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Abstract. Let T be an arbitrary n × n matrix with real entries. We explicitly find the closest

(in Frobenius norm) matrix A to T , where A is n × n with real entries, subject to the condition

that A is “generalized doubly stochastic” (i.e. Ae = e and eT A = eT , where e = (1, 1, . . . , 1)T ,

although A is not necessarily nonnegative) and A has the same first moment as T (i.e. eT
1 Ae1 =

eT
1 T e1). We also explicitly find the closest matrix A to T when A is generalized doubly stochastic

has the same first moment as T and the same second moment as T (i.e. eT
1 A2e1 = eT

1 T 2e1),

when such a matrix A exists.
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1 Introduction

Let e ∈ Rn be the vector of all ones, i.e. e = (1, 1, . . . , 1)T , and let ei ∈ Rn

denote the vector with a 1 in the i th position and zeroes elsewhere. An n × n

matrix A with real entries is said to be generalized doubly stochastic if Ae = e

and eT A = eT . A generalized doubly stochastic matrix does not necessarily
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have nonnegative entries, unlike a doubly stochastic matrix which has all entries

nonnegative. The kth moment of A is defined as eT
1 Ake1. Let T = (ti j ) ∈ Rn×n

be an arbitrary matrix which is given. We will say that a matrix A ∈ Rn×n is

Mk if eT
1 Ake1 = eT

1 T ke1, where k is a positive integer. We use the convention

that || ∙ || refers to either the Frobenius matrix norm || ∙ ||F , or the vector 2-norm

|| ∙ ||2, with the context determining which is intended. Frequent use is made

of the fact that if x, y ∈ Rn are unit vectors we can find a Householder matrix

Q ∈ Rn×n such that Qx = y [5].

We will determine the closest (in Frobenius norm) matrix A to T , subject to

the conditions that A is generalized doubly stochastic and has the same first

and second moments as T . The motivation for this problem comes from an

application in [2] where it is desired to approximate a certain matrix T , where

T comes from a linear system corresponding to a large linear network, subject

to the approximating matrix satisfying certain conditions. We outlined these

applications in [3] and (among other things there) used a computational algorithm

to find the closest matrix A to T , subject to A being generalized doubly stochastic

and M1, or subject to A being doubly stochastic and M1. See the references [2]

and [3] for more details about the applications. Our extended work here takes

only an analytic approach to the problem, includes the second moment condition,

and explicitly finds the closest matrix which is generalized doubly stochastic, M1

and M2, having dropped the requirement that the closest matrix be nonnegative.

It is worth emphasizing that despite dropping the nonnegativity requirement our

solution is still relevant to the original problem. Previous approaches to this

problem, in both [3] and [8], did not include the second moment, although they

did include the nonnegative condition. A survey of matrix nearness problems

and their applications, which include areas of control theory, numerical analysis

and statistics, was given by Higham [4], see also [7].

2 The closest generalized doubly stochastic matrix

Although Theorem 1 and Corollary 2 resemble results proved in [3] and [6], the

results herein present a different formulation. We include them for clarity and

because we will use them later.
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Theorem 1. Let A ∈ Rn×n and let Q ∈ Rn×n be an orthogonal matrix so that

Qen = 1√
n e. Then A is generalized doubly stochastic if and only if

A = Q

[
A1 0

0T 1

]

QT ,

for any A1 ∈ R(n−1)×(n−1).

Proof. Ae = e if and only QT AQen = en , and eT A = eT if and only if

eT
n QT AQ = eT

n . �

Theorem 1 enables us to easily incorporate the condition that A is generalized

doubly stochastic and in Corollary 2 find the closest such matrix to T .

Corollary 2. Let T ∈ Rn×n and

QT T Q =

[
T1 t2

t3
T t4

]

,

where T1 ∈ R(n−1)×(n−1), t2, t3 ∈ Rn−1, t4 ∈ R, and where Q ∈ Rn×n is as in

Theorem 1. Then the generalized doubly stochastic matrix A ∈ Rn×n given by

A = Q

[
T1 0

0T 1

]

QT

satisfies the inequality ||A − T || ≤ ||Z − T || among all generalized doubly

stochastic matrices Z ∈ Rn×n.

Proof. The Frobenius norm is invariant under orthogonal similarity so ||A −

T ||2 = ||A1 − T1||2 + ||t2||2 + ||t3||2 + (1 − t4)2, and A is minimal among

generalized doubly stochastic matrices when A1 = T1. �

3 The closest generalized doubly stochastic matrix which is M1

For A ∈ Rm×m and B ∈ Rn×n , the direct sum of A and B, denoted A ⊕ B, is the

(m + n) × (m + n) block matrix

(
A 0

0 B

)

.
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We now construct an orthogonal matrix Q with an additional desirable prop-

erty which we need for the first and second moments. Let Q1 ∈ Rn×n be an

orthogonal matrix such that

Q1en =
1

√
n

e with QT
1 e1 =

[
u

β

]

,

for some u ∈ Rn−1, β ∈ R. Let Q2 ∈ R(n−1)×(n−1) be an orthogonal matrix

such that

QT
2 u =

[
0

α

]

,

where α = ||u||, and let Q = Q1(Q2 ⊕ 1). Then Qen = Q1(Q2 ⊕ 1)en =

Q1en = 1√
n e as in Section 2, and we have the additional property that

QT e1 =
(
QT

2 ⊕ 1
)
QT

1 e1 =
(
QT

2 ⊕ 1
)
[

u

β

]

=






0

α

β




 .

Note that if u = 0, then QT
1 e1 = βen , so e1 = βQ1en = β 1√

n e, which is not

possible, so we must have α 6= 0.

The proof of Theorem 3 will use the fact, as stated in the introduction, that

if T = (ti j ) ∈ Rn×n is the matrix to be approximated then saying A ∈ Rn×n

is M1 means eT
1 Ae1 = eT

1 T e1 = t11. This theorem gives the form of a matrix

A ∈ Rn×n that is both generalized doubly stochastic and M1.

Theorem 3. Let A ∈ Rn×n and let Q ∈ Rn×n be an orthogonal matrix such

that

Qen =
1

√
n

e and QT e1 =






0

α

β




 ,

where α, β ∈ R. Then A ∈ Rn×n is generalized doubly stochastic and M1 if

and only if

A = Q







A1 a2 0

a3
T t11−β2

α2 0

0T 0 1





 QT ,

for any A1 ∈ R(n−2)×(n−2), a2, a3 ∈ Rn−2.
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Proof. The matrix A is both generalized doubly stochastic and M1 if and

only if

t11 = eT
1 Q







A1 a2 0

a3
T a4 0

0T 0 1





 QT e1 = a4α

2 + β2

where

A = Q







A1 a2 0

a3
T a4 0

0T 0 1





QT

from Theorem 1. �

Theorem 1 gives us the means to now find the closest matrix to T which is

both generalized doubly stochastic and M1.

Corollary 4. Let T ∈ Rn×n and

QT T Q =







T1 t2 t5

t3
T t4 t6

t7
T t8 t9





 ,

where T1 ∈ R(n−2)×(n−2), t2, t3, t5, t7 ∈ Rn−2, t4, t6, t8, t9 ∈ R, and where Q ∈

Rn×n is an orthogonal matrix such that

Qen =
1

√
n

e and QT e1 =






0

α

β




 ,

where α, β ∈ R. Then the generalized doubly stochastic and M1 matrix A

given by

A = Q







T1 t2 0

t3
T t11−β2

α2 0

0T 0 1





 QT

is the closest matrix to T in the sense that ||A − T || ≤ ||Z − T || for all gener-

alized doubly stochastic and M1 matrices Z ∈ Rn×n.
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Proof. As in the proof of Corollary 2, since the Frobenius norm is invariant

under orthogonal similarity, we have that

||A − T ||2 = ||A1 − T1||
2 + ||a2 − t2||

2 + ||a3 − t3||
2 +

(
t11 − β2

α2
− t4

)2

+ ||t5||
2 + t2

6 + ||t7||
2 + t2

8 + (1 − t9)
2,

and A is minimal when A1 = T1, a2 = t2, and a3 = t3. �

4 The closest generalized doubly stochastic matrix which is M1 and M2

Similar reasoning to that given in Section 3 can be used to find necessary and

sufficient conditions for a matrix to be generalized doubly stochastic, M1 and

M2. However, for finding a nearest point in Corollary 6, a difficulty comes from

the fact that the set of M2 matrices is not a convex set, so we don’t necessarily

expect for there to be a unique nearest point [1]. Although, if there is such a

nearest point then it will be determined by the conditions given in Corollary 6.

Theorem 5. Let A ∈ Rn×n and Q ∈ Rn×n be an orthogonal matrix such that

Qen =
1

√
n

e and QT e1 =






0

α

β




 ,

where α, β ∈ R. Then A ∈ Rn×n is generalized doubly stochastic, M1 and M2

if and only if

A = Q






A1 x 0

yT t11−β2

α2 0

0T 0 1




 QT ,

for any A1 ∈ R(n−2)×(n−2) and any x, y ∈ Rn−2 such that

xT y =
eT

1 T 2e1 − β2

α2
−

(
t11 − β2

α2

)2

.

Proof. A is generalized doubly stochastic, M1 and M2 if and only if A both

satisfies Theorem 3 and satisfies the second moment condition that eT
1 T 2e1 =
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eT
1 A2e1. However,

eT
1 A2e1 = eT

1 Q(QT AQ)2 QT e1

=
[
0 α β

]







A1 x 0

yT t11−β2

α2 0

0T 0 1







2 





0

α

β





 ,

=
[
0 α β

]







∗ ∗ 0

∗ yT x +
( t11−β2

α2

)2
0

0 0 1













0

α

β







= α2

[

yT x +
(

t11 − β2

α2

)2
]

+ β2,

and then substituting eT
1 T 2e1 and rearranging gives the result. �

Preparing for the proof of Corollary 6, and arguing similarly to the preceding

corollaries, since the Frobenius norm is invariant under orthogonal similarity we

calculate that

||A − T ||2 = ||A1 − T1||
2 + ||x − t2||

2 + ||y − t3||
2 +

(
t11 − β2

α2
− t4

)2

+ ||t5||
2 + t2

6 + ||t7||
2 + t2

8 + (1 − t9)
2.

Now A is minimal among generalized doubly stochastic, M1 and M2 matrices

when A1 = T1, and when x and y are such that ||x − t2||2 + ||y − t3||2 is

minimized subject to the constraint

xT y =
eT

1 T 2e1 − β2

α2
−

(
t11 − β2

α2

)2

.

Thus we have our final corollary.

Corollary 6. Let T ∈ Rn×n and

QT T Q =






T1 t2 t5

t3
T t4 t6

t7
T t8 t9




 ,

Comp. Appl. Math., Vol. 27, N. 2, 2008



“main” — 2008/6/30 — 19:29 — page 208 — #8

208 DOUBLY STOCHASTIC MATRIX TO A REAL MATRIX

where T1 ∈ R(n−2)×(n−2), t2, t3, t5, t7 ∈ Rn−2, t4, t6, t8, t9 ∈ R, and where Q ∈

Rn×n is an orthogonal matrix such that

Qen =
1

√
n

e and QT e1 =






0

α

β




 ,

where α, β ∈ R. Then the generalized doubly stochastic, M1 and M2 matrix A

given by

A = Q






T1 x 0

yT t11−β2

α2 0

0T 0 1




 QT ,

satisfies the requirement that ||A − T || ≤ ||Z − T || for all generalized doubly

stochastic, M1 and M2 matrices Z ∈ Rn×n, where x and y have been chosen

(where possible) so as to minimize ||x−t2||2 +||y−t3||2 subject to the constraint

xT y =
eT

1 T 2e1 − β2

α2
−

(
t11 − β2

α2

)2

.

Proof. For convenience we write c = t2, d = t3 and

r =
eT

1 T 2e1 − β2

α2
−

(
t11 − β2

α2

)2

.

It remains for us to solve the problem

min
xT y=r

||x − c||2 + ||y − d||2,

for which we find the Kuhn-Tucker conditions to be x = c − μy and y =

d − μx, where μ is the Lagrange multiplier. We solve simultaneously xT y = r ,

x+μy = c and μx+y = d. The latter two equations imply c−μd = (1−μ2)x

and d − μc = (1 − μ2)y, which imply (1 − μ2)2xT y = (c − μd)T (d − μc),

and with the first equation this implies

(
1 − μ2

)2
r = cT d

(
1 + μ2

)
− μ

(
||c||2 + ||d||2

)
.

If this quartic equation has no real solution μ then there is no minimum.
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Case 1: If each real solution μ 6= ±1 then for each such μ

x =
c − μd

1 − μ2
and y =

d − μc

1 − μ2
,

and we check to see which pair x, y gives a minimum.

Case 2: If μ = 1 and c = d then we must solve x + y = c and xT y = r , i.e.

xT (x − c) = −r , which by completing the square becomes

(
x −

c

2

)T (
x −

c

2

)
=

∥
∥
∥

c

2

∥
∥
∥

2
− r.

If
∥
∥ c

2

∥
∥2

− r < 0 there is no minimum in this case. Note that since x + y = c

we have

||x − c||2 + ||y − c||2 = ||x + y||2 − 2xT y = ||c||2 − 2r.

This is a constant, so if
∥
∥ c

2

∥
∥2

− r ≥ 0 we can take for any w ∈ Rn , where w 6= 0,

x =
c

2
+

√∥
∥
∥

c

2

∥
∥
∥

2
− r

w

‖w‖
and y =

c

2
−

√∥
∥
∥

c

2

∥
∥
∥

2
− r

w

‖w‖
.

Case 3: If μ = −1 and c = −d then a similar calculation shows that if
∥
∥ c

2

∥
∥2

+ r < 0 there is no minimum. Whereas if
∥
∥ c

2

∥
∥2

+ r ≥ 0 we can take for

any w ∈ Rn , where w 6= 0,

x =
c

2
+

√∥
∥
∥

c

2

∥
∥
∥

2
+ r

w

‖w‖
and y =

c

2
−

√∥
∥
∥

c

2

∥
∥
∥

2
+ r

w

‖w‖
�
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