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Abstract. Let C be a n × n symmetric matrix. For each integer 1 ≤ k < n we consider

the minimization problem m(ε) := minX {Tr{C X} + ε f (X)}. Here the variable X is an n × n

symmetric matrix, whose eigenvalues satisfy

0 ≤ λi (X) ≤ 1 and
n∑

i=1

λi (X) = k,

the number ε is a positive (perturbation) parameter and f is a Lipchitz-continuous function (in

general nonlinear). It is well known that when ε = 0 the minimum value, m(0), is the sum of

the smallest k eigenvalues of C .

Assuming that the eigenvalues of C satisfy λ1(C) ≤ ∙ ∙ ∙ ≤ λk(C) < λk+1(C) ≤ ∙ ∙ ∙ ≤ λn(C),

we establish the following upper and lower bounds for the minimum value m(ε):

k∑

i=1

λi (C) + ε f̄ ≥ m(ε) ≥
k∑

i=1

λi (C) + ε f̄ −
2kL2

λk+1(C) − λk(C)
ε2,

where f̄ is the minimum value of f over the solution set of unperturbed problem and L is the

Lipschitz-constant of f . The above inequality shows that the error by replacing the upper bound

(or the lower bound) by the exact value is at least quadratic in the perturbation parameter. We also

treat the case that λk+1(C) = λk(C). We compare the exact solution with the upper and lower

bounds for some examples.
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1 Introduction

We denote by Mn the set of n × n real matrices. The sum of diagonal of C ∈ Mn

is denoted by Tr{C}. If C is a symmetric matrix then the sum of their first

(smallest) k eigenvalues,
∑k

i=1 λi (C) (multiplicity included), can be obtained as

the minimum value of the following minimization problem with matrix vari-

able (see the proposition 2.3):

min
{
Tr{C X} : Tr{X} = k, I − X � 0 and X � 0

}
=

k∑

i=1

λi (C). (1)

The notation X � 0 means that X is an n × n (symmetric) positive semidefi-

nite matrix, that is, X is symmetric and its eigenvalues are nonnegative. We write

Y � X when the difference matrix Y − X � 0. We denote by I the identity

matrix.

Note that the objective function, Tr{C X}, and the restriction, Tr{X} = k, of

the minimization problem (1) are linear in the variable X . On the other hand, the

restrictions I − X � 0 and X � 0 are convex but nonlinear. Due to these last

two restrictions the problem (1) is, in general, not a Linear Programming (LP).

We denote byK := {X ∈ Mn : Tr{X} = k, I − X � 0 and X � 0} the domain

of the objective function of the minimization problem (1). This means that the

elements ofK are symmetric matrices, whose eigenvalues satisfy: 0 ≤ λi (X) ≤

1 for i = 1, 2, . . . , n and
∑n

i=1 λi (X) = k.

In this work we propose to study a nonlinear perturbation of the problem (1)

defined as follows:

m(ε) := min
{
Tr{C X} + ε f (X) : X ∈ K

}
, (2)

where ε (perturbation parameter) is a nonnegative real number and f : K →

R is a function that is, in general, nonlinear. The function ε f (X) is called

perturbation. We denote by m(ε) the minimum value of the problem (2). In

general the solution of (2) depends on ε. Moreover, according to (1) one has

m(0) =
∑k

i=1 λi (C).

We close the introductory section with a motivation to study the perturbed

minimization problem (2):
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Semidefinite Programming: In particular case k = 1 the restriction I − X � 0

can be dropped in (1). To see this, note that if λi (X) ≥ 0 and
∑n

i=1 λi (X) =

Tr{X} = 1 then 0 ≤ λi (X) ≤ 1. Hence, I − X � 0. The minimization problem

(k = 1)

min
{
Tr{C X} : Tr{X} = 1 and X � 0

}
(3)

is a special case of the following problem:

min
{
Tr{C X} : Tr{Ai X} = bi with i = 1, . . . , p and X � 0

}
, (4)

which is called standard semidefinite programming (SDP). In (4) Ai are n × n

symmetric matrices. The SDP has many applications in Combinatorial Opti-

mization. See [5] for a survey on SDP and [6] for the relation between SDP and

Eigenvalue Optimization.

A bit more general case of (3) is min{Tr{C X} : Tr{AX} = b and X � 0}

with A � 0 (that is, A is strict positive definite) and b > 0. We can reduce this

case to (3) by plugging C̃ := bA−1/2C A−1/2 in the place of C in (3).

Strictly Convex Perturbation of SDP: It is convenient to add a strictly con-

vex function ε f (x) in order to solve the unperturbed problem (4). This makes

the perturbed minimization problem strictly convex. Hence, it has only one

minimizer. One hopes that this minimizer approximates to a solution of (4)

as ε → 0. The interior point methods [10], for solve SDPs, make use of

the strictly convex function ε f (X) = −ε log det(X), which is a log-barrier.

Since this function is not Lipschtiz-continuous our error bound can not be used.

On the other hand, the authors [7] arrived at an algorithm for SDPs that has

several advantages over existing techniques using the perturbation functions

ε f (X) = −ε log det(X) and ε f (X) = ε 1
2 Tr{X2}. The last one is strictly convex

and Lipschitz-continuous. As the main advantage, this algorithm is a first-order

method, which makes it scalable.

2 Results

Since we can not obtain in general the exact value of m(ε) for ε > 0, we

propose to establish an upper u(ε) and a lower bound `(ε) for m(ε). That is,

u(ε) ≥ m(ε) ≥ `(ε), from which follows that 0 ≤ m(ε) − `(ε) ≤ u(ε) − `(ε)
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and 0 ≤ u(ε) − m(ε) ≤ u(ε) − `(ε). Under some condition on f we prove

that u(ε) − `(ε) = constant ε2 (see theorem 2.8). Hence, both m(ε) − `(ε)

and u(ε) − m(ε) go at least quadratic to zero as ε goes to zero. We interpret

u(ε) − `(ε) as an error bound. In contrast to the minimization problem (2), the

authors [1] proved that for perturbed LP (see section 4) uLP(ε) − `LP(ε) = 0 for

all 0 ≤ ε ≤ εo with some εo > 0. This means that for perturbed LP there is

no error if we require that ε be small enough. This is, in general, not the case

for the minimization problem (2) (see example 1 of section 3). The author [9]

derived error bound for perturbed LP when f is strictly convex, and in [8] the

perturbation results of [1] were extend to convex programmings.

As in [1], we assume that f : K → R be a Lipschitz-continuous function, that

is, there is a constant 0 ≤ L < ∞ such that for all X, Y ∈ K the inequality

| f (X) − f (Y )| ≤ L‖X − Y‖ is true. Throughout this paper ‖ ∙ ‖ denotes the

Frobenius-norm, that is, for X ∈ Mn we define

‖X‖ :=
√

Tr{X T X} =

√√
√
√

n∑

i, j=1

X2
i, j .

It is well known that for a symmetric matrix X the equality ‖X‖ =
√∑n

i=1 λ2
i (X)

holds.

The following proposition establishes that the set K is a bounded subset of

Mn ' Rn×n . Hence, K is compact.

Proposition 2.1. The set K is a subset of the ball of Mn with size
√

k, that is,

if X ∈ K then ‖X‖ ≤
√

k.

Proof. For X ∈ K we have 0 ≤ λi (X) ≤ 1 for i = 1, . . . , n. Therefore

‖X‖2 =
n∑

i=1

λ2
i (X) ≤

n∑

i=1

λi (X) = Tr{X} = k �

Since K is compact and Tr{C X} is continuous the minimum value of the

problem (1) is attained.

In order to characterize the minimizers of the problem (1) we need the follow-

ing definition:
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Definition 2.2 (The values d, r, s, λr (C), and λs(C)). Consider the eigen-

values of the symmetric matrix C ∈ Mn in increasing order, that is, λ1(C) ≤

λ2(C) ≤ ∙ ∙ ∙ ≤ λn(C). For each k = 1, 2, . . . , n we define:

d = d(C, k) := ]
{
i ∈ {1, . . . , n} : λi (C) = λk(C)

}

Note that d is multiplicity (degeneracy) of k-th eigenvalue. Further we define:

R(C, k) :=
{
i ∈ {1, . . . , n} : λi (C) < λk(C)

}
,

S(C, k) :=
{
i ∈ {1, . . . , n} : λi (C) > λk(C)

}
,

r = r(C, k) :=

{
max{i : i ∈ R(C, k)} if R(C, k) 6= ∅

0 if R(C, k) = ∅,
(5)

and

s = s(C, k) :=

{
min{i : i ∈ S(C, k)} if S(C, k) 6= ∅

n + 1 if S(C, k) = ∅.
(6)

In the case r = 0 we do the following convention λr (C) = λ0(C) := −∞

and in the case s = n + 1 we do λs(C) = λn+1(C) := +∞. Note that

s − r − 1 = d holds true.

The following example illustrates the above definition:

Example. For n = 10 and k = 6. If the eigenvalues of C are:

a) 2, 3, 4, 4, 4, 4, 4, 4, 11, 12 then λk = 4, d = 6, r = 2, s = 9, λr = 3

and λs = 11.

b) 4, 4, 4, 4, 4, 4, 4, 4, 11, 12 then λk = 4, d = 8, r = 0, s = 9, λr = −∞

and λs = 11.

c) 2, 2, 2, 3, 4, 4, 4, 4, 4, 4 then λk = 4, d = 6, r = 4, s = 11, λr = 3

and λs = +∞.

d) 4, 4, 4, 4, 4, 4, 4, 4, 4, 4 then λk = 4, d = 10, r = 0, s = 11, λr = −∞,

λs = +∞. Note that, in this case, C = 4I .
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Proposition 2.3. The minimum value of the problem (1) is the sum of the small-

est k eigenvalues of the symmetric matrix C . Moreover, the set of its minimizers

is 



V




Ir | 0 | 0
− − − − − −
0 | Z | 0
− − − − − −
0 | 0 | 0



 V T : Z ∈ Kd





, (7)

where

Kd :=
{

Z ∈ Md with Tr{Z} = k − r and I � Z � 0
}
. (8)

Here d = d(C, k) is the multiplicity of the k-th eigenvalue of C and V is any

n×n orthogonal matrix whose columns are the eigenvectors (in increasing order

of their eigenvalues) of the matrix C .

The matrix Ir in (7) is the identity matrix of order r , where r = r(C, k) is

defined by (5). If r = 0 then this identity matrix does not appear in (7). The

block matrix 0 in the diagonal of (7) is of order n + 1 − s, where s = s(C, k) is

defined by (6). If s = n + 1 then this block matrix 0 does not appear in (7).

If d = 1 then there is only one minimizer, namely:
∑k

i=1 viv
T
i (orthogonal

projection with rank k), where vi is any (normalized) eigenvector corresponding

to the i-th eigenvalue of C .

Proof. See appendix A.

Remark 2.4. In order to simplify the notation we mean by A ⊕ B (direct sum)

the block matrix
[

A | 0
− − − −

0 | B

]
. That is, A ⊕ B is a square matrix of order na + nb

if A and B are square matrices of order na and nb respectively.

Since the objective function Tr{C X} + ε f (X) is the sum of two continuous

functions on the compact setK its minimum value, m(ε), is attained. We denote

by X∗(ε) the set argmin{Tr{C X} + ε f (X) : X ∈ K} (the set of minimizers).

The proposition 2.3 states that m(0) =
∑k

i=1 λi (C) and

X∗(0) =
{

V (Ir ⊕ Z ⊕ 0)V T : Z ∈ Md with Tr{Z} = k − r and I � Z � 0
}
.

An important value of f in order to study the relation between m(ε) and m(0)

is f̄ := min{ f (X) : X ∈ X∗(0)}.
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We now establish the following upper bound for m(ε):

Proposition 2.5 (Upper bound). For the minimum value m(ε) of the prob-

lem (2) the following upper bound holds:

u(ε) := m(0) + ε f̄ ≥ m(ε)

for all ε ≥ 0.

Proof. Take Y∗ ∈ argmin{ f (X) : X ∈ X∗(0)}. Since Y∗ ∈ K we have by

definition of m(ε) that

m(ε) ≤ Tr{CY∗} + ε f (Y∗)

= m(0) + ε f (Y∗) since Y∗ ∈ X∗(0)

= m(0) + ε f̄

�

Remark 2.6. In the case d(C, k) = 1 we have f̄ = f
( ∑k

i=1 viv
T
i

)
because

X∗(0) =
{

P :=
k∑

i=1

viv
T
i

}

(there is only one minimizer). Hence, u(ε) = m(0) + ε f (P) is an upper bound.

On the other hand, in the case d(C, k) > 1, the function U (ε) := m(0) +

ε f (P) = Tr{C P} + ε f (P) is clearly an upper bound for m(ε). If f (P) > f̄

then U (ε) > u(ε) for ε > 0. Therefore, the upper bound U (ε) is not interesting

because when we are estimating an error we try, in general, to find smaller upper

bounds and larger lower bounds.

We can easily obtain a crude lower bound for m(ε) as the following:

Proposition 2.7 (A linear error bound). For the minimum value of (2) the

following upper and lower bounds hold:

m(0) + ε f̄ ≥ m(ε) ≥ m(0) + ε f̄ − 2
√

kLε

for all ε ≥ 0.
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Proof. The upper bound, u(ε) := m(0)+ε f̄ , was proved in proposition 2.5. To

prove the lower bound take X∗ ∈ X∗(ε) and Y∗ ∈ argmin{ f (X) : X ∈ X∗(0)}.

Hence

m(ε) − u(ε) := m(ε) − m(0) − ε f̄

= Tr{C X∗} + ε f (X∗) − Tr{CY∗} − ε f (Y∗)

=
(

Tr{C X∗} − Tr{CY∗}
)

+ ε
(

f (X∗) − f (Y∗)
)

≥ 0 + ε
(

f (X∗) − f (Y∗)
) since Y∗∈X∗(0)

and X∗∈K

≥ −ε| f (X∗) − f (Y∗)|

≥ −εL‖X∗ − Y∗‖ since f is Lipschitz

≥ −εL
(
‖X∗‖ + ‖Y∗‖

)

≥ −εL(
√

k +
√

k)

In last step we used that X∗ and Y∗ ∈ K and the proposition 2.1. This proves

the proposition 2.7. �

The main result of this work is the following theorem, which improves the

proposition 2.7:

Theorem 2.8 (A quadratic error bound). If f is a Lipschitz-continuous func-

tion with Lipschitz-constant L then the following upper and lower bound hold:

m(0) + ε f̄ ≥ m(ε) ≥ m(0) + ε f̄ −
L2

α(C, k)
ε2

for all 0 ≤ ε. Here α(C, k) is strict positive and given by

α(C, k) =
1

2
min

{
λk(C) − λr (C)

s − (k + 1)
,
λs(C) − λk(C)

k

}
, (9)

where the values r = r(C, k) and s = s(C, k) are given by the definition 2.2.

Example. In the last example (n = 10, and k = 6) we have for a) α(C, 6) =

1/4, b) α(C, 6) = 7/12, c) α(C, 6) = 1/8 and d) α(C, 6) = +∞.

Remark 2.9. In the particular case, where the eigenvalues of C are ordered

as λ1 ≤ λ2 ≤ λk < λk+1 ≤ λn , that is, s = k + 1, we have α =
λk+1−λk

2k .
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Remark 2.10. In the particular case k = 1 (⇒ r = 0) we obtain:

α(C, 1) =
λ1+d(C,1) − λ1

2
,

where d(C, 1) is the multiplicity (degeneracy) of λ1(C). That is, if k = 1, then

α can be taken as the half of the gap of the first eigenvalue.

Remark 2.11. The expression (9) for the strict positive constant α(C, k) is

obtained in lemma B.1 (see appendix B). The lemma B.1 states that α(C, k)

given by (9) satisfies the inequality

Tr{C X} −
k∑

i=1

λi (C) ≥ α(C, k) min
Y∈X∗(0)

‖X − Y‖2 (10)

for all X ∈ K.

We comment two cases where α(C, k) = +∞.

Remark 2.12. If d = n then one has C = λ1(C)I (a multiple of the iden-

tity matrix). Note that in this case we have r = 0 and s = n + 1. Hence,

by definition (9) α(C, k) = +∞. Note that the left hand side (LHS) of (10)

is zero since Tr{C X} = kλ1(C) for X ∈ K. This means that X∗(0) =

K. The RHS of (10) is also zero because in that case X∗(0) = K. There-

fore, the largest (the best) α for which the inequality (10) holds is +∞. Note

also that, in the case d = n, the equality m(ε) = m(0) + ε f̄ holds for all

ε ≥ 0 since X∗(0) = K. This is in agreement with the theorem 2.8: 0 ≤

m(0) + ε f̄ − m(ε) ≤ L2

α(C)
ε2 since L2

+∞ε2 = 0. That is, the theorem 2.8

confirms that if d = n the exact minimum value m(ε) coincides with the

upper bound for all ε ≥ 0.

Remark 2.13. If k = n then s = n+1. According to definition (9) we also have

α(C, k) = +∞. Note that, if k = n then K = {I } = X∗(0) because if X ∈ Mn

with Tr{X} = n and I � X � 0 then X = I . Consequently both the LHS and

the RHS of (10) are zero. This means that we can take α(C, n) = +∞. Note

also that, in the case k = n, the equality m(ε) = m(0) + ε f̄ = Tr{C} + ε f (I )

holds for all ε ≥ 0 since X∗(0) = K = {I }.
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Proof of Theorem 2.8

Proof. The upper bound was proved in proposition 2.5. To prove the lower

bound take a X∗ ∈ X∗(ε), a Y∗ ∈ argmin{ f (X) : X ∈ X∗(0)} and a Y∗∗ ∈

argmin{‖X∗ − Y‖2 : Y ∈ X∗(0)}.

Since X∗ ∈ X∗(ε) and Y∗ ∈ K we have:

0 ≤ Tr{CY∗} + ε f (Y∗) −
(
Tr{C X∗} + ε f (X∗)

)
. (11)

Developing (11), using that Tr{CY∗} =
∑k

i=1 λi (C) and (10) we obtain:

0 ≤ Tr{CY∗} + ε f (Y∗) −
(
Tr{C X∗} + ε f (X∗)

)

= −
(
Tr{C X∗} − Tr{CY∗}

)
+ ε

(
f (Y∗) − f (X∗)

)

= −

(

Tr{C X∗} −
k∑

i=1

λi (C)

)

+ ε
(

f (Y∗) − f (X∗)
)

≤ −α(C, k) min
Y∈X∗(0)

{
‖X∗ − Y‖2

}
+ ε

(
f (Y∗) − f (X∗)

)
see (10)

= −α(C, k)‖X∗ − Y∗∗‖
2 + ε

(
f (Y∗) − f (X∗)

)

≤ −α(C, k)‖X∗ − Y∗∗‖
2 + ε

(
f (Y∗∗) − f (X∗)

)
by definition of Y∗

≤ −α(C, k)‖X∗ − Y∗∗‖
2 + εL‖Y∗∗ − X∗‖ since f is Lipschitz.

We conclude two things:

α(C, k)‖X∗ − Y∗∗‖
2 ≤ εL‖X∗ − Y∗∗‖ (12)

and
Tr{CY∗} + ε f (Y∗) −

(
Tr{C X∗} + ε f (X∗)

)

≤ −α(C, k)‖X∗ − Y∗∗‖
2 + εL‖Y∗∗ − X∗‖.

(13)

Note that Tr{CY∗} =
∑k

i=1 λi (C) = m(0) (because Y∗ ∈ X∗(0)). Further

recall that

f (Y∗) = min
X∈X∗(0)

f (X) =: f̄ and Tr{C X∗} + ε f (X∗) = m(ε)

because X∗ ∈ X∗(ε). Hence, we rewrite (13) as

m(0) + ε f̄ − m(ε) ≤ −α(C, k)‖X∗ − Y∗∗‖
2 + εL‖Y∗∗ − X∗‖ , (14)
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that is,

m(ε) ≥ m(0) + ε f̄ + α(C, k)‖X∗ − Y∗∗‖
2 − εL‖X∗ − Y∗∗‖ . (15)

Now, we consider two cases in (15):

Case 1: X∗ = Y∗∗. In this case we obtain directly from (15) that m(ε) ≥

m(0) + ε f̄ .

Case 2: X∗ 6= Y∗∗. In this case follows from (12) that ‖X∗ − Y∗∗‖ ≤ εL
α(C,k)

.

Replacing this last inequality in (15) we obtain:

m(ε) ≥ m(0) + ε f̄ + α(C, k)‖X∗ − Y∗∗‖
2 −

L2

α(C, k)
ε2

≥ m(0) + ε f̄ −
L2

α(C, k)
ε2 .

Since m(0) + ε f̄ ≥ m(0) + ε f̄ − L2

α(C)
ε2 we conclude that in both cases the

following lower bound for m(ε) holds:

m(ε) ≥ m(0) + ε f̄ −
L2

α(C, k)
ε2 .

This proves the theorem 2.8. �

3 Examples and comparison between the perturbed matrix

minimization problem (2) and perturbed LP

In this section we give two examples of the minimization problem (2) for n = 2

and k = 1. We present the exact minimum value and compare it with the upper

and lower bounds. The first example consists in an perturbed SDP that is not a

perturbed LP.

Example 1: Consider the matrix C =
[

1 1
1 1

]
, n = 2, k = 1 and the nonlinear

function f (X) = X1,1 X1,1. In this example the minimization problem (2) is

given by:

m(ε) = min
X1,1+X2,2=1 ,

X1,1 , X2,2≥ 0 ,

X2
1,2≤X1,1 X2,2

X1,1 + 2X1,2 + X2,2 + εX2
1,1 (16)
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Remark 3.1. In (16) the constraint, X2
1,2 ≤ X1,1 X2,2, is nonlinear and the

variable X1,2 appears in the objective function. Hence, the above perturbed

matrix minimization problem is not a perturbed LP.

In this example we have:

– The eigenvalues and eigenvectors of C are: λ1(C) = 0, λ2(C) = 2,

vT
1 = 1√

2
(1, 1), vT

2 = 1√
2
(1, −1);

– The solution set of linear part is X∗(0) =
{
v1v

T
1 =

[
1/2 −1/2

−1/2 1/2

]}
;

– The minimum value of f on the solution set of the linear part is f̄ :=

minX∈X∗(0) f (X) = 1/4;

– The Lipschitz-constant is L =
√

2. To see this, note that for X, Y ∈ K

holds:

X2,2 = 1 − X1,1 and Y2,2 = 1 − Y1,1 (17)

and

0 ≤ X1,1, Y1,1 ≤ 1 . (18)

Taking (17) and (18) into account, we get

‖X − Y‖ =
(
|X1,1 − Y1,1|

2 + 2|X1,2 − Y1,2|
2 + |X2,2 − Y2,2|

2
)1/2

=
(

2|X1,1 − Y1,1|
2 + 2|X1,2 − Y1,2|

2
)1/2

due to (17)

≥
√

2|X1,1 − Y1,1| =

√
2

2
2 |X1,1 − Y1,1|

≥

√
2

2
|X1,1 + Y1,1| |X1,1 − Y1,1| due to (18)

=
1

√
2

|X2
1,1 − Y 2

1,1| .

That is,

|X2
1,1 − Y 2

1,1| ≤
√

2 ‖X − Y‖ (19)

From (19) we conclude that the Lipschitz-constant for f (X) = X2
1,1

can be taken as
√

2. Moreover, L =
√

2 is the best (the smallest)

Lipschitz-constant since Lbest = sup{| f (X) − f (Y )|/‖X − Y‖: X, Y ∈
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K with X 6= Y } ≥ limδ→0 | f (A) − f (Bδ)|/‖A − Bδ‖ =
√

2 for the

choice A =
[

1 0
0 0

]
and Bδ =

[
1−δ 0

0 δ

]
with 0 < δ ≤ 1;

– The upper bound in this example (see proposition 2.5) is u(ε) = 1
4ε;

– Since r = 0 and s = 2 the lower bound in this example (see theorem 2.8)

is `(ε) = 1
4ε − 2ε2;

According to proposition C.1 the exact minimum value m(ε) can be expres-

sed as:

m(ε) = max
r∈[0,1]

{
1 + εr −

√
(εr)2 + 1 − εr2

}
. (20)

For some values of ε > 0 the maximum value in (20) can be obtained with

help of the software Maple (command maximize). We present the values of

m(ε) and the corresponding lower and upper bounds in the following table:

ε u(ε) = ε/4 m(ε) `(ε) = ε/4 − 2ε2

1/10 0.2500000000 e-1 0.2381016622 e-1 0.0500000000 e-1
1/100 0.2500000000 e-2 0.2487562438 e-2 0.2300000000 e-2
1/1000 0.2500000000 e-3 0.2498748126 e-3 0.2480000000 e-3
1/10000 0.2500000000 e-4 0.2499949982 e-4 0.2498000000 e-4

Table 1 – Comparison among upper bound, exact minimum value and lower bound for

example 1.

Table 1 shows that for ε > 0 the upper bound u(ε) is always strict larger than

the exact value m(ε). We prove this fact rigorously in the proposition C.2.

Example 2: Consider the diagonal matrix C =
[

0 0
0 2

]
, n = 2, k = 1, r = 0,

s = 2 and the same nonlinear function f (X) = X2
1,1 as in the example 1. In

this case the minimization problem (2) is given by:

m(ε) = min
X1,1+X2,2=1 ,

X1,1 , X2,2≥ 0 ,

X2
1,2≤X1,1 X2,2

2X2,2 + εX2
1,1 .

Since the variable X1,2 does not appear in the above objective function we can

rewrite this minimization problem as:

m(ε) = min
0≤X1,1≤1

2(1 − X1,1) + εX2
1,1 .
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This shows that the example 2 of perturbed matrix minimization problem is not

more than a perturbed LP.

In this example we have m(0) = λ1(C) = 0, λ2(C) = 2; r = 0, s = 2;

vT
1 = (1, 0), vT

2 = (0, 1); f̄ = f (v1v
T
1 ) = 1 and L =

√
2 (see example 1).

Therefore u(ε) = ε (see proposition 2.5) and `(ε) = ε − 2ε2 (see theorem 2.8).

On the other hand, we can easily compute the exact minimum value as:

m(ε) =

{
ε if 0 ≤ ε ≤ 1,

2 − 1/ε if 1 < ε.
(21)

On the contrary of example 1, note that u(ε) = m(ε) for all 0 ≤ ε ≤ 1. That

is, there is no error by replacing the upper bound by the exact minimum value if

we require that ε be small enough. This is a property of all Linear Programmings

perturbed by a Lipschitz function (see section 4).

4 Note about LP perturbed by a Lipschtz function

In the context of Linear Programming (LP) the corresponding matrix minimiza-

tion problem (2) is given by:

mLP(ε) := min

{
n∑

i=1

ci xi + ε f (x) : x ∈ KLP

}

(22)

for a fixed c ∈ Rn . Here the domain of the objective function is:

KLP :=

{

x ∈ Rn :
n∑

i=1

xi = k and 1 ≥ x1, x2, . . . , xn ≥ 0

}

and f : KLP → R is a Lipschitz function, that is, there is a 0 ≤ Lmax < ∞

such that:

| f (x)− f (y)| ≤ Lmax‖x −y‖max, where ‖x −y‖max := max
i=1,...n

|xi −yi | (23)

is the max-norm.

We define S(0) := argmin
{ ∑n

i=1 ci xi : x ∈ KLP

}
, that is, the preimage of

the value mLP(0) (the set of minimizers of the unperturbed problem), S(ε) :=

argmin
{ ∑n

i=1 ci xi + ε f (x) : x ∈ KLP

}
, S f (0) := argmin{ f (x) : x ∈ S(0)} and

f̄ := min{ f (x) : x ∈ S(0)}.
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The authors [1] showed that for small enough ε there is no error by replacing

the upper bound, uLP(ε) := mLP(0) + ε f̄ , by the exact minimum value, mLP(ε),

namely:

mLP(ε) = mLP(0) + ε f̄ for all 0 ≤ ε ≤ εo , (24)

where εo is strict positive and given by:

εo :=
αLP

Lmax

> 0 . (25)

This means that S f (0) ⊂ S(ε) for all 0 ≤ ε ≤ εo. In [1] αLP can be taken as the

largest positive constant that satisfies the inequality

n∑

i=1

ci xi − mLP(0) ≥ αLP min
y∈S(0)

‖x − y‖max (26)

for all x ∈ KLP. It is interesting to compare (26) with (10) and (9). In fact, in

[1] it is only proved that αLP > 0. That is, in [1] there is no explicit formula for

αLP in terms of c.

Remark 4.1. In this section we are using the max-norm in (23) and (26) in

order to follow [1]. We can assure the strict positiveness of εo for any choice of

norm, since in Rn all norms are equivalent.

In order to illustrate the result (24)-(25) of [1], note that minimization problem

of example 2 is as in (22). To see this, we identify x1 = X1,1 and x2 = X2,2.

Hence,

mLP(ε) = min
x1+x2=1
x1 , x2≥0

2x2 + εx2
1 . (27)

It is easy to show that for this example that Lmax = 2 and αLP = 2. So, by (25)

εo = 1. According to the exact solution, see (21), εo = 1 is the best (the largest)

value for the equation (24) holds true.

Appendix A. Proof of proposition 2.3

In order to prove the proposition 2.3 we need first a result (see corollary A.2

bellow), which is a direct consequence of the following lemma:
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Lemma A.1 (Cauchy-Schwarz-Bunjakowski Inequality for the entries of pos-

itive semidefinite matrices). If W ∈ Mn is a symmetric positive semidefinite

matrix then its entries satisfy the following inequality:
∣
∣
∣Wi, j

∣
∣
∣
2

≤ Wi,i W j, j for

all i, j = 1, 2, . . . , n.

Proof. see [4] page 398. �

Corollary A.2. Consider W ∈ Mn with I � W � 0. In this case we have the

following implications:

a) If W`,` = 1 for some ` ∈ {1 , . . . , n } then W`, j = 0 for all 1 ≤ j ≤ n

( j 6= `) and Wi,` = 0 for all 1 ≤ i ≤ n (i 6= `);

b) If W`,` = 0 for some ` ∈ {1 , . . . , n } then W`, j = 0 for all 1 ≤ j ≤ n

and Wi,` = 0 for all 1 ≤ i ≤ n;

Proof. To prove a) we use that I � W , so I − W � 0. It follows by

lemma A.1 that
∣
∣
∣δi, j − Wi, j

∣
∣
∣
2

≤ (1 − Wi,i )(1 − W j, j ). Hence, if W`,` = 1

then W`, j = 0 for j 6= ` and Wi,` = 0 for i 6= `. The proof of b) uses that

W � 0 and the lemma A.1. �

Proof of Proposition 2.3.

Proof. Since C is symmetric there is an orthonormal-basis of eigenvectors.

We denote it by {vi }n
i=1 ⊂ Rn . Since this basis is orthonormal the trace

Tr{C X} is expressed as

Tr{C X} =
n∑

i=1

vT
i C Xvi =

n∑

i=1

λi (C) vT
i Xvi . (28)

We define Wi, j (V, X) := vT
i Xv j for i, j = 1, 2, . . . , n. That is, the matrix W

is given by W := V T X V . Recall that V is the matrix, whose columns are the

eigenvectors vi . Note that for all X ∈ K we have:

0 ≤ Wi,i (V, X) ≤ 1 and
n∑

i=1

Wi,i (V, X) = k, (29)
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because I � X � 0 and Tr{X} = k respectively. Combining (28) with (29)

we obtain:

min
Tr{X}=k:

I�X�0

Tr{C X} ≥ min
x∈C

n∑

i=1

λi (C) xi , (30)

where the set C :=
{
x = (x1, x2, . . . , xn) ∈ [0, 1]n : x1 + x2 + ∙ ∙ ∙ + xn = k

}

is convex and compact.

We claim that we have equality in (30). To see this, let y ∈ C be a minimizer

of the right hand side (RHS) of (30). Further, take X (y) := V D(y)V T , where

D(y) is the diagonal matrix which the diagonal entries are the yi ’s and V is the

matrix which columns are the eigenvectors vi . We will show that X (y) ∈ K and

Tr{C X (y)} is equal the minimum value of the RHS of (30). Indeed, X (y) ∈ K

since Tr{V D(y)V T } = Tr{D(y)} =
∑n

i=1 yi = k and I � V D(y)V T � 0 since

1 ≥ yi ≥ 0. Moreover, Tr{C X (y)} = Tr{CV D(y)V T } = Tr{V T CV D(y)} (the

trace is cyclic). On the other hand, V T CV = D(λ) (spectral decomposition

of C). Hence, Tr{C X (y)} = Tr{D(λ) D(y) } =
∑

i=1 λi (C)yi , which is the

minimum value of the RHS of (30). Therefore,

min
x∈C

n∑

i=1

λi (C) xi =
∑

i=1

λi (C)yi = Tr{C X (y)} ≥ min
Tr{X}=k:

I�X�0

Tr{C X} . (31)

Comparing (30) with (31) we obtain the claim, that is,

min
Tr{X}=k:

I�X�0

Tr{C X} = min
x∈C

n∑

i=1

λi (C) xi . (32)

The fundamental theorem of linear optimization (FTLP, see [2]) states that

min
x∈C

n∑

i=1

λi (C) xi = min
x∈Ext(C)

n∑

i=1

λi (C) xi . (33)

Here Ext(C) is the set of the extreme points of C. It is well-known that

Ext(C) =
{
x = (x1, x2, . . . , xn) ∈ {0, 1}n | x1 + x2 + ∙ ∙ ∙ + xn = k

}
. (34)

Note that #Ext(C) =
(

n
k

)
Hence:

min
x∈Ext(C)

n∑

i=1

λi (C) xi = min
1≤i1<i2<∙∙∙<ik≤n

λi1
(C) + λi2

(C) + ∙ ∙ ∙ λik
(C). (35)

Comp. Appl. Math., Vol. 29, N. 2, 2010



“main” — 2010/7/1 — 16:03 — page 156 — #18

156 ERROR BOUND FOR A PERTURBED MINIMIZATION PROBLEM

The minimization problem of the right side of (35) is easy to solve. More

precisely:
min

1≤i1<i2<∙∙∙<ik≤n
λi1

(C) + λi2
(C) + ∙ ∙ ∙ λik

(C)

= λ1(C) + λ2(C) + ∙ ∙ ∙ + λk(C).

(36)

In the last equality we used the fact that λ1(C) ≤ λ2(C) ≤ ∙ ∙ ∙ ≤ λn(C) (in-

creasing order).

Combining (32), (33), (35) and (36) follows that λ1(C) + ∙ ∙ ∙ + λk(C) is the

minimum value of the problem (1).

Next, we will characterize the set of minimizers of the problem (1). We denote

it by X∗(0).

According to the definitions of r(C, k), s(C, k) and d(C, k) (see definition 2.2)

the eigenvalues of C are ordered as

λ1 ≤ . . . ≤ λr < λr+1 = λr+2 = ∙ ∙ ∙ = λr+d < λs ≤ ∙ ∙ ∙ ≤ λn.

The FTLP states also that

argmin

{
n∑

i=1

λi (C)xi : x ∈ C

}

= convex hull of Ext?(C) , (37)

where

Ext?(C) :=





x = (x1, x2, . . . , xn) ∈ {0, 1}n :

x1 = x2 = ∙ ∙ ∙ = xr = 1,

xs = xs+1 = ∙ ∙ ∙ = xn = 0

and

x1 + x2 + ∙ ∙ ∙ + xn = k





. (38)

Note that #Ext∗(C) =
(

d
k−r

)
. The set of the RHS of (37) is the smallest convex

subset of C that contains Ext∗(C). Recalling (38) and the fact n = r + d + s,

it follows that the convex hull of Ext∗(C) is clearly given by:

{

(1, ∙ ∙ ∙ , 1, tr+1, tr+2, ∙ ∙ ∙ , tr+d, 0, ∙ ∙ ∙ 0) ∈ [0, 1]n :
r+d∑

i=r+1

ti = k − r

}

. (39)

We define the following three sets: 1) Kd := {Z ∈ Md : Tr{Z} = k − r and

I � Z � 0},
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2)

Kr,d,s :=






{Ir ⊕ Z ⊕ 0 : Z ∈ Kd} if r ≥ 1 and s ≤ n,

{Z ⊕ 0 : Z ∈ Kd} if r = 0 and s ≤ n,

{Ir ⊕ Z : Z ∈ Kd} if r ≥ 1 and s = n + 1,

Kd if r = 0 and s = n + 1,

and 3) VKr,d,s V T := {V W V T : W ∈ Kr,d,s}. We mean by Ir ⊕ Z ⊕ 0 the

n × n matrix in the block form:



Ir | 0 | 0
− − − − − −
0 | Z | 0
− − − − − −
0 | 0 | 0





In this block, Ir is the r × r identity matrix, Z is a d × d matrix and, by 0 in

the diagonal, we mean the (n − s + 1) × (n − s + 1) zero-matrix.

We claim that if X∗ is a minimizer of problem (2) then the corresponding

matrix W∗ = W (V, X∗) := V T X∗V is an element ofKr,d,s . To see this, note that

if X∗ is a minimizer then by (28) one has Tr{C X∗} =
∑n

i=1 λi (C)W∗i,i and by

(37) and (39) the vector
(

W∗1,1, W∗2,2, . . . , W∗n,n

)
must satisfy:

a) W∗1,1 = W∗2,2 = ∙ ∙ ∙ = W∗r,r = 1;

b) W∗s,s = W∗s+1,s+1 = ∙ ∙ ∙ = W∗n,n = 0;

c)
∑n

i=1 W∗i,i = k .

(40)

Now, combining (40) a) and (40) b) with the corollary A.2 we conclude that:

a) For any i = 1, 2, . . . , r and j = 1, 2, . . . , n we have W∗i, j = δi, j ,

a’) For any j = 1, 2, . . . , r and i = 1, 2, . . . , n we have W∗i, j = δi, j ,

b) For any i = s, s + 1, . . . , n and j = 1, 2, . . . , n we have W∗i, j = 0 and

b’) For any j = s, s + 1, . . . , n and i = 1, 2, . . . , n we also have W∗i, j = 0.

This proves that the n × n matrix W∗ is of the form




Ir | 0 | 0

− − − − − −
0 | ? | 0

− − − − − −
0 | 0 | 0



 .
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Here ? is a d × d (note that d = s − r − 1) submatrix which satisfies I � ? � 0

because W∗ = V T X∗V and X∗ satisfies also I � X � 0. Due to the (40) c)

one has Tr{?} = k. Therefore W∗ ∈ Kr,d,s . Since V T = V −1 (because V is

orthogonal) we obtain that X∗(0) ⊂ V Kr,d,s V T .

On the other hand, the set VKr,d,s V T is a subset of X∗(0) because if Z ∈ Kd

then

Tr
{
C V (Ir ⊕ Z ⊕ 0)V T

}
= Tr{3 (Ir ⊕ Z ⊕ 0)}

since Tr is cyclic and C = V 3V T

=
r∑

i=1

λi 1 +
d∑

i=1

λr+i Zr+i,r+i =
r∑

i=1

λi + λk

d∑

i=1

Zr+i,r+i

since λr+1 = ∙ ∙ ∙ λr+d = λk =
r∑

i=1

λi + (k − r)λk

since Tr{Z} = k − r =
k∑

i=1

λi

Therefore VKr,d,s V T ⊂ X∗(0).

In the particular case d = 1 (⇒ r + 1 = k) we have Z = [1]. Hence, the

only element of the set X∗(0) is X = V (Ir ⊕ [1] ⊕ 0)V T = V (Ir+1 ⊕ 0)V T =

V (Ik ⊕ 0)V T =
∑k

i=1 viv
T
i . This is a orthogonal projection of rank k.

Recall that if the matrix C has degenerate eigenvalues then there are many

choices for the orthogonal matrix V . We prove that the set of minimizers does

not depend on the choice of V . Consider the eigenvalues of C without counting

the multiplicity, that is, μ1(C) < μ2(C) < ∙ ∙ ∙ < μp(C). We denote by ν1

the multiplicity of μ1(C), by ν2 is the multiplicity of μ2(C) and so on. The

corresponding eigenspaces Ei ⊂ Rn , i = 1, . . . , p are pairwise orthogonal and

dim Ei = νi . Note that
∑p

i=1 νi = n. The many choices for V comes from

the fact that there are many orthogonal basis for each eigenspace. However,

two different orthogonal basis of an eigenspace are related to each other by an

orthogonal matrix. Suppose that Ṽ were other choice, then V and Ṽ are related

by Ṽ = V (U1 ⊕ U2 ⊕ ∙ ∙ ∙ ⊕ Up) where Ui is a νi × νi orthogonal matrix.

We claim that the solution sets X∗(0) := {V (Ir ⊕ Z ⊕ 0)V T : Z ∈ Kd } and

X̃∗(0) := {Ṽ (Ir ⊕ Z ⊕ 0)Ṽ T : Z ∈ Kd } are equal. To see this, note that
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Ṽ (Ir ⊕ Z ⊕ 0)Ṽ T = V (U1 ⊕ ∙ ∙ ∙ ⊕ Up)(Ir ⊕ Z ⊕ 0)(U1 ⊕ ∙ ∙ ∙ ⊕ Up)
T V T =

V ( Ĩr ⊕ Z̃ ⊕ 0)V T where Z̃ = (U1 ⊕ ∙ ∙ ∙ ⊕ Up)Z(U1 ⊕ ∙ ∙ ∙ ⊕ Up)
T and Ĩr =

(U1 ⊕ ∙ ∙ ∙ ⊕ Up)Ir (U1 ⊕ ∙ ∙ ∙ ⊕ Up)
T . But it easy to see that Ĩr = Ir . Therefore,

Ṽ (Ir ⊕ Z ⊕ 0)Ṽ T = V (Ir ⊕ Z̃ ⊕ 0)V T and since Z ∈ Kd ⇔ Z̃ ∈ Kd follows

the claim. �

5 Proof of Lemma B.1

Lemma B.1. Let C ∈ Mn be a symmetric matrix. For each k = 1, 2, . . . , n,

the following strict positive constant α(C, k) defined by

α(C, k) :=
1

2
min

{
λk(C) − λr (C)

s − (k + 1)
,

λs(C) − λk(C)

k

}
(41)

satisfies the inequality

Tr{C X} −
k∑

i=1

λi (C) ≥ α(C, k) min
Y∈X∗(0)

{
‖X − Y‖2

}
(42)

for all X ∈ K. In (41) the values r = r(C, k) and s = s(C, k) are given by

definition 2.2. Moreover, we do the convention that λ0(C) := −∞ in the case

r = 0 and λn+1(C) = +∞ in the case s = n + 1. In (42) we denote by X∗(0)

the set argmin{Tr{C X} : X ∈ K}.

The proof of the lemma B.1 is based on the three propositions below. More

precisely, the propositions B.2, B.3 and B.6.

Note that the matrix function Tr{ ∙ } (consequently also ‖ ∙ ‖2) is invariant by

conjugation of an orthogonal matrix, that is, Tr{S AST } = Tr{A} for all A ∈ Mn

and S orthogonal. Due to this fact, we can reduce the proof of (42) to the case

that C is diagonal. More precisely, we have:

Proposition B.2. Let C = V 3V T be a spectral decomposition of the sym-

metric matrix C , with diagonal matrix 3 := diag( λ1(C), . . . , λn(C) ) and a

corresponding orthogonal eigenvector matrix V . If X ∈ K then for W =

W (X) := V T X V holds:

Tr{C X} −
k∑

i=1

λi (C) = Tr{3W } −
k∑

i=1

λi (C) (43)
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and

min
Y∈X∗(0)

{
‖X − Y‖2

}
≤ min

Z∈Kd

{
‖W − Ir ⊕ Z ⊕ 0‖2

}
. (44)

Here Kd :=
{

Z ∈ Md : Tr{Z} = k − r and I � Z � 0
}
.

Proof. Since the trace is orthogonal-invariant we have

Tr{C X} = Tr
{

V 3V T V W V T
}

= Tr{3W }.

This proves (43). To prove (44) take Z∗∗ ∈ argmin{‖W − Ir ⊕Z⊕0‖2 : Z ∈ Kd}.

Due to the proposition 2.3 Y∗∗ := V (Ir ⊕ Z∗∗ ⊕ 0)V T ∈ X∗(0). From the

orthogonal invariance of ‖ ∙ ‖2 follows that the

min
Y∈X∗(0)

‖X − Y‖2 ≤ ‖X − Y∗∗‖
2 = ‖V W V T − V (Ir ⊕ Z∗∗ ⊕ 0)V T ‖2

= ‖W − Ir ⊕ Z∗∗ ⊕ 0‖2 = min
Z∈Kd

‖W − Ir ⊕ Z ⊕ 0‖2.

This proves (44). �

In order to prove (42) we establish a lower bound for Tr{3W } −
∑

i=1 λi (C)

(see proposition B.3) and an upper for minZ∈Kd

{
‖W − Ir ⊕ Z ⊕ 0‖2

}
(see

proposition B.6). Namely:

Proposition B.3. Let be n ≥ 2. For all W ∈ K we have

Tr{3W } −
k∑

i=1

λi (C) ≥
(
λk(C) − λr (C)

)
(

r −
r∑

i=1

Wi,i

)

+
(
λs(C) − λk(C)

) n∑

i=s

Wi,i .

(45)

In the cases r = 0 and s = n + 1 we have

Tr{3W } −
k∑

i=1

λi (C) ≥
(
λs(C) − λk(C)

) n∑

i=s

Wi,i . (46)

and

Tr{3W } −
k∑

i=1

λi (C) ≥
(
λk(C) − λr (C)

) (
r −

r∑

i=1

Wi,i

)
(47)

respectively.

Comp. Appl. Math., Vol. 29, N. 2, 2010



“main” — 2010/7/1 — 16:03 — page 161 — #23

MARCOS VINICIO TRAVAGLIA 161

Proof. Recall that W ∈ K means that Tr{W } = k and I � W � 0. Conse-

quently Wi,i − 1 ≤ 0, Wi,i ≥ 0 and
∑n

i=1 Wi,i = k. In order to simplify the

notation we identify Wi,i with wi and λi (C) with λi . Note that

Tr{3W } −
k∑

i=1

λi =
n∑

i=1

λiwi −
k∑

i=1

λi (C) 1 =
k∑

i=1

λi (wi − 1) +
n∑

i=k+1

λiwi

=
r∑

i=1

λi (wi − 1) +
k∑

i=r+1

λi (wi − 1) +
s−1∑

i=k+1

λiwi +
n∑

i=s

λiwi

From the following observations:

a) Combining wi − 1 ≤ 0 for i = 1, . . . , k with λr ≥ λi for i = 1, . . . , r

and λk ≤ λ j for j = r + 1, . . . , k;

b) Combining wi ≥ 0 for i = s, . . . , n with λs ≤ λi for i = s, . . . , n and

λk ≥ λ j for j = r + 1, . . . , k;

c) λk = λr+i for i = 1, . . . , d and λk = λk+ j for j = 1, . . . , s − 1;

d)
∑k

i=r+1 wi +
∑s−1

i=k+1 wi = k−
∑r

i=1 wi −
∑n

i=s wi

(
since

∑n
i=1 wi = k

)
,

we conclude that

Tr{3W } −
k∑

i=1

λi ≥ λr

(
− r +

r∑

i=1

wi

)

+ λk

(
− (k − r) +

k∑

i=r+1

wi

)
+ λk+1

s−1∑

i=k+1

wi + λs

n∑

i=s

wi

= −λr

(
r −

r∑

i=1

wi

)
+ λk

(
r − k +

k∑

i=r+1

wi +
s−1∑

i=k+1

wi

)
+ λs

n∑

i=s

wi

= −λr

(
r −

r∑

i=1

wi

)
+ λk

(
r −

r∑

i=1

wi −
n∑

i=s

wi

)
+ λs

n∑

i=s

wi

=
(
λk − λr

) (
r −

r∑

i=1

wi

)
+

(
λs − λk

) n∑

s=1

wi ,

which proves the proposition B.3. �

In order to establish an upper bound for minZ∈Kd
‖W − Ir ⊕ Z ⊕ 0‖2 we need

first the following two lemmas:
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Lemma B.4. For any positive semidefinite matrix A ∈ Mp the inequality

‖A‖2 := Tr{A2} ≤
(
Tr{A}

)2
=: Tr2{A} (48)

holds.

Proof. To prove (48) note that if A � 0 then 0 ≤ λi (A). Hence,

‖A‖2 =
p∑

i=1

λ2
i (A) ≤

p∑

i=1

λ2
i (A) + 2

p∑

i< j

λi (A) λ j (A)

=

(
p∑

i

λi (A)

)2

= Tr2{A}.

(49)

�

Lemma B.5. For any symmetric matrix A ∈ Md with I � A � 0 we have the

following inequality

min
{
‖A − Z‖2 : Z ∈ Md with Tr{Z} = k − r and I � Z � 0

}

≤
(
(k − r) − Tr{A}

)2 (50)

Proof. Case 1: A 6= 0. Since A � 0 we have in this case that Tr{A} > 0. So

we can take Zo := k−r
Tr{A} A as a trial element of the domain of the minimization

problem (50). Note that Zo satisfies I � Z � 0, since A also does, and satisfies

Tr{Zo} = k − r . Hence, the Left Hand Side, LHS, of (50) has the following

upper bound:

LHS ≤ ‖A − Zo‖
2 =

(
1 −

k − r

Tr{A}

)2

‖A‖2

=
(
(k − r) − Tr{A}

)2 ‖A‖2

Tr2{A}
.

(51)

On the other hand, since A � 0 we have by (48) that ‖A‖2/Tr2{A} ≤ 1. This

closes the proof in the first case.

Case 2: A = 0. In this case Tr{A} = 0. Using (48) again, we have ‖Z‖2 ≤

Tr2{Z}. Moreover, Tr2{Z} = (k − r)2 =
(
(k − r) − 0

)2
=

(
(k − r) − Tr{A}

)2
.

Hence, LHS ≤
(
(k − r) − Tr{A}

)2
. This proves the lemma B.5. �
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Proposition B.6. The inequality

min
Z∈Kd

‖W − Ir ⊕ Z ⊕ 0‖2

≤ 2

{
(
s − (k + 1)

)
(

r −
r∑

i=1

Wi,i

)

+ k

(
n∑

i=s

Wi,i

)} (52)

holds for all W ∈ K. In the cases r = 0 and s = n + 1 the inequality (52)

becomes

min
Z∈Kd

‖W − Z ⊕ 0‖2 ≤ 2 k

(
n∑

i=s

Wi,i

)

(53)

and

min
Z∈Kd

‖W − Ir ⊕ Z‖2 ≤ 2
(
s − (k + 1)

)
(

r −
r∑

i=1

Wi,i

)

(54)

respectively.

Proof. We write W ∈ K in the block form:

W =







R(W ) | E(W ) | F(W )

− − − − − −

ET (W ) | A(W ) | G(W )

− − − − − −

FT (W ) | GT (W ) | S(W )





 (55)

Here R(W ) ∈ Mr , A(W ) ∈ Md , S(W ) ∈ Mn−(d+r), E(W ) ∈ Mr×d , F(W ) ∈

Mr×(n−(r+d)) and G(W ) ∈ Md×(n−(r+d)). In the particular case r = 0 it is

understood that the blocks R(W ), E(W ), E T (W ), F(W ) and F T (W ) do not

appear in (55). Similarly, if s = n + 1, that is, r + d = n, then the blocks S(W ),

F(W ), F T (W ), G(W )and GT (W ) does not appear in (55). The square of the

Frobenius norm of the matrix Ir ⊕ Z ⊕ 0 − W splits as

‖Ir ⊕ Z ⊕ 0 − W‖2 = ‖Ir − R(W )‖2 + ‖Z − A(W )‖2 + ‖S(W )‖2

+ 2 ‖E(W )‖2 + 2 ‖F(W )‖2 + 2 ‖G(W )‖2
(56)

Since I � W we also have that Ir � R(W ), that is, Ir − R(W ) � 0. Using

(48) we have:

‖Ir − R(W )‖2 ≤
(

r − Tr{R(W )}
)2

(57)
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Since I � W � 0 we also have I � A(W ) � 0. Hence, from lemma B.5

follows that

min
Z∈Kd

‖A(W ) − Z‖2 ≤
(
(k − r) − Tr{A(W )}

)2
, (58)

since Tr{Z} = k − r .

Recall that k = Tr{W } = Tr{R(W )} + Tr{A(W )} + Tr{S(W )}, consequently

Tr{A} = k − Tr{R} − Tr{S} . (59)

Combining (58) with (59) we have

min
Z∈Kd

‖A(W ) − Z‖2 ≤
(
Tr{R(W )} + Tr{S(W )} − r

)2
. (60)

On the other hand, since W � 0 we also have that S(W ) � 0. Combining this

with (48) we have:

‖S‖2 ≤ Tr2{S}. (61)

Now we claim that the following three inequalities hold:

‖E(W )‖2 ≤
(
r −Tr{R(W )}

) (
Tr{R(W )}+Tr{S(W )}+ s − (r +k +1)

)
, (62)

‖F(W )‖2 ≤ Tr{R(W )} Tr{S(W )} , (63)

and

‖G(W‖2 ≤
(

k − Tr{R(W )} − Tr{S(W )}
)

Tr{S(W )} . (64)

To see (62), we recall I − W � 0 and use the lemma A.1. Hence,

‖E(W )‖2 =
r∑

i=1

r+d∑

j=r+1

|Wi, j |
2 =

r∑

i=1

r+d∑

j=r+1

∣
∣δi, j − Wi, j

∣
∣2

≤
r∑

i=1

r+d∑

j=r+1

(δi,i − Wi,i ) (δ j, j − W j, j )

=

(
r∑

i=1

(1 − Wi,i )

) 


r+d∑

j=r+1

(1 − W j, j )





=
(
r − Tr{R(W )}

) (
d − Tr{A(W )}

)
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Combing this with (59) and d = s − (r + 1) we prove (62).

To see (63), we recall that W � 0 use the lemma A.1. Hence,

‖F(W )‖2 =
r∑

i=1

n∑

j=s

|Wi, j |
2 ≤

r∑

i=1

n∑

j=s

Wi,i W j, j

=

(
r∑

i=1

Wi,i

) 


n∑

j=s

W j, j



 = Tr{R(W )} Tr{S(W )} .

The proof of (64) is analog to (63).

Now plugging (57), (60), (61), (62), (63) and (64) into (56) we obtain:

min
Z∈Kd

‖W − Ir ⊕ Z ⊕ 0‖2 ≤
(
r − Tr{R}

)2
+

(
Tr{R} + Tr{S} − r

)2
+ Tr2{S}

+ 2
(
r − Tr{R}

)(
Tr{R} + Tr{S} + s − (r + k + 1)

)

+ 2 Tr{R}Tr{S} + 2
(
k − Tr{R} − Tr{S}

)
Tr{S}

=
(
r − Tr{R}

)2
+

(
r − Tr{R}

)2
− 2 Tr{S}

(
r − Tr{R}

)
+ 2 Tr2{S}

− 2
(
r − Tr{R}

)2
+ 2

(
r − Tr{R}

)(
Tr{S} + s − (k + 1)

)

+ 2 Tr{R}Tr{S} + 2 k Tr{S} − 2 Tr{R} Tr{S} − 2 Tr2{S}

= 2
(
r − Tr{R}

) (
s − (k + 1)

)
+ 2k Tr{S} ,

which proves the proposition B.6. �

Proof of Lemma B.1

Proof. Recall that the eigenvalues of C are ordered as λ1 ≤ ∙ ∙ ∙ ≤ λr <

λr+1 = ∙ ∙ ∙ = λk = ∙ ∙ ∙ = λr+k < λs ≤ ∙ ∙ ∙ ≤ λn . According to the values of

r(C, k) and s(C, k) we divide the proof in the following four cases:

Case 1: r > 0 and s < n + 1. In order to treat this case, we need first the

following lemma, which proof is trivial.

Lemma B.7. Let a > 0, b > 0, c ≥ 0 and d > 0 be constants. For all x, y ≥ 0

we have the inequality

a x + b y ≥ min{ac−1 , bd−1} ( c x + d y ). (65)
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In the case c = 0 is to be understood that min{ac−1 , bd−1} = bd−1.

From (43) and (45) we obtain:

Tr{C X} −
k∑

i=1

λi (C) ≥
(
λk(C) − λr (C)

)(
r − Tr{R(W )}

)

+
(
λs(C) − λk(C)

)
Tr{S(W )}

(66)

Now we use the lemma B.7 with x := r − Tr{R(W )}, y := Tr{S(W )},

a := λk(C) − λr (C), b := λs(C) − λk(C), c := 2(s − (k + 1)) and d := 2k.

Note that Tr{R(W )} ≤ r since R(W ) ∈ Mr and I � R(W ) � 0. Hence, x ≥ 0.

Combining the lemma B.7 with (66) we obtain:

Tr{C X} −
k∑

i=1

λi (C) ≥ min
{
a c−1 , b d−1

}

× 2
[
(s − (k + 1))(r − Tr{R(W )}) + kTr{S(W )}

]

Now using (52) and (44) we have:

Tr{C X} −
k∑

i=1

λi (C) ≥ min{a c−1 , b d−1} min
Z∈Kd

‖W − Ir ⊕ Z ⊕ 0‖2

≥ min{a c−1 , b d−1} min
Y∈X∗(0)

‖X − Y‖2

This means that we can take α(C, k) := 1/2 min
{

λk−λr
s−(k+1)

,
λs−λk

k

}
.

Case 2: r = 0 and s < n + 1. This means that the block R(W ) does not

appear. In this case we use (43), (46), (46) and (44) to obtain:

Tr{C X} −
k∑

i=1

λi (C) = Tr{3W } −
k∑

i=1

λi (C)

≥
(

λs(C) − λk(C)
)

Tr{S(W )}

=
1

2k

(
λs(C) − λk(C)

)
2k Tr{S(W )}

≥
1

2k

(
λs(C) − λk(C)

)
min
Z∈Kd

‖W − Z ⊕ 0‖2

≥
1

2k

(
λs(C) − λk(C)

)
min

Y∈X∗(0)
‖X − Y‖2 .
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This means that we can take α(C, k) :=
λs−λk

2k . Note that this α satisfies

α = min
{

λk − λr

2(s − (k + 1))
,

λs − λk

2k

}
,

since
λk−λr

2(s−(k+1))
= +∞ and

λs−λk
2k < +∞. This closes the proof in the second

case.

Case 3: s = n + 1 and r > 0. This means that the block S(W ) does not

appear. We have two subcases:

Subcase 3.1: k = n. Note that if X ∈ Mn with I � X � 0 and Tr{X} = n

then X = In . Hence, K = {In}, and so α can be take as +∞ because

Tr{C X} −
n∑

i

λi (C) = Tr{C} −
n∑

i=1

λi (C) = 0

for all X ∈ K and minY∈X∗(0) ‖X − Y‖2 = 0 since X∗(0) = K = {I }. Note

that this α satisfies

α = min
{

λk − λr

2(s − (k + 1))
,

λs − λk

2k

}
.

To see this, note that s = n + 1 = k + 1 and λs = +∞. Hence, both
λk−λr

2(s−(k+1))

and
λs−λk

2k are infinity.

Subcase 3.2: k < n. Since s = n + 1 we obtain s − (k + 1) > 0. In this

subcase we use (43), (47), (54) and (44) to obtain:

Tr{C X} −
k∑

i=1

λi (C) = Tr{3W } −
k∑

i=1

λi (C)

≥
(
λk(C) − λr (C)

) (
r − Tr{R(W )}

)

=
1

2(s − (k + 1))

(
λk(C) − λr (C)

)
2 (s − (k + 1))

(
r − Tr{R(W )}

)

≥
1

2(s − (k + 1))

(
λk(C) − λr (C)

)
min
Z∈Kd

‖W − Ir ⊕ Z‖2

≥
1

2(s − (k + 1))

(
λk(C) − λr (C)

)
min

Y∈X∗(0)
‖X − Y‖2 .
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This means that we can take α(C, k) :=
λk−λr

2(s−(k+1))
=

λk−λr
2(n−k)

. Note that this α

satisfies

α = min
{

λk − λr

2(s − (k + 1))
,

λs − λk

2k

}

since λs = +∞ and
λk−λr

2(s−(k+1))
< +∞.

Case 4: r = 0 and s = n + 1. This means, that λ1(C) = ∙ ∙ ∙ = λn(C),

that is, C = λ1(C) I (a multiple of the identity). Hence, X∗(0) = K because

Tr{C X}−
∑k

i=1 λi (C) = λ1Tr{X}−λ1k = λ1k − kλ1(C) = 0 for any X ∈ K.

Therefore, minY∈X∗(0) ‖X − Y‖2 = 0 for all X ∈ K. This means, that we can

take α = +∞. Hence, α satisfies

α = min
{

λk − λr

s − (k + 1)
,

λs − λk

2k

}

since λr = −∞ and λs = +∞. �

6 The matrix minimization problem as a counterexample

For perturbed linear programming (LP) the authors of [1] proved that there

exists an εo > 0 such that mLP(ε) = mLP(0) + ε f̄ for all 0 ≤ ε ≤ εo.

On the contrary, we prove that in the example 1 of matrix minimization prob-

lem (2) we have m(0)+ ε f̄ > m(ε) for all ε > 0. This is proved in proposition

C.2. To prove this proposition we need first the following result:

Proposition C.1. Consider the case n = 2 and k = 1. For the matrix

C =
[

1 1
1 1

]
and the nonlinear function f (X) = X1,1 X1,1 the minimum value

of Tr{C X} + ε f (X) on K can be expressed as:

m(ε) = max
r∈[0,1]

{
1 + εr −

√
(εr)2 + 1 − εr2

}
.

Proof. Note that X ∈ K implies X1,1, X2,2 ≥ 0 and X1,1 + X2,2 = 1. There-

fore, if X ∈ K then X11 ∈ [0, 1]. For X ∈ K we can express the nonlinear part

of the objective function, X1,1 X1,1, as:

X1,1 X1,1 =
(

2 r X1,1 − r2
)∣∣

r=X1,1
= max

r∈[0,1]

{
2 r X1,1 − r2

}
. (67)
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With help of the identity (67) we obtain a linear expression in the variable

X ∈ K (up to a maximization problem) for ε f (X), namely:

ε f (X) := ε X1,1 X1,1 = max
r∈[0,1]

{
Tr

{[
2εr 0
0 0

]
X

}
− ε r2

}
. (68)

Now, we rewrite the minimum value m(ε) as

m(ε) := min
X∈K

{Tr{C X} + ε f (X)}

= min
X∈K

{
max

r∈[0,1]

{
Tr

{[
1+2rε 1

1 1

]
X

}
− ε r2

}
}

.

This means that m(ε) is a minimax value of the two-variable function g(X, r) :=

Tr
{[

1+2rε 1
1 1

]
X

}
− ε r2 . Note that the domains K and [0, 1] are convex, the

function g is convex in the variable X and concave in the variable r . Under

these conditions we can change the order of minimization and maximization

(see Corollary 37.3.2 of [3]). Therefore,

m(ε) = max
r∈[0,1]

{
min
X∈K

{
Tr

{[
1+2rε 1

1 1

]
X

}
− ε r2

}
}

. (69)

We use the proposition 2.3 to solve the minimization problem (in the variable X )

of the above equation. The result is an expression involving the first eigenvalue

of the matrix
[

1+2rε 1
1 1

]
, namely:

m(ε) = max
r∈[0,1]

{
λ1

([
1+2rε 1

1 1

])
− ε r2

}
. (70)

On the other hand, it is easy to compute λ1

([
1+2rε 1

1 1

])
, which is equal

1 + εr −
√

(εr)2 + 1.

This proves the proposition C.1. �

Proposition C.2. Consider the case n = 2 and k = 1. For the matrix C =
[

1 1
1 1

]
and the nonlinear function f (X) = X1,1 X1,1 the minimum value of (2)

satisfies

m(ε) < m(0) + ε f̄

for all ε > 0.
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Proof. Recall that f̄ := minX∈X∗(0) X1,1 X1,1. Here X∗(0) = {v1v
T
1 } with

vT
1 = 1√

2
(1, −1), hence f̄ = 1/4. Moreover, m(0) = λ1(C) = 0.

By proposition C.1, we only need to show that for all ε > 0 the strict inequality

m(ε) = max
r∈[0,1]

{
a(r, ε) + b(r, ε)

}
<

1

4
ε (71)

holds. Here a(r, ε) := 1 + εr − εr2 and b(r, ε) := −
√

1 + (εr)2. In order to

prove (71) consider two cases:

Case 1: 0 ∈ argmax{a(r, ε) + b(r, ε) : r ∈ [0, 1] }. In this case, m(ε) =

a(0, ε) + b(0, ε) = 1 + (−1) = 0 and so 0 < 1
4ε, since ε > 0. This proves (71)

in the first case.

Case 2: there is an r∗(ε) ∈ argmax{a(r, ε) + b(r, ε) : r ∈ [0, 1] } with r∗(ε) 6=

0. In this case we have:

a
(
r∗(ε), ε

)
≤ max

r∈[0,1]
a(r, ε) = a(1/2, ε) = 1 +

1

4
ε . (72)

Since the function b(r, ε) is strict decreasing in the variable r for ε > 0, the

following strict inequality,

b
(
r∗(ε), ε

)
< b(0, ε) = −1 , (73)

holds for ε > 0. Put (73) and (72) into (71) we obtain for all ε > 0 that

m(ε) = a
(
r∗(ε), ε

)
+b

(
r∗(ε), ε

)
< 1+

1

4
ε+ (−1) =

1

4
ε = m(0)+ε f̄ . (74)

This proves (71) in the second case. �
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