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Abstract. Accuracy of a simulation is strongly depend on the grid quality. Here, quality means

orthogonality at the boundaries and quasi-orthogonality within the critical regions, smoothness,

bounded aspect ratios, solution adaptive behavior, etc. We review various functionals for gen-

erating high quality structured quadrilateral meshes in two dimensional domains. Analysis of

Winslow and Modified Liao functionals are presented. Numerical examples are also presented to

support our theoretical analysis. We will demonstrate the use of the Area functional for generating

adaptive quadrilateral meshes.
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1 Introduction

Accuracy of numerical solutions of partial differential equations on a grid is

very much depend on the quality of the underlying grid. There are various

parameters for measuring grid quality. For example, orthogonality of grid lines

and grid density in the regions of large solution gradients. A desired grid may be

an orthogonal grid with high grid density in the areas of sharp solution gradients.

Variational methods has been used for improving quality of a given grid [1].

In the variational methods, a grid functional is defined. Grid functional is an

algebraic expression of the position vectors of the internal nodes of a mesh.

Optimization of the grid functional may result in a grid with desired properties
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such as orthogonal grid lines, equal cell areas, linear or parallelogram cells

[see 2] and untangled mesh [4, 5, 6]. There are many algebraic functionals

for grid generation and optimization [cf. 2, 4, 5, 6, 7, 8, 9]. The first study

of grid generation by algebraic functionals were done in [10]. Castillo and

Steinberg introduced Length, Orthogonality and Area functionals [10]. Area

functional are well known for producing robust quadrilateral meshes. For a

detailed description of properties of area functionals, the interested readers are

referred to [9]. Recently the area functional has been used for generating adaptive

quadrilateral meshes [12].

Let x(ξ, η) andy(ξ, η) be the coordinates of a node in a mesh. Let us further

assume thatx andyare twice differentiable functions of the independent variables

ξ andη. An integral functionalI can be defined as follows

I(x, y)
def
=

∫

[0,1]×[0,1]
F(ξ, η, x, y, xξ , xη, yξ , yη) dξ dη . (1)

We are interested in finding the functionsx(ξ, η) and y(ξ, η) for which the

integral functionalI attains an extremal value. Such coordinatesx andy define

a mesh with desirable properties. The integral functionalI is also referred to as

control function for adaptive grid generation [1]. The conditions for the extremal

value of the integral functionalI are expressed by the Euler-Lagrange equations.

The two Euler-Lagrange equations are

∂F

∂x
−

∂

∂ξ

(
∂F

∂xξ

)
−

∂

∂η

(
∂F

∂xη

)
= 0 , (2)

∂F

∂y
−

∂

∂ξ

(
∂F

∂yξ

)
−

∂

∂η

(
∂F

∂yη

)
= 0 . (3)

The functionsx and y, which satisfy the above Euler-Lagrangian equations,

are called the extremal of the integral functionalI.

Let us define some quantities of interest. Figure 1 shows a quadrilateral cell,

and this cell belongs to a mesh. Let the co-variant vector at the nodeo and in the

directionoa is g1, and another co-variant vector at the nodeo but in the direction

ob is g2. These vectors are given as

g1 = (xa − xo, ya − yo)
t and g2 = (xb − xo, yb − yo)

t . (4)
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g1

g2

(xo, yo)
(xa, ya)

(xb, yb)

g1 :=

(
xa − xo
ya − yo

)

g2 :=

(
xb − xo
yb − yo

)

J := [g1 g2]

g := J t J

Figure 1 – Quantities of interest for a quadrilateral cell.
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Figure 2 – 2D Structured Mesh. Nodek is surrounded by four quadrilaterals.

Other interesting quantities such as the Jacobian and g-tensor matrix can be

defined from the co-variant vectors. The columns of the Jacobian matrix are the

co-variant vectors. The g-tensor matrix is the product of the Jacobian matrix

with it’s transpose. Thus, the Jacobian matrix and the g-tensor at the nodeo and

for the cell shown in the Figure 1 are given as

J =
[
g1 g2

]
and g = J t J . (5)

The layout of the paper is as follows. In the Section 2, several functionals

are presented. Continuous and discrete versions of the functionals are presented.
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Section 3 presents several numerical experiments, and finally Section 4 concludes

the paper.

2 Discrete Functionals

Let us first introduce some quantities of interest. These will be used later in

formulating algebraic functionals. Figure 2 is a 2× 2 structured mesh. We use

this figure for defining these quantities.

J(ki ) refers to the Jacobian (determinant of the Jacobian matrixJ(ki )) at the

nodek and for the celli . Table 1 lists the Jacobian matrix for the four cells

surrounding the nodek. g1(ki ) refers to the co-variant base vector at the nodek

and for the celli . The base vectorg1 points along horizontal grid lines. Similarly,

g2(ki ) refers to the co-variant base vector at the nodek and for the celli , and it

points along the vertical grid lines. Table 2 lists the co-variant vectors for the

Figure 2. It should be noted that column vectors of the Jacobian matrix are the

co-variant base vectors. For example, the column vectors ofJ(k1) areg1(k1) and

g2(k1). That is J(k1) =
[
g1(k1) g2(k1)

]
. g(ki ) refers to the co-variant metric

tensor at the nodek and for the celli . It is defined asg(ki ) = J(ki )
t J(ki ).

gmn(ki ) refers to the(m, n) coefficient of the co-variant metric tensorg(ki ) for

the nodek and for the celli . It can be seen thatg11(ki ) = g1(ki )
t ∙ g1(ki ) and

g12(ki ) = g1(ki )
t ∙ g2(ki ). Similarly, other coefficients can be defined. The

coefficientg12 is a measure of the angle between the co-variant base vectorsg1

andg2. While, the coefficientg11 is a measure of the discreteL2 length of the

co-variant vectorg1.

J(k1) =

[
(x4 − xk) (x1 − xk)

(y4 − yk) (y1 − yk)

]

J(k2) =

[
(x2 − xk) (x1 − xk)

(y2 − yk) (y1 − yk)

]

J(k3) =

[
(x2 − xk) (x3 − xk)

(y2 − yk) (y3 − yk)

]

J(k4) =

[
(x4 − xk) (x3 − xk)

(y4 − yk) (y3 − yk)

]

Table 1 – Jacobian matrix at the nodek for the surrounding cells for the Figure 2.
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g1(k1) =

(
x4 − xk

y4 − yk

)

g2(k1) =

(
x1 − xk

y1 − yk

)

g1(k2) =

(
x2 − xk

y2 − yk

)

g2(k2) =

(
x1 − xk

y1 − yk

)

g1(k3) =

(
x2 − xk

y2 − yk

)

g2(k3) =

(
x3 − xk

y3 − yk

)

g1(k4) =

(
x4 − xk

y4 − yk

)

g2(k4) =

(
x3 − xk

y3 − yk

)

Table 2 – Co-variant vectors at the nodek for the surrounding cells for the Figure 2.

Let us consider a structured quadrilateral mesh (each internal node is sur-

rounded by four quadrilaterals) consisting ofn internal nodes. The following

functionals can be defined

2.1 Area Functional

The integral form of the standard Area functional is given as

IA
def
=

1

2

∫

[0,1]×[0,1]
|J |2 dξ dη , (6)

=
∫

[0,1]×[0,1]
(xξ yη − xη yξ ) dξ dη . (7)

The Euler-Lagrangian equations for the Area functional are

∂

∂ξ

(
|J | xη

)
−

∂

∂η

(
|J | xξ

)
= 0 , (8)

∂

∂ξ

(
|J | yη

)
−

∂

∂η

(
|J | yξ

)
= 0 . (9)
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In the simplified form the above equations can be written as

yη
2 xξξ − xη yη yξξ − 2.0 yξ yη xξη

+ (xξ yη + xη yξ ) yξη + yξ
2 xηη − xξ yξ yηη = 0 ,

(10)

xη
2 yξξ − xη yη xξξ − 2.0 xξ xη yξη

+ (xξ yη + xη yξ ) xξη + xξ
2 yηη − yξ yξ xηη = 0 ,

(11)

[see 9]. The above Euler-Lagrangian equations are non-elliptic, coupled and

quasi-linear [cf. 9]. For generating adaptive mesh, the author proposed the fol-

lowing variation in the Area functional

FA(x, y) =
n∑

k=1

[
4∑

i =1

s(ki ) [ J(ki )]
2

]

, (12)

[12]. In the above equation,s(k) is called the adaptive function, ands(ki ) is the

value of the adaptive function at the nodek and for celli .

2.2 Length Functional

The integral form of the Length functional is given as

IL
def
=

1

2

∫

[0,1]×[0,1]
[ g11 + g22 ] dξ dη , (13)

=
1

2

∫

[0,1]×[0,1]

[
(xξ )

2 + (xη)
2 + (yξ )

2 + (yη)
2
]

dξ dη , (14)

[7, 8, 9, and references therein]. The conditions of extremality of the above

length functional are given by the following Euler-Lagrangian equations

∂2x

∂ξ2
+

∂2x

∂η2
= 0 , (15)

∂2y

∂ξ2
+

∂2y

∂η2
= 0 . (16)

The above Laplace’s equations can be solved in the computational domain

[0, 1] × [0, 1] with a specified value ofx and y on the boundary. The Euler-

Lagrangian equations associated with the Length functional are linear and un-

coupled.
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The discrete Length functional [1, 10] is give as follows

FL(x, y) =
n∑

k=1

[
4∑

i =1

(g11(ki ) + g22(ki ))

]

. (17)

2.3 Orthogonality Functional

The integral form of the Orthogonality functional [7, 8, 9, and references therein]

is given as follows

IO
def
=

1

2

∫

[0,1]×[0,1]
(g12)

2 dξ dη , (18)

=
1

2

∫

[0,1]×[0,1]
(g1 ∙ g2)

2 dξ dη, (19)

=
1

2

∫

[0,1]×[0,1]
(xξ xη + yξ yη)

2 dξ dη . (20)

The Euler-Lagrangian equations corresponding to the minimization of the above

integral are

∂

∂ξ

(
g12

∂x

∂η

)
+

∂

∂η

(
g12

∂x

∂ξ

)
= 0 , (21)

∂

∂ξ

(
g12

∂y

∂η

)
+

∂

∂η

(
g12

∂y

∂ξ

)
= 0 . (22)

These Euler-Lagrangian equations are quasilinear, coupled and non-elliptic in

nature [9]. A simplified form the above Euler-Lagrangian equations is

xη
2 xξξ + xη yη yξξ + (4 xξ xη + 2 yξ yη) xξη

+(xξ yη + xη yξ ) yξη + xξ
2 xηη + xξ yξ yηη = 0 ,

(23)

yη
2 yξξ + yη xη xξξ + (4 yξ yη + 2 xξ xη) yξη

+(yξ xη + yη xξ ) xξη + yξ
2 yηη + yξ xξ xηη = 0 ,

(24)

[see 9]. This functional takes only non-negative values, and it would attain a

minimum value of zero for a completely orthogonal grid. The discrete version
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of the above Orthogonality functional [1, 10] is given as follows

FO(x, y) =
n∑

k=1

[
4∑

i =1

(g1(ki) ∙ g2(ki))
2

]

. (25)

It is found [cf. 1, 7, 8, 10, 13, 14] that a linear combination of Area, Length and

Orthogonality functionals can produce robust grids in complicated 2D domains.

2.4 Combination of Length, Area and Orthogonality Functionals

A combined functional is given as

F(x, y) = kA FA(x, y) + kL FL(x, y) + kOFO(x, y) , (26)

[1, 7, 8, 10, 13, 14]. Here, the parameterskA, kL andkO satisfy: kA +kL +kO =

1.0 andkA ≥ 0, kL ≥ 0, kO ≥ 0. A serious drawback of the above combined

functional is a suitable choice of the parameters. It requires an experience in

coming up with a good set of parameters [10]. It was found [13, 14] that the

following choice of parameters

kA = 0.50, kL = 0.0, and kO = 0.50, (27)

produces robust grid in many practical domains. The corresponding functional

is referred as the Knupp’s functional. Presented numerical work shows that this

functional can produce good grids. The Euler-Lagrangian [10] equations for the

minimization of the Knupp’s functional are

(xη
2 + yη

2) xξξ + 4 xξ xη xξη

+ 2(xξ yη + xη yξ ) yξη + (xξ
2 + yξ

2) xηη = 0 ,
(28)

(xη
2 + yη

2) yξξ + 4 yξ yη yξη

+ 2(xξ yη + xη yξ ) xξη + (xξ
2 + yξ

2) yηη = 0 .
(29)

2.5 Winslow Functional

The Winslow functional is given as follows

F(x, y) =
n∑

k=1

[
4∑

i =1

(
g11(ki ) + g22(ki )

|J(ki )|

)]

, (30)
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[1, 3, 16]. Here,|J(ki )| is the determinant of the Jacobian matrix. One very

important feature of the above functional is that it has barrier. It means the value

of the functional approaches infinity when the cells degenerate. That is|J | → 0.

Thus, this functional produces unfolded grids. Numerical experiments also prove

this feature of the Winlow functional. Sinceg11 = g1 ∙ g1, andg22 = g2 ∙ g2. It

can be shown that the numerator (g11 + g22) in the Winslow functional (30) is

the Frobenius norm of the Jacobian matrix. That is

g11(ki ) + g22(ki ) =
2∑

n=1

2∑

m=1

(Jmn(ki ))
2 = (‖J(ki)‖)

2 ,

Here, Jmn are the components of the Jacobian matrixJ . Thus, the Winslow

functional 30 can be written as follows

F(x, y) =
n∑

k=1

[
4∑

i =1

‖J(ki )‖2

|J(ki )|

]

. (31)

It can be seen easily that the Frobenius norm a 2× 2 matrix A, and its inverse

are related as‖A−1‖ =
‖A‖

|A|
. Here,|A| is the determinant of the matrixA. The

condition numberK(A) of a matrix A can be written asK(A) = ‖A‖ ‖A−1‖.

Here, the norm is the Frobenius norm. Thus, the Winslow functional can be

written as follows

F(x, y) =
n∑

k=1

[
4∑

i =1

K(J(ki ))

]

. (32)

Thus, the minimization of the functional (30) is equivalent to the minimiza-

tion of the condition number of the Jacobian matrix. A detailed description of

the above analysis can also be found in [4, 5, 6, 16]. The condition number

K(J(ki )) can also be expressed as

K(J(ki )) =
g1(ki )

2 + g2(ki )
2

|g1(ki ) × g2(ki )|
.

The g(ki ) tensor matrix is give as

g(ki ) =

[
g11(ki ) g12(ki )

g21(ki ) g22(ki )

]

.
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Let λ1 andλ2 be the eigenvalues of the matrixg(ki ). Then

g11(ki ) + g22(ki )

|J(ki )|
=

λ1 + λ2√
λ1 λ2

≥ 2.0 .

Here, we have used the relation|J |2 = |g|. Thus, the Winslow functional is

bounded from below.

2.6 Liao Functional

The Liao functional for grid generation was proposed in [11], and is give as

follows

F(x, y) =
n∑

k=1

[
4∑

i =1

(g11
2 + g22

2 + 2g12
2)

]

. (33)

2.7 Modified Liao Functional

The Liao functional can produce folded grids. We will explore it through nu-

merical experiments. In the literature, following modification [1] of the Liao

functional is given

F(x, y) =
n∑

k=1

[
4∑

i =1

(
g11(ki ) + g22(ki )√

g(ki )

)2
]

. (34)

In the above equation,g(ki ) is the determinant of the covariant metric tensor

g(ki ). It can be shown thatg = J2, whereJ is the Jacobian (determinant of the

Jacobian matrix), and g is the determinant of the co-variant metric tensor. Thus,

this functional, similar to the Winslow functional (30), has a barrier. The value of

the functional approaches infinity when the cells degenerate. That is|J | → 0.

Thus, this functional produces unfolded grids. Numerical experiments also prove

this feature of the functional. The above functional can remove the folded grids

produced by the Liao functional. The Modified Liao functional can also be

written as follows

F(x, y) =
n∑

k=1

[
4∑

i =1

(K(J(ki )))
2

]

. (35)

The Modified Liao functional minimizes the square of the condition number

where as the Winslow functional minimizes the condition number.
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3 Numerical examples

We are interested in finding such a mesh for which the gradient of the functionals

vanish. The minimization of functionals can be performed by a line search

algorithms such as Newton’s iteration. For the numerical experiments instead of

performing the global optimization we solved the local minimization problems

for a single node at a time [15]. In all numerical examples, initial grid was

generated by linear transfinite interpolation [1].

3.1 Adaptive Grid by Area Functional

It is generally not recommended to uniformly refine the whole mesh in the hope

of capturing the underlying physics. It is desired to adapt a given grid to the

requirement of the underlying problem. A grid generating algorithm should be

able to allocate more grid nodes in the part of the domain where large solution

gradients occur, and fewer grid nodes in the part of the domain where solution is

flat. Such grids are called solution-adaptive. Behavior of the underlying solution

can be obtained by posteriori indicators [17]. These indicators can be computed

on a coarse mesh, and they can be used to formulate adaptive functions(x, y) in

the equation (12). In the present work, the adaptive functions(x, y) is given in

the analytic form.

Figures 3 and 4 report the outcome of our numerical experiments. It should

be noted that even after adaptation the quadrilateral meshes are convex. One

other advantage of mesh adaptation by Area functional is that it preserves the

mesh topology, and writing a solver for a structured mesh is easier compared to

unstructured mesh.

3.2 Winslow Functional vs Algebraic Method

Algebraic grid generation methods such as transfinite interpolations [1] are exten-

sively used for generating grids. Though, they are one of most simplest method

of grid generation but algebraic methods can produce folded grids for curved

domains as can be seen in the Figure 5. One other disadvantage of algebraic grid

generation is that boundary discontinuity can prorogate inside the domain. It is

clear from Figure 6 that Winslow functional smooth the grid, and removes the

folded grid lines.
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Figure 3 Figure 4

Figure 3 – Example (3.1): Adapted Grid by Area Functional. Adapted Functional is

give ass(x, y) = 5.0 + 200.0 | sin(2π x) sin(2π y)|. Figure 4 – Example (3.1):

Adapted Grid by Area Functional. Adapted Functional is give ass(x, y) = 5.0 +

200.0 [sin(2π x) sin(2π y)].

Figure 5 Figure 6

Figure 5 – Example (3.2): Folded Grid by Transfinite Interpolation. Figure 6 – Exam-

ple (3.2): Smooth Grid by Winslow Functional.

3.3 Liao, Modified Liao and Area Functionals

In this example, we perform experiments for comparing Liao, Modified and Area

functional on a simple domain. Outcome of our results are shown in Figures 10,

11 and 12. It can be seen from these figures that Modified Liao functional does

indeed removes the inverted elements from the mesh but still the quality of the

mesh generated by the area functional shown in the Figure 11 is certainly better

than both Liao and Modified Liao.
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Figure 7 Figure 8 Figure 9

Figure 7 – Example (3.3): Folded Grid by the Liao Functional. Figure 8 – Example

(3.3): Grid by the Modified Liao Functional. Figure 9 – Example (3.3): Grid by the

Area Functional withs(x, y) = 1.0.

Figure 10 Figure 11 Figure 12

Figure 10 – Example (3.4): Grid by the Length functional. Figure 11 – Example (3.4):

Grid by the Area Functional withs(x, y) = 1.0. Figure 12 – Example (3.4): Grid by

the Knupp’s functional.

3.4 Length, Area and Knupp’s Functionals

In this example, we compare the Length, the Area and the Knupp functionals.

Figures 10, 11 and 12 are the outcome of our numerical work. The Figure 10 is

a grid by the Length functional, the Figure 11 is a grid by the Area functional,

and the Figure 12 is a grid by the Knupp’s functional. It can be seen that grid by

the Area and Knupp’s functional are better than the grid produced by the Length

functional.

3.5 Length and Knupp’s Functionals

In this example, we are comparing Length, and the Knupp’s Functional. Outcome

of our numerical work is reported in Figures 13 and 14. Figure 13 is a grid

generated by the Length functional. Figure 14 is grid generated by the Knupp’s
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functional. It can be seen that the grid generated by the Knupp’s functional is of

superior quality.

Figure 13 Figure 14

Figure 13 – Example (3.5): Grid by the Length Functional. Figure 14 – Example (3.5):

Grid by the Knupp’s Functional.

4 Conclusions

We have presented the formulation of various functionals for generating quadri-

lateral meshes, and an analysis of Winslow and Modified Liao functionals that

is consistent with the numerical experiments. Numerical experiments show that

Winslow and Modified Liao functionals can remove the folded grids as was ex-

pected from theoretical analysis. It has been shown that Area functionals can

be used for generating robust adaptive meshes. Further research is required in

formulating adaptive function from a posteriori error estimators.
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