
Computational and Applied Mathematics
Vol. 22, N. 1, pp. 53–73, 2003
Copyright © 2003 SBMAC

A mathematical formulation of the boundary
integral equations for a compressible stokes flow

FRANCISCO RICARDO CUNHA1, ALDO JOÃO DE SOUSA1

and MICHAEL LOEWENBERG2

1Universidade de Brasília, Departamento de Engenharia Mecânica-FT

Campus Universitário, 70910-900 Brasília, DF, Brasil
2Yale University, Department of Chemical Engineering

New Haven, CT, 06520-8286, USA

E-mail: frcunha@unb.br / aldo@unb.br / michael@eng.yale.edu

Abstract. A general boundary integral formulation for compressible Stokes flows is theo-

retically described within the framework of hydrodynamic potentials. The integral equation is

implemented numerically to the study of drop expansion in compressible viscous flows. Marker

point positions on the drop interface are involved by using the boundary integral method for cal-

culation of fluid velocity. Surface discretization is adaptive to the instantaneous drops shapes.

The interplay between viscous and surface tension and its influence on the evolving emulsion

microstructure during its expansion is fundamental to the science and technology of foam pro-

cessing. In this article the method is applied for 3D simulations of emulsion densification that

involves an uniform expansion of a viscous fluid containing spherical drops on a body centered

cubic lattice (BCC).
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1 Introduction

The dynamics of interface deformation in low Reynolds number flow is of interest

in a wide variety of fields including chemical and petroleum engineering, solid-

earth geophysics, hydrology and biology. Typical applications span an immense

range of length scales from microns to hundreds of kilometers: biological studies
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of cell deformation; chemical engineering studies of flotation, coating flows

and the dynamics of thin films. More recently, attention has been focused on

problems of foam processing where a dense phase of viscous drops are dispersed

throughout a second fluid, and in particular in the generation of a dense emulsion

and the determination of foam rheology.

In the low Reynolds number limit the motion is governed by the Stokes and

continuity equations. Although time-dependence does not appear explicity in

Stokes equations, it is consistent to study time-dependent interface deformation.

This quasi-static assumption requires that the time scale for the diffusion of

vorticity �2/ν, where ν is the kinematic viscosity and � characteristic length of

the flow, is much less than a typical time scale for a drop deforms significantly,

�µ/�. � is the surface tension. Physically, the absence of the temporal derivative

in the equation of the motion does not necessarily imply that the flow is steady,

but merely reflects the fact that the forces exerted on fluid parcels are in a state of

dynamic equilibrium as a result of the rapid diffusion of momentum (or vorticity).

Consequently the instantaneous structure of the flow depends upon the current

boundary configuration and boundary conditions.

The boundary integral method relates velocities at points within the fluid to

the velocity and stress on the bounding surfaces. It is an ideal method for study-

ing free-boundary problems [1]– [2]. Advantages of the technique include the

reduction of the problem dimensionality, the direct calculation of the interfa-

cial velocity, the ability to track large surface deformations, and the potential

for easily incorporating interfacial tension. The boundary integral formulation

for incompressible Stokes flow was theoretically introduced by Ladyzhenskaya

[3] within the framework of hydrodynamic potentials. This integral equation

method was first implemented numerically by Rallison andAcrivos [4]. In recent

years the number of applications including simulations of dilute and concentrated

emulsion has increased enormously [5]–[9].

This work proceeds by considering the extension of the boundary integral for-

mulation for a compressible Stokes flow. We provide some of the details of the

basic integral equations, along with the original modifications necessary for the

study of dense emulsions. We use an adaptive mesh restructuring algorithm in

order to match the instantaneous surface configuration. For deformable drops,
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mesh restructuring is based on a curvature-rule, and is fully independent from

the history of deformation i.e., velocity calculations [10]. A gap-rule is also im-

plemented when near contact motion of interacting drops needs to be accurately

resolved. In the last part of the article, we outline the numerical techniques

typically applied in densification of emulsions.

The mathematical formulation, governing equations, boundary conditions and

assumptions are discussed in §2. The reciprocal theorem and the integral rep-

resentation for a compressible newtonian fluid are proposed in §3. In §4 we

describe the numerical implementations and apply the method for generating

configurations of dense emulsions and foams. Concluding remarks are made

in §5.

2 Balance equations and boundary conditions

The theoretical formulation discussed in the present article will be applied to

investigate densification of emulsions formed by drops of viscosity λµ and radius

a (undeformed shape at time t = 0) immersed in a second immiscible fluid of

viscosity µ with an externally imposed velocity field u∞ (see figure (1)). In

the following analysis, it is assumed that the Reynolds numbers for the flows

inside and outside the drop are both extremely small, Re = ρu∞a/µ, Re =
ρu∞a/λµ � 1. It will be helpful to keep in mind that λ denotes the viscosity

ratio between the internal and the external flow, and when λ = 0 or ∞ the particle

becomes a frictionless bubble or a rigid body, respectively.

2.1 Governing equations

In the regime of low Reynolds number, compressible fluid motions are governed

by the Stokes and continuity equations

−∇
(

p − 1

3
µ�

)
+ µ∇2u + ρb = 0 and ∇ · u = �, (1)

V denotes a closed region of fluid bounded by a surface S, u is the Eulerian

velocity field, p is the pressure, b is an external body force per unit of mass, µ

and ρ are the fluid viscosity and density, respectively, and � = V −1DV/Dt is

the rate of expansion of the flow.
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Figure 1 – Sketch of the boundary conditions on a drop surface. The sketch defines the

notation used in this work.

2.2 Boundary conditions

The boundary conditions on a drop interface S with surface tension � require a

continuous velocity across the interface and a balance between the net surface

traction and surface tension forces that express the discontinuity in the interfacial

surface forces [2], [11]. Mathematically, these conditions are expressed as

u → u∞ |x| → ∞; u(x) = u′(x), x = xi ∈ S, (2)

where u′ denotes the flow inside the drop. For an active interface free of surface

viscosity, surface elasticity and surface module of bending and dilatation, the

traction jump �TTT = [[n · σ ]] constitutive equation is written as [12]

�TTT = [[n · σ ]] = �∇s · nn − (I − nn) · ∇�. (3)

The notation [[ ]] denotes a jump in flow quantities, � is the interfacial tension

acting between the drop and fluid phases, n is the unit normal vector to S, σ is

the Eulerian stress tensor, �TTT = n ·σ is the surface traction, (I−nn) ·∇ denotes
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the gradient operator ∇s tangent to the interface, I is the identity tensor and ∇s ·n
denotes the mean curvature of the interface κ . In general, it can be expressed as

the sum of the inverse principal radii of curvature κ = (R−1
1 + R−1

2 ).

The force balance at the interface (3) might include both a normal traction

jump (n · �TTT )n and a tangential stress jump (I − nn) · �TTT due to gradients of

surface tension � along the interface. The dynamic effect on interfacial tension

gradients are known as Marangoni effects. These variations here are associated

with the presence of surfactants in the fluid. In a real flow system, we must

often expect � to vary from point to point on the interface, and it is important

to consider how gradients of � may influence the deformation of the drop. To

describe Marangoni stress effects additional convection–diffusion equation is

necessary for determining the surfactant distribution along the interface [6].

A kinematic constraint relates changes in the interface position to the local

velocity. Thus interface evolution of drops are described with a Lagrangian

representation

Dxi/Dt = u(xi), xi ∈ S (4)

3 Integral equations

The boundary integral formulation developed in this article provides a powerful

method for computing compressible Stokes flow by solving integral equations

for functions that are defined over the boundaries. The important benefits of this

extended approach is the ability to track deformation and swelling of drops in

very dense emulsions or foam.

3.1 Reciprocal theorem for a Newtonian fluid

In this section we derive the Lorentz reciprocal theorem for the general case of

compressible Newtonian fluids. The calculations comprise an extension of the

demonstration presented in [13]. The reciprocal identity find extensive applica-

tions in the study of Stokes Flows. The major strength of the reciprocal identity

is that it allows us to obtain information about a flow without having to solve

the equations of the motion explicitly, but simply by using information about

another flow.
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Consider a closed region of fluid V bounded by a surface S. Now consider two

unrelated compressible flows of two different Newtonian fluids with densities ρ

and ρ ′ and viscosities µ and µ′, and stress fields σ and σ ′, respectively:

Flow 1: u, σ ; (ρ, µ). The equations for conservation of mass and momentum

in terms of the material derivative, D/Dt , for the flow 1 are respectively:

∇ · u = 1

V

DV

Dt
(balance of mass),

ρ
Du
Dt

= ∇ · σ + ρb (balance of momentum).

(5)

Here, locally, u is the velocity, σ is the stress field and b is the external body

force per unit of mass. The Newtonian constitutive equation for a compressible

flow is given by Batchelor [14]

σ = −pI + 2µE − 2

3
µ(∇ · u)I (constitutive equation), (6)

where I is the identity, E = 1
2 (∇u + ∇T u) is the rate of strain tensor and ∇T u

denotes the transpose of the tensor ∇u.

Flow 2: u′, σ ′; (ρ ′, µ′). Similarly, the conservation and constitutive equations

for the flow 2 are respectively

∇ · u′ = 1

V ′
DV ′

Dt
; ρ ′ Du′

Dt
= ∇ · σ ′ + ρ ′b′ (7)

σ ′ = −p′I + 2µE′ − 2

3
µ(∇ · u′)I, (8)

where E′ = 1
2 (∇u′ + ∇T u′) is the rate of deformation for the fluid 2. First

consider the tensorial operation

σ : E′ = −pI : E′ + 2µE : E′ − 2

3
µ(∇ · u)I : E′, (9)

but for a Newtonian compressible flow

I : E′ = 1

2
I : (∇u′ + ∇T u′) = ∇ · u′ = �′. (10)
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� denotes the rate of expansion of the flow [14]. Thus (9) may be written as

σ : E′ = −
(

p + 2

3
µ�

)
�′ + 2µE : E′ (11)

If the same steps are applied to σ ′ : E; it must reduce in an analogous fashion to

σ ′ : E = −
(

p′ + 2

3
µ′�′

)
� + 2µ′E′ : E (12)

One require E : E′ = E′ : E so that

E′ : E = 1

2µ

[
σ : E′ +

(
p + 2

3
µ�

)
�′

]
(13)

Now, substituting (13) into (12), ones obtain

σ ′ : E = −
(

p′ + 2

3
µ′�′

)
� + µ′

µ
σ : E′ + µ′

µ

(
p + 2

3
µ�

)
�′. (14)

As a consequence of the symmetry of the stress tensor σ : ∇u′ = σ T : ∇u′ =
σ : ∇T u′. Then, one may write that

σ : E′ = σ : ∇u′ = ∇ · (u′ · σ ) − u′ · ∇ · σ . (15)

In this step we make the dot product of Cauchy’s equation (5) by u′ in order to

define the last term in the RHS of (15). Therefore after substituting back the

result of this operation into (15), it gives

σ : E′ = ∇ · (u′ · σ ) − ρu′ · Du
Dt

+ ρu · b (16)

By reversing the role of the primed and unprimed variables, it is also possible to

obtain

σ ′ : E = ∇ · (u · σ ′) − ρ ′u · Du′

Dt
+ ρ ′u · b′ (17)

Now, substituting (16) and (17) into (14), multiplying the resultant equation by µ

and make few manipulations, we obtain an expression for the generalized Lorentz

reciprocal theorem for a Newtonian compressible flow (reciprocal identity):

∇ · (µu · σ ′) − ∇ · (µ′u′ · σ )

= ρ ′µu · Du′

Dt
− ρµ′u′ · Du

Dt
+ ρµ′(u′ · b) − ρ ′µ(u · b′)

+ µ′
(

p + 2

3
µ�

)
�′ − µ

(
p′ + 2

3
µ′�′

)
�.

(18)
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For low Reynolds number flow (i.e. Stokes flows) the reciprocal identity (18)

takes the simpler form

∇ · (µu · σ ′) − ∇ · (µ′u′ · σ )

= ρµ′(u′ · b) − ρ ′µ(u · b′)

+ µ′
(

p + 2

3
µ�

)
�′ − µ

(
p′ + 2

3
µ′�′

)
�

(19)

3.2 Integral representation for a compressible Stokes flow

Consider the particular flow of interest with velocity u and stress tensor σ . The

known flow is the one due to a point force with strength h, and located at a point

xo. Suppose that the inertia of both fluids has a negligible influence on the motion

of the fluid elements, and by convenience takes µ = µ′ and ρ = ρ ′. Flow 1 and

flow 2 for this particular situation are described as following.

Flow 1: u, σ . The equations for conservation of mass and momentum in terms

of the material derivative, D/Dt , for the flow 1 are respectively:

∇ · u = �, ∇ · σ = −B, (20)

where ρb = B is the body force by unit of volume and � = ∇ · u is the flow

rate of expansion.

σ = −pI + 2µE − 2

3
µ�I, (21)

Flow 2: Fundamental solution of the Stokes flow; u′, σ ′. The fundamental

solution for Stokes equations correspond to the velocity and stress fields at a

point x produced by a point force h located at xo:

∇ · σ ′ = −B′ = hδ(x − xo), ∇ · u′ = 0, (22)

with | u′ |→ 0 and | σ ′ |→ ∞ as | x |→ ∞. The solution of such equations

may be derived, for example, using Fourier transforms [2]

p′(x) = − h
4π

· ∇
(

1

r

)
; u′(x) = 1

8πµ
h · G(x̂); σ ′(x) = − 3

4π
h · T(x̂) (23)
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where, the stokeslet, G and the stresslet T are defined by the following expres-

sions:

G(x̂) = I
r

+ x̂x̂
r3

; T(x̂) = x̂x̂x̂
r5

. (24)

The above functions are the kernels or the free-space Green’s functions that maps

the force h at xo to the fields at x in an unbounded three-dimensional domain.

Here x̂ = x − xo, and r =| x̂ |. Physically u = G(x̂) · h expresses the velocity

field due to a concentrated point force hδ(x−xo) placed at the point xo, and may

be seen as the flow produced by the slow settling motion of a small particle. Tijk

is the stress tensor associate with the Green’s function Gij and σik(x) = Tijkhj

is a fundamental solution of the Stokes produced by the hydrodynamic dipole

D · ∇δ(x − xo). Tijk = Tkji as required by symmetry of the stress tensor σ .

It is straightforward to show that the Reciprocal theorem for the present case,

equation (19), takes the form

∇ · (u · σ ′) − ∇ · (u′ · σ ) = u′ · B − u · B′ − p′� (25)

Now, considering the body force exerted on the flow (u, σ ) the gravity force

B = ∇(ρg · x), substituting the expressions of the point-force solution into (25)

and discarding the arbitrary constant h ones obtain

− 3

4π
∇ · [u(x) · T(x̂)] − 1

8πµ
∇ · [G(x̂) · σ (x)]

= 1

8πµ
[G(x̂)(ρg · x)] + u(x)δ(x̂) + 1

4π
∇

(
1

r

)
�.

(26)

Note that we have used for the first term on the RHS of equation (26), the

incompressibility of the singular solution ∇ · G = 0, so that G · ∇(ρg · x) =
∇ · [G(ρg · x)]. The above equation is valid everywhere except at the singular

point xo.

Consider a material volume of fluid V bounded by the singly or multiply

connected surface S (see figure 2 a,b) in order to evaluate the integration of

equation (26). There are two situations to be considered next.
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Figure 2 – Schematic sketch for the integration domain with singularity outside (a) and

inside volume V (b).

Point force outside V . For this case δ(x − xo) = 0 inside V and thus after

integrating equation (26) the integral representation of the Reciprocal theorem

takes the form

− 3

4π

∫
V

∇ · [u(x) · T(x̂)] dV − 1

8πµ

∫
V

∇ · [G(x̂) · σ (x)] dV

= 1

8πµ

∫
V

∇ · [G(x̂)(ρg · x)] dV + �

4π

∫
V

∇(r−1) dV

(27)

The volume integrals in equation (27) can be converted to the surface integrals

over S, by using the divergence theorem obtaining

1

8πµ

∫
S

G(x̂) · σ (x) · n(x) dSx + 3

4π

∫
S

u(x) · T(x̂) · n(x) dSx

+ 1

8πµ

∫
S

G(x̂)(ρg · x) · n(x) dSx + �

4π

∫
S

r−1n(x) dSx = 0,

(28)
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where n is the unit outward normal to the surface S. Equation (28) is the integral

representation of the flow if the singularity is outside V . It will be shown that the

integral equation (28) is a useful identity for developing new integral equations

in terms of jump conditions on the interface.

Point force inside V . In order to formally determine the integral representation

for the situation which δ(x − xo) �= 0 inside V , we must integrate again the

equation (26). Applying the divergence theorem and δ-distribution property, one

obtains

u(xo) = − 1

8πµ

∫
S

G(x̂) · σ (x) · n(x) dSx

− 3

4π

∫
S

u(x) · T(x̂) · n(x) dSx − 1

8πµ

∫
S

G(x̂)(ρg · x) · n(x) dSx

− �

4π

∫
S

r−1n(x) dSx,

(29)

Equation (29) is the integral representation for compressible Stokes in terms

of four boundary distributions involving the Greens’s functions G, the stresslet

T and the potential source 1/r . The first distribution on the RHS of (29) is

termed the single-layer potential, the second distribution is termed double layer

potential, whereas the last new term is a potential source distribution due to the

compressibility of the flow with a constant rate of expansion.

3.3 Integral representation in terms of the traction jump

External flow representation. Using the reciprocal identity (28) for the inter-

nal flow u′ (inside the particle) at a point xo that is located exterior to the particle,

one obtain

1

8πµ

∫
S

G(x̂) · σ ′(x) · n(x) dSx + 3λ

4π

∫
S

u′(x) · T(x̂) · n(x) dSx

+ 1

8πµ

∫
S

G(x̂)(ρ ′g · x) · n(x) dSx + λ�′

4π

∫
S

r−1n(x) dSx = 0,

(30)

Now, applying equation (29) for the external flow subject to an ambient flow,

u∞, and combining the result with equation (30), the integral representation is
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obtained as a function of the traction jump �TTT ,

u(xo) = u∞(xo) − 1

8πµ

∫
S

G(x̂) · �T (x) dSx

− 3

4π

∫
S

[u(x) − λu′(x)] · T(x̂) · n(x) dSx

− 1

8πµ

∫
S

G(x̂)(�ρg · x) · n(x) dSx − � − λ�′

4π

∫
S

r−1n(x) dSx,

(31)

Internal flow representation. We repeat the above procedure for the internal

flow. Hence, the integral representation of the internal flow is obtained when

equation (29) is applied,

u′(xo) = 1

8πλµ

∫
S

G(x̂) · σ ′(x) · n(x) dSx

+ 3λ

4π

∫
S

u′(x) · T(x̂) · n(x) dSx

+ 1

8πλµ

∫
S

G(x̂)(ρ ′g · x) · n(x) dSx + �′

4π

∫
S

r−1n(x) dSx,

(32)

Using the reciprocal identity (26) for the external flow u′ (outside the particle)

at a point xo that is located in the interior of the particle, one obtain after dividing

the full equation by λ, that

u∞(xo)

λ
− 1

8πλµ

∫
S

G(x̂) · σ (x) · n(x) dSx

− 3

4πλ

∫
S

u(x) · T(x̂) · n(x) dSx

− 1

8πλµ

∫
S

G(x̂)(ρg · x) · n(x) dSx − �

4πλ

∫
S

r−1n(x) dSx = 0.

(33)

The integral representation of the internal flow as a function of the jump con-

dition is obtained by combining (32) and (33)

λu′(xo) = u∞(xo) − 1

8πµ

∫
S

G(x̂) · �T (x) dSx

− 3

4π

∫
S

[u(x) − λu′(x)] · T(x̂) · n(x) dSx

− 1

8πµ

∫
S

G(x̂)(ρ ′g · x) · n(x) dSx − � − λ�′

4π

∫
S

r−1n(x) dSx,

(34)
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3.3.1 Integral representation for the interface.

The integral representation for the flow solution at the interface is found by

applying the jump condition (1/2)[u(xo) + λu′(xo)] to the equations (31) and

(34) (see figure 1). For the limit of xo going to the interface, u(xo) = u′(xo)

(continuity of velocity) and the traction discontinuity �TTT is given by the equation

(3). Under these conditions only the integral representation for the fluid-fluid

interface S need to be considered, hence

(1 + λ)u(xo) = 2u∞(xo) − A

∫
S

G(x̂) · �TTT (x) dSx

+ B

∫
S

u(x) · T(x̂) · n(x) dSx − A

∫
S

G(x̂)(�ρg · x) · n(x) dSx

+ (λ�′ − �)

2π

∫
S

r−1n(x) dSx,

(35)

where A = 1/4πµ and B = 3
2π

(λ − 1). It should be noted that when the

viscosity ratio λ = 1.0 and �ρ = 0 the double layer and the single layer

integrals (related to the buoyancy force) vanish and the flow is expressed merely

in terms of a single-layer potential with known density force �TTT and the source

potential integral. This means that the same fluid is occupying all space, but

with a membrane of points force and sources provide by the singularities at the

positions of the interface.

4 Application

In order to generate realistic high-volume-fraction microstructures, one pro-

pose to simulate the centrifugation process by which high-density emulsions are

produced from low-density materials [15]. The extraction of the continuous-

phase fluid during this densification process is equivalent to a distributed sink

of continuous-phase fluid. Thus, we will simulate this densification process

by describing the evolution in a system with a uniformly-distributed sink of

continuous-phase fluid.
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4.1 Interacting drops

All simulations rely on the boundary integral method. Periodic boundary con-

ditions are enforced through the use of periodic Greens functions. These are

obtained by Ewald summation [16] using accurate computationally-efficient tab-

ulation of the nonsingular background contribution [7]. The appropriate formu-

lation was derived in §3. The resulting boundary integral formulation are now

capable of describing the dynamics of dense emulsions for uniform compress-

ibility. Accordingly, the evolution of M neutrally buoyant deformable drops

is described by time-integrating the fluid velocity u(xo) on a set of interfacial

marker points x0 on each drop surface. In the present application it is considered

the case in which there is a rapid equilibrium of insoluble surfactants (incom-

pressible surfactants). Therefore, Marangoni stresses and adsorption–desorption

of surfactants can be ignored.

All quantities below are made dimensionless using the (volume–averaged)

drop size a and the relaxation rate �/µa. The relevant physical parameters

that describe the simulated system simulated are: λ, φ and the compressibility

parameter, Cao = aµ�/� (ratio of viscous to surface tension stress). Cao is

the appropriate capillary number for the densification process. In the absence of

an imposed flow (i.e. u∞(xo) = 0), the dimensionless fluid velocity is governed

by the second-kind integral equation on the interfaces Sm (m = 1, · · · , M) of

all simulated drops.

(1 + λ)u(xo) − B

M∑
m=1

∫
Sm

u(x) · TP (x̂) · n(x) dSx = F(x), (36)

where

F(x) = − 1

4π

M∑
m=1

∫
Sm

�(∇s · n)GP(x̂) · n(x) dSx

+ Caof (φ)

π

M∑
m=1

∫
Sm

�P (r) n(x) dSx.

(37)

GP and TP are respectively the periodic stokeslet and stresslet defined as in

reference [17], �P is the periodically-replicated r−1 potential and f (φ) =
− [

1 + λ
(
φ−1 − 1

)]
.
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The volume-averaged stress tensor from the dispersed phase � is obtained

from an integral of the traction jump and fluid velocity over the drop interfaces

[14],

� = 1

M

M∑
m=1

∫
Sm

[
(∇s · n)xn + µ(λ − 1)(un + nu)

]
dS(x). (38)

Equation (38) is the contribution of the dispersed phase to the macroscopic

stress of the emulsion due to the dipole stresslet that each drop torque free

generates in the flow. The (volume-averaged) non-equilibrium osmotic pressure

during densification is tr (�) − 2φ, where tr(�) is the trace of the stress tensor,

and 2φ is the contribution from the capillary pressure of spherical drops. When

densification stops, the drop shapes relax, and the stress relaxes to the equilibrium

osmotic pressure which depends only on the drop shapes.

4.2 Numerical results

Evolution of a drop surface S was simulated by means of a surface discretization

with initial number of marker points No [10], [17]. Marker points are convected

with the fluid velocity. During the simulation mesh restructuring is performed

on S. After each time step, first marker points are added/subtracted on S as

required by condition (39); then global mesh equilibration and reconnection are

performed. The surface discretization is equilibrated as a dynamical system of

springs. An equilibrium configuration is found by direct numerical simulation

of evolution of the system of springs using a second order Runge-Kutta scheme

to preserve accurate description of the interface for evaluation of the normal

vector n at each integration step. The iterative process is stable and converges

quickly to an equilibrium configuration for a smooth distribution of traction.

The normal vector and curvature were calculated by the local surface-fitting

algorithm of [18]. The fluid velocity on the drop interfaces are obtained by an

iterative solution of (36) using the GMRES algorithm (a generalization of the

conjugate gradient method to non-symmetric matrices) to achieve convergence

for the closely-spaced interface configurations that characterize dense emulsions.

Once fluid velocity is known, positions of marker points are evolved by a second
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Runge-Kutta scheme. An appropriate time step that is proportional to the shortest

edge length is set in order to ensure stability.

The adaptive surface triangulation algorithm, described in [10], has been ex-

tended to construct efficient simulations of dense systems. Accordingly, a new

marker point density function was defined that resolves the minimum local length

scale everywhere on the drop interfaces. For the proposed problem the minimum

local length scale may depend on the local curvature or local film thickness h.

Thus, the marker point density function [10] should be generalized to:

ρN ∼
[
R−2

1 + R−2
2 + C1

( |∇sh|
h

)2
]

, (39)

where R1, R2 are the local principal radii of curvature, and C1 are O(1) constants

whose precise value is unimportant. The proposed marker point density function

(39) resolves the rim of dimpled regions where the film thickness varies rapidly

and the lubrication length scale
√

hR in regions where the film thickness is

slowly-varying (R = min[R1, R2]). Only rim regions, not flat regions, require

high resolution.

An inspection of the result in figure 3, which was obtained using the density

Figure 3 – Adaptive grid after an uniform expansion of drops on a BCC lattice evolving

into Kelvin cells; Cao = 0.5 and φ = 0.96, λ = 1.0.
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function (39), illustrates this point: high resolution is needed on the plateau

borders and junctions, not on the flat films between drops. This observation is

important for ensuring the feasibility of accurately resolving the dynamics of

the closely-spaced interfaces that characterize the dense systems that we have

explored.

The surface integrations in Equations (36), involve singular integrand.

Trapezoid-rule integration with singularity subtraction and near-singularity sub-

traction for closely-spaced interfaces of drops (if surface tension gradients are

not present) [7] can be used to accurately evaluate the integrals. Equation (36)

has eigensolutions that cause unphysical changes in the dispersed-phase volume

at small viscosity ratios, corrupt numerical solutions at large viscosity ratios,

and slow the iterative convergence. These effects were eliminated by imple-

menting Wielandt eigenvalue deflation described in [2] in order to purge the

solutions corresponding to λ = 0 and λ = ∞. The resulting surface integration

algorithm is economical and O(1/N) accurate, consistent with the triangulated

representation of the drop interface.

Figure 4 – Simulation result for a Kelvin microstructure of a dense emulsion resulting

from expansion of the dispersed-phase with Cao = 0.5, φ = 0.95 and λ = 1.0 (BCC

lattice).
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A wide range of densification processes can be simulated through the appropri-

ate φ dependence (i.e., time-dependence) of �. It is also possible to explore mi-

crostructural manipulation through an applied shear during densification. Here,

we consider constant compressibility, quiescent flow conditions and the case

λ = 1.0 because the numerical implementation is simpler. Densification with

prescribed non-equilibrium osmotic pressure has been also explored since it cor-

responds most closely to the experimental procedure that has been developed

[15]. Under these conditions, densification proceeds until the applied osmotic

pressure is balanced by the equilibrium osmotic pressure of the emulsion. The

Kelvin-cell and Weaire-Phelan microstructure, depicted in figures (6) and (5),

were obtained using an algorithm based on the compressible formulation dis-

cussed in §3.

Figure 5 – Microstructure of a dense emulsion resulting from expansion of the dis-

persed-phase with α = 0.5 (rate of expansion), φ = 0.95 and λ = 1.0. Weaire-Phelan

foam (with eight particle per cell).

Spherical drops on a BBC lattice make first contact with eight nearest neighbors

and form precursors of hexagonal faces when φ < φc = π31/2/8 = 0.68 (maxi-

mum packing for BCC). The results for Cao = 0.5 contained in figure (6) show
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70% 80%

95%

98%

90%

Figure 6 – Kelvin-cell emulsion resulting from expansion of the dispersed-phase with

Cao = 0.5 followed by 20 time units of drop relaxation; dispersed-phase volume fraction

up to 98% as labeled; λ = 1.0.

the evolution of drop shape from spheres to Kelvin cells. Once the emulsion

expansion has stopped, the drop shape will continue to relax toward equilibrium.

This process is illustrated in figure (6); the emulsion expand and then relaxes

for twenty time units. We have no experimental results with which compare our

numerical predictions.

5 Conclusion

The formulation of boundary integral equations for compressible Stokes flow

has been discussed. The approach was applied for generating dense compressed

emulsion structure in viscous flows with periodic boundary conditions. We have
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made substantial progress on the problem of emulsion densification. The results

demonstrate the feasibility of simulating high-volume-fraction systems. A study

of densification may have interesting materials processing applications that will

be pursued in a future study.
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