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Abstract. We prove the approximate controllability of the semilinear heat equation in R
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when the nonlinear term is globally Lipschitz and depends both on the state u and its spatial

gradient �u. The approximate controllability is viewed as the limit of a sequence of optimal

control problems. In order to avoid the difficulties related to the lack of compactness of the

Sobolev embeddings, we work with the similarity variables and use weighted Sobolev spaces.
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1 Introduction

Let � be a domain of R
N with N ⊆ 1. Given T > 0 and an open nonempty

subset ω of � we consider the following semilinear heat equation∣∣∣∣∣∣∣
ut −�u+ f (x, t, u,�u) = h1ω in Q = �× (0, T )

u = 0 on ∂�× (0, T )

u(x, 0) = u0(x) in �.

(1.1)

In (1.1) 1ω denotes the characteristic function of ω. Roughly speaking, f is

assumed to be mensurable in (x, t) and globally Lipschitz in the variables u and
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�u. In (1.1) u = u(x, t) is the state and h = h(x, t) is the control function which

acts on the system through the subsetω. The approximate controllability problem

can be formulated as follows: Given a finite time horizon T > 0 and an arbitrary

element u0 ∈ L2(�), system (1.1) is said to be approximately controllable at

time T in L2(�) if the reachable set

RNL(T ) = {u(x, T ) : u is solution of (1.1) with h ∈ L2(Q)}
is dense in L2(�).

There are numerous works treating the approximate controllability in the linear

parabolic framework, see [L2] and its bibliography, when � is a bounded set.

The first results for nonlinear systems were obtained in [H]. More recently,

several situations have been considered by Fabre, Puel and Zuazua [FPZ] for

the particular case in which f is a globally Lipschitz function depending only

on u., i.e., f = f (u). Their proof is divided in two parts:

a) approximate controllability of the linearized systems;

b) fixed point technique.

This technique cannot be applied when � is an unbounded set since the com-

pacteness of Sobolev’s embeddings is one of the main ingredients used in b).

In L. de Teresa and E. Zuazua [TZ], they proved the approximate controllabil-

ity of the semilinear heat equation in unbounded domains by an approximation

method, for the case f = f (u), f being globally Lipschitz. The method in [TZ]

consists in approximating the domain � by a sequence of bounded domains

�R = �∩BR, where BR denotes the ball centered in zero of radius R. It is then

proved that, in the limit as R tends to infinity, the approximate controls in �R
provide an approximate control in the unbounded domain �.

Later on, L. deTeresa [T] proved the approximate controllability when� = R
N

by an alternative method that consists in writing the heat equation in the similarity

variables and using the weighted Sobolev spaces introduced in [EK] to guarantee

the compacteness of the Sobolev embeddings. Then, essentially, the methods in

[FPZ] apply.

When � is a bounded set, L. Fernandez and E. Zuazua [FZ] gave a proof of

the approximate controllability for the system (1.1), f being globally Lipschitz,
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inspired in the work by J.L. Lions [L2] in which, roughly speaking, the ap-

proximate controllability is viewed as the limit of a sequence of optimal control

problems. More precisely, given u0 ∈ L2(�), u1 ∈ Hs
0 (�) with 0 < s < 1 and

k > 0, let us consider the functional

Jk(h) = 1

2

∫ T

0

∫
ω

h2(x, t)dxdt + k

2
‖uh(T )− u1‖2

Hs
0 (�)

where uh denotes the solution of (1.1) with control h. The functional Jk is well

defined for h ∈ L2(� × (0, T )). On the other hand, it is shown that, for each

k > 0, there exists a minimizer hk of Jk in L2(�× (0, T )). Let us denote by uk
the solution of (1.1) associated to this minimizer. It is shown in [FZ] that

uk(T ) ⇀ u1 weakly in Hs
0 (�)

as k → +∞, and therefore uk(T ) → u1 in L2(�) as k → +∞. This fact,

combined with the fact thatHs
0 (�) is dense inL2(�), guarantees the approximate

controllability of system (1.1).

This paper is devoted to analyze the approximate controllability of system (1.1)

in case when� = R
N . We adopt the approach in [FZ] but in the more general case

� = R
N . However, in order to avoid the difficulties associated with the lack of

compactness of the Sobolev embeddings, we work with similarity variables and

the weighted Sobolev spaces as in [T]. We should point out we have essentially

combined the techniques from both works [FZ] and [T]. A key point in the proof

of our result is aresult of unique continuation by C. Fabre [Fa] in the context

of linear heat equations involving gradient terms. The result in [Fa] allow us to

conclude that

−pt −�p + α(x, t)p + div (b(x, t)p) = 0

in Q = �× (0, T )

p(x, t) = 0 in q = ω × (0, T )

 ⇒ p(x, t) = 0 in Q

provided a ∈ L∞(Q) and b ∈ (L∞(Q))N .

Thus, we consider the domain � to be R
N , ω an open nonempty subset of R

N

Comp. Appl. Math., Vol. 22, N. 1, 2003
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and analyze the approximate controllability of the system:∣∣∣∣∣ ut −�u+ f (x, t, u,�u) = h1ω in R
N × (0, T )

u(x, 0) = u0(x) in R
N

(1.2)

The main result of this paper is the following:

Theorem 1.1. Let us assume the following hypotheses:∣∣∣∣∣∣∣
f (x, t, θ, η) is a measurable function with respect to

(x, t) ∈ R
N × (0, T ) and a C1 function with respect to

(θ, η) ∈ R × R
N

(1.3)

f (x, t, 0, 0) ∈ L2(RN × (0, T )) (1.4)

∣∣∣∣∂f∂θ (x, t, θ, η)
∣∣∣∣+ ∣∣∣∣∂f∂η (x, t, θ, η)

∣∣∣∣ ≤ K0,

∀ (x, t, θ, η) ∈ R
N × (0, T )× R × R

N

(1.5)

where K0 is a positive constant. Then, for any u0 ∈ L2(RN) and T > 0, the set

of reachable states (at time T > 0) given by

RNL(T ) = {uh,u ◦ (x, T ) : uh,u ◦ is the solution of (1.2) with

h ∈ L2(RN × (0, T ))}

is dense in L2(RN).

Remark 1.1.

a) As we mentioned above, the method of proof applies in the case where

� is a cone of R
N (i.e. λ� = �, ∀ λ > 0). Extending Theorem 1.1 to

the case of general open unbounded sets � is an open problem. At this

respect, the approximation method developed in [TZ] may be the most

suitable tool.
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b) By an approximation argument, the assumption thatf isC1 in the variables

(u,�u) can be easily relaxed. It is sufficient f to be Lipschitz in those

variables.

c) The assumption that f is globally Lipschitz in (u,�u) might seem to be

artificial. But it is not. As it is shown in E. Fernández-Cara [F], there

are nonlinearities growing at infinity in a slightly superlinear way and for

which the approximate controllability fails.

The rest of the paper is organized as follows: in section 2, we introduce the

similarity variables and use weighted Sobolev spaces. We prove basic results

on existence, uniqueness and regularity of solutions. In section 3 we state some

preliminary results concerning the solutions by transposition and we prove the

approximate controllability of the linear equation. Section 4 is devoted to prove

the main result. Finally, in section 5, we briefly comment the case of general

conical domains.

2 Similarity variables and weighted Sobolev spaces

In this section we recall some basic facts about the similarity variables and

weighted Sobolev spaces for the heat equation. We refer to [EK] and [K] for

further developments and details. As we said above, to prove Theorem 1.1 we

follow the approach in [FZ]. Thus, first we consider the problem of approximate

controllability for the linearized system with potentials:{
ut −�u+ a(x, t)u+ b(x, t) · �u = h1ω in R

N × (0, T )

u(x, 0) = u0 in R
N

(2.1)

with a(x, t) ∈ L∞(RN × (0, T )) and b(x, t) ∈ (L∞(RN × (0, T )))N . The

approximate controllability of (2.1) is then obtained as a singular limit of a

sequence of optimal control problems. But, to do that, the lack of compactness of

the Sobolev embedding in R
N is an obstacle. To avoid it we work on the similarity

variables of the heat equation and the weighted Sobolev spaces introduced in

[EK] that we recall now.
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We introduce the new space-time variables

y = x√
t + 1

; s = log(t + 1). (2.2)

Then, given u = u(x, t) solution of (2.1) we introduce v(y, s) =
esN/2u(es/2y, es − 1). It follows that u solves (2.1) if and only if v satisfies∣∣∣∣∣∣∣∣

vs −�v − y · �v
2

+ A(y, s)v + B(y, s) · �v − N

2
v = ϕ(y, s)1ω′(s)

in R
N × (0, S)

v(y, 0) = v0(y) = u0(y) in R
N

(2.3)

where ∣∣∣∣∣∣∣∣∣∣∣∣∣∣

A(y, s) = esa(es/2y, es − 1)

B(y, s) = es/2b(es/2y, es − 1)

ϕ(y, s) = es(N+2)/2h(es/2y, e2 − 1)

S = log(T + 1)

w′(s) = e−s/2ω

(2.4)

The elliptic operator appearing in (2.3) may also be written as

Lv = −�v − y · �v
2

= − 1

K(y)
div (K(y)� v) (2.5)

where K = K(y) is the Gaussian weight K(y) = exp(|y|2/4). We introduce

the weighted Lp-spaces:

Lp(K) =
{
f : |f |Lp(K) =

[∫
RN

|f (y)|pK(y)dy
]1/p

< ∞
}
.

For p = 2, L2(K) is a Hilbert space and the norm | · |L2(K) is induced by the

inner product (f, g) = ∫
RN
f (y)g(y)K(y)dy. We then define the unbounded

operator L on L2(K) by setting Lf = −�f − y·�f
2 as above, andD(L) = {f ∈

L2(K) : Lf ∈ L2(K)}. Integrating by parts it is easy to see that∫
RN

(Lf )f K dy =
∫

RN

| � f |2K dy. (2.6)
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Therefore it is natural to introduce the weighted H 1-space:

H 1(K) =
{
f ∈ L2(K) : ∂f

∂yi
∈ L2(K), i = 1, . . . , n

}
endowed with the norm ‖f ‖H1(K) = [∫

RN
(|f |2 + | � f |2)K dy]1/2. In a similar

way, for any s ∈ N and multi-index α we may introduce the space

Hs(K)
{
f ∈ L2(K) : Dαf ∈ L2(K), ∀α, |α| ≤ s

}
.

The following properties were proved in [EK] and [K]:∫
RN

K(y)|f (y)|2|y|2dy ≤ c

∫
RN

K(y)| � f |2dy (2.7)

The embedding H 2(K) ↪→ L2(K) is compact. (2.8)

L : H 1(K) → (H 1(K))∗ (2.9)

is an isomorphism where (H 1(K))∗ denotes the dual space of H 1(K).

D(L) = H 2(K) (2.10)

L−1 : L2(K) → L2(K) is self-adjoint and compact. (2.11)

Since the operator L defined above has compact inverse in L2(K), the equation∣∣∣∣∣∣∣∣
vs + Lv + A(y, s)v + B(y, s) · �v − N

2
v = ϕ(y, s)1ω′(s)

in R
N × (0, S)

v(y, 0) = v0(y) in R
N

(2.12)

can be studied in the same manner as the heat equation in a bounded region� of

R
N . Let us recall some important and useful facts about the spaces appearing this

paper. First, we introduce some notation. In fact, given two separable Hilbert

spaces V andH such that V ⊂ H with continuous embedding, V being dense in

H , let us consider the Hilbert space W(0, T , V ,H) = {u ∈ L2(0, T , V ) : ut ∈
L2(0, T ,H)}, equipped with the norm

‖u‖W(0,T ,V ,H) =
(
|u|2

L2(0,T ,V ) + |ut |2L2(0,T ,H)

)1/2
see, for instance [DL].
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We have

W(0, T ,H 1(K), (H 1(K))∗) ⊂ L2(0, T , L2(K))

with compact embedding (2.13)

W(0, T ,H 1(K), (H 1(K))∗) ⊂ C([0, T ], L2(K))

with continuous embedding (2.14)

W(0, T ,H 2(K), L2(K)) ⊂ L2(0, T ,H 1(K))

with compact embedding (2.15)

W(0, T ,H 2(K), L2(K)) ⊂ C([0, T ], H 1(K))

with continuous embedding (2.16)

We represent by ( , ), | · |, (( , )) and ‖·‖ the inner product and norm, respectively,

of L2(K) and H 1(K). We observe that the operator L is defined by the triplet

{
H 1(K), L2(K), (( , ))

}
, with ((u, v)) =

∫
RN

�u · �vK(y)dy.

Therefore we have the following result about existence and uniqueness of the

linear system (2.12). (See, for instance, [L1]).

Proposition 2.1. Given ϕ ∈ L2(0, S, L2(K)) and v0 ∈ L2(K), there exists

a unique solution v in the space W(0, S,H 1(K), L2(K)) of problem (2.12).

Moreover, if v0 ∈ H 1(K), then v ∈ W(0, S,H 2(K), L2(K)). �

3 Solutions by transposition and the linear case

In this section we give a precise definition of (2.12) in the sense of transposi-

tion and prove an existence and uniqueness result. The main question we are

concerned here consists in finding a solution p of the parabolic problem:∣∣∣∣∣∣∣∣
−ps + Lp + Ap − div(Bp)− N

2
p − 1

2
y · Bp = 0

in R
N × (0, S)

p(y, S) = f in R
N,

(3.1)
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when f ∈ (H 1(K))∗. Here (H 1(K))∗ denotes the dual of H 1(K). A function

p ∈ L2(0, S, L2(K)) is called an solution of (3.1) obtained by transposition if∫ S

0

∫
RN

p(y, s)ϕ(y, s)K(y)dy = 〈f, v(S)〉

for any solution v of problem (2.12) with ϕ ∈ L2(0, S, L2(K)) and v0(y) = 0

in R
N . We represent by 〈 , 〉 the duality pairing between (H 1(K))∗ andH 1(K).

We have

Proposition 3.1. If f ∈ (H 1(K))∗ then there exists an unique solution p ∈
L2(0, S, L2(K)) ∩ C([0, S], (H 1(K))∗) of problem (3.1).

Proof. Let us consider the linear form F : L2(0, S, L2(K)) → R defined by

F(ϕ) = 〈f, v(S)〉 for all ϕ ∈ L2(0, S, L2(K)) (3.2)

where v is the solution of (2.12), with v0 = 0, corresponding to ϕ.

Since v0 = 0, it is easy see that

‖v(s)‖H 1(K) ≤ C|ϕ|L2(0,S,L2(K)). (3.3)

Thus, F is a continuous linear form in L2(0, S, L2(K)). By Riesz’s representa-

tion theorem, there exists a unique p ∈ L2(0, S, L2(K)) such that

F(ϕ) =
∫ S

0

∫
RN

pϕK(y) dyds, for all ϕ ∈ L2(0, S, L2(K)). (3.4)

The uniqueness is consequence of the Du Bois Raymond Lemma. Moreover,

|F |L2(0,S,L2(K)) = |p|L2(0,S,L2(K)). (3.5)

Thus, by (3.2), (3.3) and (3.5), we have

|p|L2(0,S,L2(K)) ≤ C|f |(H 1(K))∗ . (3.6)

Since f ∈ (H 1(K))∗, there exists (fm)m∈N with fm ∈ L2(K) for allm, such that

fm → f strongly in (H 1(K))∗. (3.7)
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Let (pm)m∈N be the sequence of solutions corresponding to fm for each m. Ob-

viously, the function pn − pm is the solution by transposition corresponding to

fn − fm.

From (3.6) and (3.7) we have that (pm)m∈N is a Cauchy sequence in

L2(0, S, L2(K)) and

pm → p strongly in L2(0, S, L2(K)). (3.8)

On the other hand,

p′
m − p′

n = L(pm − pn)+ A(pm − pn)− div (B(pm − pn)

− N

2
(pm − pn)− 1

2
y · B(pm − pn)

in L2(0, S, (H 2(K))∗).

(3.9)

Then, for each ψ ∈ L2(0, S,H 2(K)) we have

|〈p′
m − p′

n, ψ〉| ≤ |〈pm − pn, Lψ〉| + |〈A(pm − pn), ψ〉|
+ |〈pm − pn, B · �ψ〉| + N

2
|〈pm − pn,ψ〉|

≤ c|pm − pn|L2(0,S,L2(K))|ψ |L2(0,S,H 2(K))

and this implies that (p′
m)m∈N is a Cauchy sequence in L2(0, S, (H 2(K))∗).

Therefore, we have

pm → p strongly in W(0, S, L2(K), (H 2(K))∗)

and this space is continuously embedded in C([0, S], (H 1(K))∗). We

obtain pm → p strongly in C([0, S], (H 1(K))∗). In particular, p ∈
C([0, S], (H 1(K))∗). �

Through this work we set the notation q ′ = {(y, s), s ∈ (0, S), y ∈ w′(s)},
where ω′(s) = e−s/2 and ω is an open nonempty subset of R

N .

To prove the approximate controllability of system (2.12) we employ the the-

orem of unique continuation due to C. Fabre [Fa], Theorem 1.4 of [Fa]. We

have
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Proposition 3.2. Let w be an open and nonempty set of R
N, ω′(s) = e−s/2ω

and q ′ defined above. Assume that A(y, s) ∈ L∞(RN × (0, S)), B(y, s) ∈
(L∞(RN × (0, S)))N . Let p ∈ L2(0, S,H 1(K)) be such that∣∣∣∣∣∣∣∣

−ps + Lp + Ap − div (Bp)− N

2
p − 1

2
y · Bp = 0

in R
N × (0, S)

p = 0 in q ′
(3.10)

Then p ≡ 0.

Proof. L, A and B do satisfy the conditions of Theorem 1.4 due Fabre [Fa]

and the assumption of p implies that p ∈ L2
loc(0, S,H

1
loc(R

N)). Consequently

p ≡ 0.

Now, we have all the ingredients to prove our result:

Theorem 3.1 (Approximate controllability inH 1(K)). Given bounded, mea-

surable potentials A and B with S > 0, for every v0 ∈ H 1(K), the set of reach-

able states at time S > 0, R̂L(S) = {vϕ,v0(S) : vϕ,v0 is the solution of (2.12) with

ϕ ∈ L2(0, S, L2(K))} is dense in H 1(K).

Proof. The proof follows the arguments in [FZ].

Because of the linearity of (2.12), we can assume without loss of generality that

v0 = 0 and we denote the solution vϕ,0 by vϕ . Given a fixed element vd ∈ H 1(K)

and k ∈ N, we introduce the following optimal control problem

P(k)

 minimize Jk(ϕ) = 1

2

∫ ′

q

ϕ2K(y) dyds + k

2
‖vϕ(S)− vd‖2

H 1(K)

over ϕ ∈ L2(0, S, L2(K))

For all k ∈ N the functional Jk is lower semicontinuous and strictly convex.

Observe that the functional Jk is coercive in the Hilbert space ofL2(0, S, L2(K))

of functions with support in q ′. Then, there exists a solution ϕk of (Pk) for each

k ∈ N. The derivative of Jk(ϕ) is given by

J ′
k(ϕ)ξ =

∫
q ′
ϕξK(y) dyds + k((vϕ(S)− vd, vξ (S)))H 1(K) (3.11)
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for all ξ ∈ L2(0, S, L2(K)). If we evaluate J ′
k(ϕ) · ξ in the solution ϕk of (Pk)

we must have ∫
q ′
ϕkξK(y) dyds + k((vk(S)− vd, vξ (S))) = 0 (3.12)

for all ξ ∈ L2(0, S, L2(K)), with vk(S) = vϕk (S).

Taking into account that Jk(ϕk) ≤ Jk(0) = k

2
‖vd‖2

H 1(K)
for every k ∈ N, we

deduce that {vk(S)−vd}k∈N is a bounded sequence inH 1(K) and

{
1√
k
ϕk1ω′

}
k∈N

is bounded in L2(0, S, L2(K)). Then we can extract a subsequence {vk(S) −
vd}k∈N such that

vk(S)− vd ⇀ ψ weakly in H 1(K). (3.13)

From (3.12) we obtain:

((ψ, vξ (S))) = 0 for all ξ ∈ L2(0, S, L2(K)). (3.14)

By transposition we define the adjoint statep as the unique solution (cf. section 3)

of the problem:∣∣∣∣∣∣∣∣
−ps + Lp + Ap − div (Bp)− N

2
p − 1

2
y · Bp = 0

in R
N × (0, S)

p(y, S) = Lψ in R
N

(3.15)

We obtain∫ S

0

∫
RN

p(y, s)

[
zs + Lz+ Az+ B · �z− N

2
z

]
K(y) dyds

= 〈Lψ, z(S)〉
(3.16)

for all z ∈ W(0, S,H 2(K), L2(K)), such that z(0) = 0.

The solution p of (3.15) defined by (3.16) has the regularity:

p ∈ L2(0, S, L2(K)) ∩ C([0, S], (H 1(K))∗) since Lψ ∈ (H 1(K))∗),

cf. Proposition 3.1.
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Let us consider z the solution of (2.12) when ϕ = ξ ; this solution we denote

by vξ . From relation (3.16) it follows that∫ S

0

∫
RN

p(y) ξK(y)1ω′ dyds = ((ψ, vξ (S))) = 0, ∀ ξ.

It follows that p(x, t) = 0, a.e. (y, s) ∈ w′ × (0, S) and by Proposition 3.2 we

have p(x, t) = 0, a.e. (y, s) ∈ R
N × (0, S). Since p ∈ C([0, S], (H 1(K))∗)

and p(S) = Lψ with ψ ∈ H 1(K) we have ψ = 0. From (3.13) we have

vk(S) ⇀ vd weakly in H 1(K).

The strong convergence follows from (3.12) with ξ = ϕk. Indeed, letting k → ∞
in

1

k

∫
q ′
ϕ2
kK(y) dyds + ‖vk(S)− vd‖2

H 1(K)
= −((vk(S)− vd, vd))H 1(K)

we obtain that vk(S) → vd strongly in H 1(K). �

Corollary 3.1. For every v0 ∈ H 1(K) and m ∈ [0, 1), the set R̂L(S) is dense

in Hm(K).

Proof. This is a direct consequence of Theorem 3.1 and the density of H 1(K)

in Hm(K). �

Corollary 3.2. For every v0 ∈ L2(K), the set R̂L(S) is dense in L2(K).

Proof. Let us consider v1 ∈ L2(K) and ε > 0. Since H 1(K) ⊂ L2(K) with

dense inclusion, there exists a sequence {v0
n} ⊂ H 1(K) such that v0

n → v0

strongly in L2(K).

From Corollary 3.1, we know the existence of controls ϕn such that the solution

vn
ϕn,v

n
0

of (2.12) with ϕ = ϕn satisfies∣∣∣vnϕn,v0
n
(S)− v1

∣∣∣
L2(K)

<
ε

2
.

Comp. Appl. Math., Vol. 22, N. 1, 2003



136 HEAT EQUATION IN R
N INVOLVING GRADIENT TERMS

Let Ñ > 0 be such that |v0
Ñ

− v0|L2(K) ≤ e−c
S
2 ε

2 where c > 0 is a constant that

will appear bellow. Consider vϕ,v0 the solution of (2.12) corresponding to v0 and

ϕ = ϕÑ . Let z = vϕ,v0 − vϕ,v0
Ñ

. Then z satisfies∣∣∣∣∣∣ zs + Lz+ Az+ B · �z− N

2
z = 0 in R

N × (0, S)

z(y, 0) = z0(y) = v0 − v0
Ñ

in R
N

(3.17)

We multiply (3.17) by zK(y) and integer over R
N . Then, there exists a constant

c > 0 such that |z(S)|L2(K) ≤ ec
S
2 |z0|L2(K) and, therefore,∣∣vϕ, v0(S)− v1

∣∣
L2(K)

≤ |z(S)|L2(K) +
∣∣∣vϕ,v0

Ñ
(S)− v1

∣∣∣
L2(K)

≤ ε . �

We conclude with the

Theorem 3.2. Given u0 ∈ L2(RN) the set of reachable states at time T > 0,

RL(T ) = {uh,u0(T ) : uh, u0 is the solution of (2.1) with h ∈ L2(RN × (0, T ))}
is dense in L2(RN).

Proof. Let us consider u1 ∈ L2(RN) and ε > 0. We divide the proof into three

steps.

Step 1. The case u0 = 0, u1 ∈ L2(K).

Let us consider v1(y) = (T + 1)N/2u1((T + 1)
1
2 y) ∈ L2(K). From Corollary

3.2 we know the existence of ϕ ∈ L2(0, S, L2(K)) such that
∣∣v(S)− v1

∣∣
L2(K)

≤
ε, with S = log(T + 1). Then

u(x, t) = (1 + t)−
N
2 v

(
x√

1 + t
, log(1 + t)

)
is the solution of (2.1) with

h(x, t) = (1 + t)−
N
2 −1ϕ

(
x√

1 + t
, log(1 + t)

)
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and ∣∣u(T )− u1
∣∣2
L2(RN)

≤
∫

RN

(1 + t)−Ne|x|
2
4(1 + T )∣∣∣∣v ( x√

1 + t
, S

)
− v1

(
x√

1 + t

)∣∣∣∣2 dx
≤

∫
RN

K(1 + T )−
N
2
∣∣v(y, S)− v1(y)

∣∣2 dy
≤ (1 + T )−

N
2
∣∣v(S)− v1

∣∣2
L2(K)

≤ ε2.

Step 2. The case u0 = 0, u1 ∈ L2(RN).

SinceL2(K) ⊂ L2(RN)with dense inclusion, there exists a sequence {u1
n} and

Ñ > 0 such that
∣∣u1
n − u1

∣∣
L2(RN)

≤ ε

2
for every n > Ñ .

From the first step, we know the existence of controls hn such that un the

solution of (2.1) with h = hn satisfies∣∣un(T )− u1
n

∣∣
L2(RN)

≤ ε

2
.

Then, the solution u of (2.1) with h = hÑ satisfies∣∣u(T )− u1
∣∣
L2(RN)

≤ ε . �

Step 3. The general case, i.e. u0, u1 ∈ L2(RN) arbitrary.

We write u = z+ Y where z is the solution of∣∣∣∣∣ zt −�z+ a(x, t)z+ b(x, t) · �z = 0 in R
N × (0, T )

z(x, 0) = u0(x) in R
N.

(3.18)

Then z(T ) ∈ L2(RN). We construct h = h(u1 − z(T )) such that the solution of∣∣∣∣∣ Yt −�Y + a(x, t)Y + b(x, t) · �Y = h1ω in R
N × (0, T )

Y (x, 0) = 0 in R
N

(3.19)

satisfies ∣∣Y (T )− (u1 − z(T ))
∣∣
L2(RN)

≤ ε. (3.20)

Therefore in (2.1) it is enough to chose h = h(u1 − z(T )) since the unique

solution is u = z+ Y and in view of (3.20) we conclude the proof. �
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4 The non linear case

We will now study the same problem for the semilinear heat equation (1.2). As

in the linear case, a change of variables v(y, s) = es
N
2 u(es/2y, es−1) transforms

the system (1.2) in∣∣∣∣∣∣ vs + Lv + g(y, s, v,�v)− N

2
v = ϕ(y, s)1ω′(s) in R

N × (0, S)

v(y, 0) = v0(y) in R
N

(4.1)

with g(y, s, v,�v) = es(N+2)/2f (es/2y, es − 1, e−sN/2v, e−s(N+2)/2 � v) and

ϕ(y, s) = es(N+2)/2h(es/2y, e2 − 1).

We must remark the function g = g(y, s, θ, η) possesses the same properties

as f . In particular, g is globally Lipschitz in the variables (θ, η).

Observe that by (1.4) and because L2(K) is dense in L2(RN) we can con-

sider f (x, t, 0, 0) in L2(0, T , L2(K)). This guarantees that g(y, s, 0, 0) ∈
L2(0, S, L2(K)). Thus, we suppose that f also satisfies

f (x, t, 0, 0) ∈ L2(0, T , L2(K)), (4.2)

besides (1.3) and (1.5).

From the embedding (I1)-(I4) and g globally Lipschitz, it follows the following

result on existence and uniueness for system (4.1).

Proposition 4.1. Suppose f satisfying the conditions (1.3), (1.5) and (4.2)

above. Then, given ϕ ∈ L2(0, S, L2(K)) and v0 ∈ L2(K), there exists a unique

solution v in the spaceW(0, S,H 1(K), (H 1(K))∗) of problem (4.1). Moreover,

if v0 ∈ H 1(K), hence v ∈ W(0, S,H 2(K), L2(K)).

Proof. The proof is the same given for Theorem 1 in [FZ]. �

We observe that, in view of Proposition 4.1 and change of variables, if u0 =
v0 ∈ L2(K) and f ∈ L2(0, T , L2(K)) then there exists a unique solution u ∈
W(0, T ,H 1(K), (H 1(K))∗) of problem (1.2).

As usual, it is possible to derive the continuous dependence of the solution

with respect to the initial data:
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Proposition 4.2 (Continuity with respect to the data). Suppose g satisfying

the conditions above.

a) Let us suppose v0
m → v0 inL2(K) and ϕm → ϕ inL2(0, S, L2(K)). Then,

vϕm,v0
m

→ vϕ,v0 in W(0, S,H 1(K), (H 1(K))∗).

b) Let us suppose v0
m → v0 in L2(K) and ϕm → ϕ in H 1(0, S, L2(K)).

Then, vϕm,v0
m

→ vϕ,v0 in W(0, S,H 2(K), (L2(K))∗). �

To show the approximate controllability property of the semilinear heat equa-

tion, we are going to introduce a family of optimal control problems. A previous

step for establishing the optimality conditions corresponding to their solutions

in the study of the differentiability of the functional involved.

Proposition 4.3 (Differentiability with respect to the data). Suppose

that g satisfies the conditions above. Given v0 ∈ H 1(K), the functional

F : L2(0, S, L2(K)) → H 1(K) defined by F(ϕ) = vϕ,v0(S) is differen-

tiable. Moreover, DF(ϕ)ψ = zψ(S), where zψ is the unique solution in

W(0, S,H 2(K), L2(K)) of the following linearized problem∣∣∣∣∣∣∣∣∣
zs + Lz+ ∂g

∂θ
(y, s, vϕ,v0,�vϕ,v0)z+ ∂g

∂η
(y, s, vϕ,v0,�vϕ,v0)

· � z− N

2
z = ψ in R

N × (0, S)

z(y, 0) = 0 in R
N

(4.3)

Proof. The functional F is well defined by Proposition 4.1 and the embedding

(2.16). Given ϕ,ψ ∈ L2(0, S, L2(K)) and λ ∈ (0, 1), let us denote vλ =
vϕ+λψ,v0 , v = vϕ,v0 and zλ = 1

λ
(vλ−v). To show thatF is Gâteaux differentiable

we have to prove that

zλ(S) → zψ(S) in H 1(K) as λ → 0. (4.4)
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It is clear that for each λ we have∣∣∣∣∣∣∣∣
zλ,s + Lzλ + 1

λ

[
g(y, s, vλ,�vλ)− g(y, s, v,�v)]− N

2
zλ = ψ

in R
N × (0, S)

zλ(y, 0) = 0 in R
N

(4.5)

where zλ,s denotes
dzλ

ds
.

By the Mean Value Theorem, we have

gλ(y, s) = 1

λ
(g(y, s, vλ(y, s),�vλ(y, s))− g(y, s, v(y, s),�v(y, s))

= ∂g

∂θ
(y, s, wλ(y, s))zλ + ∂g

∂η
(y, s, wλ(y, s),�wλ(y, s)) · �zλ.

(4.6)

where wλ = v + ξ(vλ − v), 0 ≤ ξ ≤ 1 depends on y, s and λ. Applying (4.5)

to zλK(y), integrating by parts, using the fact that g is globally Lipschitz in the

variable (v,�v) and Young’s inequality, we deduce the existence of a constant

c1 > 0 such that

|zλ(s̃)|2 +
∫ s̃

0

∫
RN

|�zλ|2K dyds ≤ K1

∫ s̃

0
|zλ(s)|2L2(K)

ds

+
∫ s̃

0
|ψ(s)|2

L2(K)
ds, ∀ s̃ ∈ [0, S] and ∀ λ ∈ (0, 1).

(4.7)

Using Gronwall inequality, we have

|zλ(s)|L2(K) ≤ ec1s |ψ |L2(0,S,L2(K)) , ∀ s ∈ [0, S], ∀ λ ∈ (0, 1).

Thus, the sequence {zλ} is bounded in C([0, S], L2(K)) and by (4.7), {zλ} is

bounded in L2(0, S,H 1(K)). In fact, |zλ|L2(0,S,H 1(K)) ≤ ec1S |ψ |L2(0,S,L2(K)),

∀ λ ∈ (0, 1). Taking into account this estimate together with the equation (4.5),

(4.6) and hypothesis on g, we conclude that there exists a positive constant c2

(independent on λ and ψ) such that

|zλ|W(0,S,H 1(K),(H 1(K))∗) ≤ c2 |ψ |L2(0,S,L2(K)) , ∀ λ ∈ (0, 1).

In view of the expression of gλ and using classical estimates, we deduce the

existence of a positive constant c3 (still independent of λ and ψ) such that

|zλ|W(0,S,H 2(K),(L2(K)) ≤ c3 |ψ |L2(0,S,L2(K)) , ∀ λ ∈ (0, 1). (4.8)
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Thus, by extracting subsequences,

zλ ⇀ ẑ weakly in W(0, S,H 2(K), L2(K)), as λ → 0. (4.9)

Combining this convergence with the compact imbedding (2.15) and Proposition

(4.2b), we deduce that

gλ → ∂g

∂θ
(y, s, v,�v)ẑ+ ∂g

∂η
(y, s, v,�v) · �ẑ in L2(0, S, L2(K)).

It is then easy to see, by the well-posedness properties of (4.5), that ẑ = zψ and

that the convergence in (4.9) holds in the strong topology. Using the embedding

(2.16), we obtain (4.4). �

We have the following result on approximate controllability for the

system (4.1):

Theorem 4.4. For each v0 ∈ H 1(K) the set of admissible states at S > 0,

R̂NL(S) = {
vϕ,v0(S) : vϕ,v0 is solution of (4.1) with ϕ ∈ L2(0, S, L2(K))

}
is dense in Hm(K), for each 0 ≤ m < 1.

Proof. We know that H 1(K) is dense in Hm(K) for 0 ≤ m < 1. Then, it is

sufficient to prove that R̂NL(S) is dense in H 1(K) with the norm of Hm(K) for

0 ≤ m < 1.

In fact, let us take vd ∈ H 1(K), 0 ≤ m < 1 and consider the functional defined

in L2(0, S, L2(K)) by:

Jk(ϕ) = 1

2

∫
q ′
K(y)ϕ2 dyds + k

2

∣∣vϕ,v0(S)− vd
∣∣2
Hm(K)

.

This functional is lower semicontinuous and coercive in the Hilbert space of

L2(0, S, L2(K)) of functions with support in q ′. It follows that the minimization

problem (Pk) given by:

Min Jk(ϕ) for all ϕ ∈ L2(0, S, L2(K)) (Pk)

has at least one solution ϕk.
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Thanks to Proposition 4.3, the first order optimality condition associated with

the minimization problem (Pk) at this minimum gives

J ′
k(ϕk)ψ =

∫
q ′
K(y)ϕkψ dyds + k(vk(S)− vd, z

k
ψ(S))Hm(K) = 0 (4.10)

for all ψ ∈ L2(0, S, L2(K)), where vk = vϕk,v0 and zkψ is the unique function in

W(0, S,H 2(K), L2(K)) solution of the problem∣∣∣∣∣∣∣∣∣
zs + Lz+ ∂g

∂θ
(y, s, vk,�vk)z+ ∂g

∂η
(y, s, vk,�vk) · �z

− N

2
z = ψ1ω′ in R

N × (0, S)

z(y, 0) = 0 inR
N

(4.11)

By the minimum condition we have Jk(ϕk) ≤ Jk(0) for every k ∈ N. It follows

that {vk(S)− vd}k∈N is a bounded sequence in Hm(K) and

{
1√
k
ϕk1ω′

}
k∈N

is a

bounded sequence in L2(0, S, L2(K)). Thus, by extracting subsequences,

vk(S)− vd ⇀ θ weakly in Hm(K). (4.12)

Moreover, there exist c ∈ L∞(RN × (0, S)) and d ∈ (L∞(RN × (0, S)))N such

that ∣∣∣∣∣∣∣∣
∂g

∂θ
(y, s, vk,�vk) ⇀ c weak* L∞(RN × (0, S))

∂g

∂η
(y, s, vk,�vk) ⇀ d weak* (L∞(RN × (0, S)))N

(4.13)

Let zψ be the unique solution of the problem∣∣∣∣∣∣ zs + Lz+ c(y, s)z+ d(y, s) · �z− N

2
z = ψ1ω′ in R

N × (0, S)

z(y, 0) = 0 in R
N.

(4.14)

Suppose that

zkψ(S) ⇀ zψ(S) strongly in Hm(K). (4.15)

By (4.10), (4.12) and (4.15) we obtain:

1√
k

∫
q ′

ϕk√
k
ψK dyds + (vk(S)− vd, z

k
ψ(S))Hm(K) = 0
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and when k → ∞, we have

(θ, zψ(S))Hm(K) = 0, for each ψ ∈ L2(0, S, L2(K)). (4.16)

By Theorem 3.1 the set {zψ(S)} is dense in H 1(K) and, therefore, in Hm(K),

when ψ varies in L2(0, S;L2(K)). Consequently, (4.16) implies that θ ≡ 0.

Therefore, according to (4.12), vk(S) ⇀ vd weakly in Hm(K). Since the em-

bedding Hm(K) ⊂ Hm′
(K) is compact for m′ < m, we conclude the strong

convergence inHm′
(K), for anym′ < m. Taking into account that this holds for

all m < 1, we conclude the density in Hm(K), as stated in Theorem 4.4.

To complete the proof we need to proof the convergence (4.15). In fact, mul-

tiplying (4.11) by K(y)zkψ , integrating in R
N and observing that∣∣∣∣∂g∂θ (y, s, vk,�vk)

∣∣∣∣+ ∣∣∣∣∂g∂η(y, s, vk,�vk)
∣∣∣∣ < K0 (4.17)

we have ∣∣zkψ(s)∣∣2 +
∫ S

0
‖zkψ(s)‖2ds < c1. (4.18)

Multiplying (4.11) by K(y)(zkψ)
′ and integrating in R

N , we obtain:∫ S

0

∣∣(zkψ)′∣∣2 ds + ‖zkψ(s)‖2 < c2. (4.19)

From (4.18) and (4.19) it follows that {zkψ}k∈N is bounded in W(0, S,H 2(K),

L2(K)). Since W(0, S,H 2(K), L2(K)) is compactly embedded in L2(0, S,

H 1(K)), there exists subsequences such that∣∣∣∣∣∣
zkψ → χ strongly in L2(0, S,H 1(K))

zkψ → χ weakly in W(0, S,H 2(K), L2(K))
(4.20)

From (4.15) and (4.20) we can pass to the limit in (4.11) obtaining that χ is the

solution of (4.14) and by uniqueness χ = zψ . On the other hand, from (4.20)

and the continuous embedding I4) we have:

zkψ ⇀ zψ weakly in H 1(K)

and k tends to +∞. The embedding of H 1(K) into Hm(K) into Hm(K) being

compact, for m < 1. This proves (4.15). �
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Corollary 4.1. Given v0 ∈ L2(K), the set R̂NL(S) is dense in L2(K).

Proof. As in the proof of Corollary 3.2, let us consider v1 ∈ L2(K) and ε > 0.

Then, there exists a sequence {v0
n}n∈N ⊂ H 1(K) such that v0

n → v0 strongly in

L2(K). Moreover, as we saw previously, there exists a sequence of controls ϕn
such that vϕn,v0

n
, the solution of (4.1) corresponding to v0

n and ϕn, satisfies∣∣vϕn,v0
n
(S)− v1

∣∣
L2(K)

≤ ε

2
.

Let Ñ > 0 be such that ∣∣v0
Ñ

− v0
∣∣
L2(K)

≤ e−
cS
2
ε

2
,

where c > 0 is a constant that will be timely introduced.

Consider vϕ,v0 the solution of (4.1) corresponding to v0 and ϕ = ϕÑ . Let

z = vϕ,v0 − vϕ,v0
Ñ

. Then, z satisfies

∣∣∣∣∣∣∣∣
zs + Lz+ g(y, s, vϕ,v0,�vϕ,v0)− g(y, s, vϕ,v0

Ñ
,�vϕ,v0

Ñ
)

− N

2
z = 0 in R

N × (0, S)

z(y, 0) = z0(y) = v0 − v0
Ñ

in R
N.

(4.21)

We multiply (4.21) by zK(y) and integer over R
N . Since g satisfies (4.17), we

obtain

|z(S)|L2(K) ≤ e
cS
2
∣∣z0
∣∣
L2(K)

, where c = K0 + K0

2
+ N

2
, and therefore

∣∣vϕ,v0(S)− v1
∣∣
L2(K)

≤ |z(S)|L2(K) +
∣∣∣vϕ,v0

Ñ
(S)− v1

∣∣∣
L2(K)

≤ ε.

�

We conclude with the proof of Theorem 1.1.

Proof of Theorem 1.1. Let us consider α > 0 and u1 ∈ L2(RN). As in the

proof of Theorem 3.2 we divide into several steps.
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First step. The case u0, u1 in L2(K).

We make the change of variables v1(y) = (1 + T )N/2u1((1 + T )1/2y) and

S = log(1 + T ). Then v1 ∈ L2(K) and by Corollary 4.1, there exists ϕ ∈
L2(0, S, L2(K)) such that the solution v of (4.1) corresponding to v0 and ϕ,

satisfies ∣∣v(S)− v1
∣∣
L2(K)

≤ α.

We define

u(x, t) = (1 + t)−N/2v
(

x√
1 + t

, log(1 + t)

)
.

Then u is solution of (1.2) with

h(x, t) = (1 + t)−
N
2 −1ϕ

(
x√

1 + t
, log(1 + t)

)
and

∣∣u(T )− u1
∣∣2
L2(RN)

≤ α2 (cf. Theorem 3.2, Step 1).

Second step. The case u ∈ L2(K), u1 ∈ L2(RN).

Since L2(K) ⊂ L2(RN) with dense inclusion, there exists a sequence

{u1
n}n∈N ⊂ L2(K) such that u1

n → u1 strongly in L2(RN). From the First

Step, we know that existence of controls hn such that un the solution of (1.2)

satisfies
∣∣un(T )− u1

n

∣∣
L2(RN)

≤ α

2
. Let Ñ > 0 such that for every n > Ñ ,∣∣u1 − u1

n

∣∣
L2(RN)

≤ α

2
.

Then, u the solution of (1.2) with h = hÑ satisfies
∣∣u(T )− u1

∣∣
L2(RN)

≤ α.

Third step. The case u0 ∈ L2(RN).

Then there exists a sequence {u0
n} with u0

n ∈ L2(K) such that u0
n → u0 strongly

in L2(RN). Given u1 ∈ L2(RN) and α > 0, as we saw previously, there exists a

sequence of controls hn such that un, the solution of (1.2) corresponding to u0
n

and hn, satisfies ∣∣un(T )− u1
∣∣
L2(RN)

≤ α

2
.

Let Ñ > 0 be such that∣∣u0
Ñ

− u0
∣∣
L2(RN)

≤ e−(K0+K2
0

2 ) T2
α

2
,
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K0 the constant given in (1.5).

Consider u the solution of (1.2) corresponding to u0 and h = hÑ . Let z =
u− uÑ . Then, z satisfies∣∣∣∣∣∣∣

zt −�z+ f (x, t, u,�u)− f (x, t, uÑ ,�uÑ) = 0

in RN × (0, T )

z(x, 0) = z0(x) = u0 − u0
Ñ

in R
N.

(4.22)

We multiply (4.22) by z and integer over R
N . Since f satisfies (1.5), we obtain

1

2

d

dt
|z|2

L2(RN)
+ ‖z‖2

H 1(RN)
≤ K0 |z|2

L2(RN)
+ K2

0

2
|z|2

L2(RN)
+ 1

2
‖z‖2

H 1(RN)
.

Then, |z(T )|L2(RN) ≤ e(K0+K2
0

2 ) T2
∣∣z0
∣∣
L2(RN)

, and therefore∣∣u(T )− u1
∣∣
L2(RN)

≤ |z(T )|L2(RN) +
∣∣uÑ(T )− u1

∣∣
L2(RN)

≤ α. �

5 Conical domains

Consider a cone-like domain � satisfying:

0 ∈ �̄, ∀ λ > 0, ∀ x ∈ �, λx ∈ �. (5.1)

All the results of these paper hold for the semilinear heat equation (1.1) when�

is a cone-like domain. In fact, consider a domain� satisfying (5.1). Then if one

consider the evolution equation∣∣∣∣∣∣∣
ut −�u+ f (x, t, u,�u) = h1ω in Q = �× (0, T )

u = 0 on ∂�× (0, T )

u(x, 0) = u0(x) in �

(5.2)

we can study the controllability of the equation (5.2) in the same way as the case

of the whole space R
N . Observe that defining v, g and ϕ like in this section we

obtain that v satisfies∣∣∣∣∣∣∣∣
vs + Lv + g(y, s, v,�v)− N

2
v = ϕ1ω′(s) in �× (0, S)

v = 0 on ∂�× (0, S)

v(y, 0) = v0(y) in �
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The operator Lf = − 1

K
div(K � f ),K(y) = exp(|y|2/4), is self-adjoint in

L2(K,�) with compact inverse and

D(L) = {f ∈ H 1
0 (K,�) : Lf ∈ L2(K,�)},

where

L2(K,�) =
{
v :
∫
�

|v|2K(y)dy < ∞
}
,

H 1
0 (K,�) =

{
v :
∫
�

(|v|2 + | � v|2)K(y)dy < ∞, v‖∂� = 0

}
and

Hm(K,�) =

v ∈ L2(K,�) : ‖v‖Hm(K,�) =
 ∑

|α|≤m
‖Dαv‖2

L2(K,�)

1/2

< ∞

 .
Indeed, the methods of the previous sections apply. First of all, the approximate

controllability of the linearized equation can be obtained as a consequence of

the unique continuation result in [Fa]. Then, the approximate controllability for

the semilinear system can be proved by viewing this property as the limit of

optimality conditions of penalized optimal control problems.
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