
2 − 2

3 x, x ∈
[

5
8 ,

3
4

)

(15)

ψ2,1 =






−1
12 + 2

3 x, x ∈
[

1
8 ,

1
4

)

5
4 − 14

3 x, x ∈
[

1
4 ,

3
8

)

−9
2 + 32

3 x, x ∈
[

3
8 ,

1
2

)

37
6 − 32

3 x, x ∈
[

1
2 ,

5
8

)

−41
12 + 14

3 x, x ∈
[

5
8 ,

3
4

)

7
12 − 2

3 x . x ∈
[

3
4 ,

7
8

)

(16)

Some of the important properties relevant to the present work are given below:

1) Vanishing moments: A wavelet ψ(x) is said to have a vanishing moments

of order m if
∫ ∞

−∞
x pψ(x)dx = 0; p = 0, 1, . . . ,m − 1.

All wavelets must satisfy the above condition for p = 0. Linear B-spline

wavelet has 2 vanishing moments. That is
∫ ∞

−∞
x pψ4(x)dx = 0, p = 0, 1.

For a good approximation and data compression, vanishing moments prop-

erty is necessary condition.
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2) Semiorthogonality: The wavelets ψ j,k form a semiorthogonal basis if

〈ψ j,k, ψs,i 〉 = 0 , j 6= s, ∀ j, k, s, i ∈ Z.

Linear B-spline wavelet are semiorthogonal.

3 Function approximation

A function f (x) defined over [0, 1] may be approximated by B-spline wavelets

as [34]:

f (x) =
2 j0 −1∑

i=−1

c j0,iϕ j0,i (x)+
∞∑

j= j0

2 j −2∑

k=−1

d j,kψ j,k(x), (17)

where ϕ j0,i and ψ j,k are scaling and wavelets functions, respectively. If the

infinite series in equation 17 is truncated, then it can be written as:

f (x) '
2 j0 −1∑

i=−1

c j0,iϕ j0,i (x)+
ju∑

j= j0

2 j −2∑

k=−1

d j,kψ j,k(x) = CT9(x), (18)

where C and 9 are 2( ju+1) + 1 column vectors given by:

C =
(

c j0,−1, . . . , c j0,2 j0 −1, d j0,−1, . . . , d j0,2 j0 −2, . . . , d ju ,−1, . . . , d ju ,2 ju −2

)T
, (19)

9 =
(
ϕ j0,−1, . . . , ϕ j0,2 j0 −1, ψ j0,−1, . . . , ψ j0,2 j0 −2, . . . , ψ ju ,−1, . . . , ψ ju ,2 ju −2

)T
, (20)

with

c j0,i =
∫ 1

0
f (x)ϕ̃ j0,i (x)dx, i = −1, . . . , 2 j0 − 1, (21)

d j,k =
∫ 1

0
f (x)ψ̃ j,k(x)dx, j = j0, . . . , ju, k = −1, . . . , 2 ju − 2, (22)

where ϕ̃ j0,i and ψ̃ j,k are dual functions of ϕ j0,i , i = −1, . . . , 2 j0 −1 andψ j,k, j =

j0, . . . , ju , respectively. These can be obtained by linear combinations of ϕ j0,i

and ψ j,k .

Theorem 3.1. We assume that f ∈ C2[0, 1] is represented by linear B-spline

wavelets as equation 18, where ψ has 2 vanishing moments, then

|d j,k | ≤ αβ
2−3k

3!
,
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where α = max | f (2)(t)|, t ∈ [0, 1] and β =
∫ 1

0 t2ψ̃(t)dt. Moreover if e j (x)

be the approximation error in the subspace Vj , then:

|e j (x)| = O(2−2 j ).

Proof. ([35]) �

4 Description of the numerical method

In this section, we solve the singular integral equation of the form 1 by using

B-spline wavelets. For this purpose the unknown function of the equation 1

is expanded by linear B-spline wavelets as equation 18. The integral term in

equation 1 can be written as:

∫ 1

0
K (x, t)|x − t |−α y(t)dt =

∫ 1

0
(K (x, t)− K (x, x)) |x − t |−α y(t)dt

+ K (x, x)
∫ 1

0
|x − t |−α y(t)dt,

and
∫ 1

0
|x − t |−α y(t)dt =

∫ 1

0
|x − t |−α (y(t)− y(x)) dt

+ y(x)
∫ 1

0
|x − t |−αdt,

thus we have
∣
∣
∣
∣

∫ 1

0
(K (x, t)− K (x, x)) |x − t |−α y(t)dt

∣
∣
∣
∣

≤
∫ 1

0
|K (x, t)− K (x, x)| |x − t |−α |y(t)| dt

≤
∫ 1

0
Ls |x − t |1−α|y(t)|dt,

now as x → t ,
∣
∣
∣
∣

∫ 1

0
(K (x, t)− K (x, x)) |x − t |−α y(t)dt

∣
∣
∣
∣ → 0. (23)
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On the other hand
∣
∣
∣
∣

∫ 1

0
|x − t |−α (y(t)− y(x)) dt

∣
∣
∣
∣ ≤

∫ 1

0
|x − t |−α|y(t)− y(x)|dt

≤ y′(ξ)

∫ 1

0
|x − t |1−αdt

= y′(ξ)
|x − t |2−α

2 − α
,

so, as x → t ∣
∣
∣
∣

∫ 1

0
(x − t)−α (y(t)− y(x)) dt

∣
∣
∣
∣ → 0. (24)

Now we introduce the function H(x, t) as:

H(x, t) =

{
K (x, t)(x − t)−α x 6= t

0 x = t.
(25)

So the integral term of equation 1 can be written as:

∫ 1

0
K (x, t)(x − t)−α y(t)dt =

∫ 1

0
H(x, t)y(t)dt, (26)

and we note that the new kernel function is not singular in [0, 1]. Thus the

integral equation 1 can be rewritten as follows:

y(x) = f (x)+
∫ 1

0
H(x, t)y(t)dt. (27)

Substituting function approximation 18 in current equation and employing

Galerkin method, the following set of linear system of order 2 ju + 1 is gen-

erated. Linear B-spline scaling and wavelet functions are used in testing and

weighting functions of Galerkin method.
(

〈Hφ, φ〉 − 〈φ, φ〉 〈Hψ, φ〉 − 〈ψ, φ〉

〈Hφ,ψ〉 − 〈φ,ψ〉 〈Hψ,ψ〉 − 〈ψ,ψ〉

)

×

(
C

D

)

=

(
F1

F2

)

(28)

where

C =
(
c j0,−1, . . . , c j0,2 j0 −1

)T
, (29)

D =
(
d j0,−1, . . . , d j0,2 j0 −2, . . . , d ju ,−1, . . . , d ju ,2 ju −2

)T
, (30)

Comp. Appl. Math., Vol. 31, N. 2, 2012



“main” — 2012/8/28 — 11:17 — page 382 — #10

382 WAVELET GALERKIN METHOD FOR SOLVING INTEGRAL EQUATIONS

〈Hφ, φ〉 − 〈φ, φ〉 =
(∫ 1

0
ϕ j0,r (x)

∫ 1

0
H(x, t)ϕ j0,i (t)dtdx

−
∫ 1

0
ϕ j0,r (x)ϕ j0,i (x)dx

)

i,r

,

(31)

〈Hψ, φ〉 − 〈ψ, φ〉 =
(∫ 1

0
ϕ j0,r (x)

∫ 1

0
H(x, t)ψ j,k(t)dtdx

−
∫ 1

0
ϕ j0,r (x)ψ j,k(x)dx

)

r,k, j

,

(32)

〈Hφ,ψ〉 − 〈φ,ψ〉 =
(∫ 1

0
ψs,l(x)

∫ 1

0
H(x, t)ϕ j0,i (t)dtdx

−
∫ 1

0
ψs,l(x)ϕ j0,i (x)dx

)

i,l,s

,

(33)

〈Hψ,ψ〉 − 〈ψ,ψ〉 =
(∫ 1

0
ψs,l(x)

∫ 1

0
H(x, t)ψ j,k(t)dtdx

−
∫ 1

0
ψs,l(x)ψ j,k(x)dx

)

l,s,k, j

,

(34)

F1 =
∫ 1

0
f (x)ϕ j0,r (x)dx, (35)

F2 =
∫ 1

0
f (x)ψs,l(x)dx, (36)

And the subscripts i , r , k, j , l and s assume values as given below:

i, r = −1, . . . , 2 j0 − 1,

s, j = j0, . . . , ju,

l, k = −1, . . . , 2 ju − 2.

It can be shown that the total number of unknowns in 28, does not depend on

j0 as given below:

N = 2 ju + 1. (37)

The limits of integrations in 31-36 range from zero to one, the actual integration

limits are much smaller because of the finite supports of the semi orthogonal

scaling functions and wavelets. Moreover, a lot of the integrals in (28) become

Comp. Appl. Math., Vol. 31, N. 2, 2012
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zero due to the semi orthogonality and vanishing moments properties of the

wavelet functions.

In fact the entries with significant magnitude are in the 〈Hφ, φ〉 − 〈φ, φ〉 and

〈Hψ,ψ〉 − 〈ψ,ψ〉 sub matrices which are of order (2 j0 + 1) and (2 ju+1 + 1)

respectively.

5 Matrix sparsity and thresholding error

Because of the local supports and vanishing moments properties of B-spline

wavelets, many of the matrix elements in equation 18 are very small compared

to the largest element, and hence we can set to zero with an opportune threshold

technique without significantly affecting the solution. Typically one thresholds

the elements of a wavelet matrix by setting to zero all elements that are less than

some small positive number multiplied by the largest matrix element, we show

by δ. The matrix sparsity Sδ defined by

Sδ =
Ne − Nδ

Ne
× 100,

where Ne is the total number of elements and Nδ is the number of nonzero

elements remaining after thresholding. The relative error caused by thresholding

the wavelet matrix is defined by

ε =
‖ fe − fδ‖2

‖ fe‖2
× 100.

6 Illustrative examples

In this section, to show the accuracy and efficiency of the described method we

present some numerical examples then we compare the results of our method

with the results of some other methods. The effects of different thresholding

parameters on the error and grayscale plots of the moment matrix elements are

shown in figures. The matrix sizes for the B-spline wavelets in j0 = 2 were

17 × 17 and 33 × 33, respectively, for ju = 3 and ju = 4. In grayscale plots of

matrices, a darker colour on an element indicates a larger magnitude. Because of

the vanishing moments and semiorthogonality of B-spline wavelets, we expect

that the matrix elements in 〈Hφ,ψ〉 − 〈φ,ψ〉 and 〈Hψ, φ〉 − 〈ψ, φ〉 were very

small, and hence can be set to zero without significantly affecting the solution.
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Example 1. Consider the singular integral equation [36]

y(x) = f (x)+
∫ 1

0

1

10
|x − t |−1/3 y(t)dt,

with

f (x) = x2(1 − x)2 −
27

30800
×

(
x8/3(54x2 − 126x + 77)+ (1 − x)8/3(54x2 + 18x + 5)

)
.

The exact solution y(x) = x2(1 − x)2. The solution for y(x) is obtained by

the method in Section 4 at the octave level j0 = 2 and at the levels ju = 3 and

4. The results without thresholding and for different thresholding parameters

and diverse scales are shown in Tables 1 and 2. In Table 1, we present exact

and approximate solutions of Example 1 in some arbitrary points. As proved

in Theorem 1, the error at the level ju = 4 is smaller than the error at ju = 3,

moreover errors in our method are smaller than those in other methods. More-

over, because of semiorthogonality and having vanishing moments of B-spline

wavelets, matrices in our method are sparse, thus we do not need large memory

requirement and a high computational time.

Approximate Approximate S.C.M.*
x

ju = 3 ju = 4 [36]
Exact

0 0 0 0 0

0.1 0.008103 0.0081000 0.00812 0.0081

0.2 0.025604 0.0256000 0.02565 0.0256

0.3 0.044101 0.0441000 0.04414 0.0441

0.4 0.057609 0.0576000 0.05768 0.0576

0.5 0.062503 0.0625000 0.06259 0.0625

0.6 0.057608 0.0576000 0.05763 0.0576

0.7 0.044102 0.0441000 0.04414 0.0441

0.8 0.025606 0.0256000 0.02563 0.0256

0.9 0.008104 0.0081000 0.00816 0.0081

1 0 0 0 0

Table 1 – Exact and approximate solutions of example 1 without thresholding.
∗S.C.M: Sinc-Collocation Method
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Number of Threshold Sparsity Relative Error
Scale

unknowns δ Sδ ε

ju = 3 17 10−6 34.66 2.2 × 10−4

ju = 3 17 10−5 52.81 1.3 × 10−3

ju = 4 33 10−6 67.23 2.1 × 10−2

ju = 4 33 10−4 80.04 1.04 × 10−1

Table 2 – Sparsity and relative error for wavelet matrices of Example 1 in different scales and

threshold parameters.

Figure 1 shows the grayscale plot of the matrix obtained by setting the thresh-

old to 10−5 at the level ju = 3. Table 2 shows a comparison of sparsity and rela-

tive error for semi orthogonal B-spline wavelets in different scales and threshold

parameter. It is interesting that at the scale ju = 4 with threshold parameter

10−4, the number of matrix element 1089 decrease to 262.

Figure 1 – Grayscale plot of the magnitude of the wavelet matrix elements for Example 1

at the octave level j0 = 2 for the threshold parameter 10−5 at the level ju = 3.

Example 2. Consider the problem [10], [11]

3
√

2

4
y(x)−

∫ 1

0
|x − t |−1/2 y(t)dt = 3

(
x(1 − x)3/4 −

3

8
π(1 + 4x(1 − x))

)
,
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with the exact solution 2
√

2(x(1 − x))3/4. The solution for y(x) is obtained

by the method in Section 4 at the octave level j0 = 2 and at the levels ju = 3 and

4. The results without thresholding and for different thresholding parameters

and diverse scales are shown in Tables 3 and 4. Figure 2 shows the grayscale

plot of the matrix obtained by setting the threshold to 10−4 at the level ju = 4.

Approximate Approximate P.I.M.*
x

ju = 3 ju = 4 [37]
Exact

0 0 0 0 0

0.1 0.464756 0.46475804 0.464768 0.464758

0.2 0.715541 0.71554201 0.715548 0.715542

0.3 0.877428 0.87742402 0.877418 0.877424

0.4 0.969845 0.96984702 0.969862 0.969847

0.5 1.00001 1.000000 1.000037 1

0.6 0.969844 0.96984703 0.96984749 0.969847

0.7 0.877423 0.87742400 0.877463 0.877424

0.8 0.715545 0.71554201 0.715527 0.715542

0.9 0.464754 0.46475803 0.464734 0.464758

1 0 0 0 0

Table 3 – Exact and approximate solutions of Example 2 without thresholding.
∗P.I.M: Product Integration Method.

Number of Threshold Sparsity Relative Error
Scale

unknowns δ Sδ ε

ju = 3 17 10−5 42.51 2.53 × 10−4

ju = 3 17 10−4 59.02 1.02 × 10−3

ju = 4 33 10−5 58.29 2.72 × 10−2

ju = 4 33 10−4 82.64 1.24 × 10−1

Table 4 – Sparsity and relative error for wavelet matrices of Example 2 in different scales and

threshold parameters.

7 Conclusions

In this paper, we proposed an advanced numerical model in solving weakly sin-

gular Fredholm integral equation of the second kind by means of semi orthogonal
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Figure 2 – Grayscale plot of the magnitude of the wavelet matrix elements for Example 2

at the octave level j0 = 2 for the threshold parameter 10−4 at the level ju = 4.

compactly supported spline wavelets. The wavelet MOM used via the Galerkin

procedure. Based on the consideration reported in figures and tables, the method

presented in this paper determines a strong reduction of the computation time

and memory requirement in inverting the matrix. The approach can be extended

to nonlinear singular integral and integro-differential equations with little addi-

tional work. Further research along these lines is under progress and will be

reported in due time.
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