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Optimal design of a plate of variable thickness:
a variational approach in dimension one
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Abstract. For a typical design problem of a plate of variable thickness, we analyze the one-

dimensional situation through a variational reformulation to discover that, in contrast with the

higher dimensional case, there are optimal solutions. Another typical interpretation of this simpli-

fication is that of the optimal shape of a bending beam. The mechanism employed for the existence

issue is the direct method for the new formulation. Optimality conditions are then pursued.
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1 Introduction

In this paper, we analyze a simplified, one-dimensional model for the optimal

design of a plate of variable thickness which is assumed to be infinite along one

of its axes. In general, the Kirchhoff model for pure bending of symmetric plates

([5], [9]) postulates that the deflection of vertical displacement w of a plate is

the solution of the fourth order, elliptic equation

∑
i,j,k,l

∂2

∂xi∂xj

(
Mijkl

∂2w

∂xk∂x1

)
= F in �,

where F ∈ L2(�) is the vertical load,� is the midplane of the plate with respect

to which the plate is symmetric, and the design of the plate lies in the tensor M

M = 2

3
h3(x)B (1.1)
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76 A VARIATIONAL APPROACH IN DIMENSION ONE

where h is the half-thickness andB is the tensor of material constants. Boundary

conditions for a clamped plate incorporate

w = ∂w

∂n
= 0 on ∂�.

Under the assumptions that � = (0, 1) × (0, 1), both h and F depend only on

x1, and if we replace the boundary condition w = 0 on x2 = 0, x2 = 1, by a

periodic boundary condition, it is elementary to check that

w(x1, x2) = y(x1)

is the solution of the above problem where y(x), x = x1, solves
(

2

3
h3(x)B1111y

′′(x)
)′′

= F in (0, 1),

y(0) = y(1) = y ′(0) = y ′(1) = 0.

Under these circumstances, the objective is to design the plate, i.e. to choose the

function h(x), so that we maximize the overall rigidity of the plate. A way of

measuring this global rigidity is through the compliance functional

J (h) =
∫ 1

0
F(x)y(x) dx

which represents the work done by the load F . Hence, maximum global rigidity

corresponds to minimum compliance.

Further natural constraints on the feasible designs limit the amount of material

to be used

0 < h− ≤ h(x) ≤ h+,
∫ 1

0
h(x) dx ≤ V,

where h−, h+ and V are positive constants given in a coherent way

h− < V < h+.

Altogether, and given positive constants h− < V < h+, B = B1111 and

F ∈ L2(0, 1), we seek to

Minimize J (h) =
∫ 1

0
F(x)y(x) dx
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where (
2

3
h3(x)By ′′(x)

)′′
= F in (0, 1),

y(0) = y(1) = y ′(0) = y ′(1) = 0,

and h is feasible as specified in the last paragraph. Notice that the constants 2/3

and B can be incorporated either in the design h or in the load F so that we will

look at the somewhat simpler problem

Minimize J (h) =
∫ 1

0
F(x)y(x) dx

subject to

(
h3(x)y ′′(x)

)′′ = F in (0, 1),

y(0) = y(1) = y ′(0) = y ′(1) = 0,

and h is such that

0 < h− ≤ h(x) ≤ h+,
∫ 1

0
h(x) dx ≤ V.

This type of optimal design problems have been analyzed in a number of papers

(in addition to the references already cited see [4]) even in the two dimensional

situation but the design still depending on one variable. One of the main features

of these problems is the lack of optimal designs and the infinitesimal spatial

oscillations leading to optimality. In the present work, and as a previous step to

the higher dimensional situation, we pretend to recast the above optimal control

problem in a purely variational format that may allow a treatment in the context of

the Calculus of Variations by using all the tools and techniques of this discipline.

This perspective have already been explored in [2] for one-dimensional situations

and first order problems and, for instance, in [12] for vector, higher dimensional

problems.

The interpretation of our problem as looking for the optimal shape of a bending

beam has also received some attention recently. We believe that our approach is

however more transparent and direct, and some delicate technical issues can be

resolved in an elementary way (see [6] and references therein). We will also see
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how our results can be adapted to treat a somewhat more general situation where

we replace the third power occuring in (1.1) by a non-vanishing real power s.

The main contribution here is the somewhat surprising result, contrary to the

higher dimensional situation ([3], [11]), that optimal designs exist. It is however

true that existence of optimal solutions in simplified one-dimensional situations

occurs in a variety of situations (see for instance [1], [7], [10]). This existence

(Section 3) is achieved by a suitable reformulation as a variational problem

(Section 2) to which classical techniques can be applied. In the final sections,

optimality conditions are also explored and numerical implementations based on

optimality are shown.

2 A variational reformulation

Let f be a primitive of a primitive of F , i.e.

f (x) =
∫ x

0

∫ t

0
F(s) ds dt,

then the differential law can be reinterpreted by writing

h(x)sy ′′(x) = f (x)+ l(x) (2.1)

where l(x) is a linear function in (0, 1). The underlying idea for our reformulation

is to consider (2.1) as a substitute of the differential equation and as a way to

relate the pairs (y, l)with the design h. In addition, by performing an integration

by parts twice on the cost functional and bearing in mind the boundary conditions

on y, it is straightforward to realize

J (h) =
∫ 1

0
f (x)y ′′(x) dx,

or even further

J (h) =
∫ 1

0
(f (x)+ l(x)) y ′′(x) dx

for any linear function l(x). More precisely, consider the set

� = {
(x, λ, ξ) ∈ R3 : hsξ = f (x)+ λ for some h ∈ [h−, h+]} ,
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and define the density

ϕ : � → R∗ = R ∪ {+∞}

by setting

ϕ(x, λ, ξ) =


(f (x)+ λ)ξ, (x, λ, ξ) ∈ �,
+∞, else.

The cost functional for the equivalent variational problem will be

I (l, y) =
∫ 1

0
ϕ(x, l(x), y ′′(x)) dx

where y ∈ H 2(0, 1), it complies with all the boundary conditions and l is linear.

The volume restriction, however, poses some difficulties. Indeed, solving for h

in (2.1) leads us to impose

∫ 1

0

(
f (x)+ l(x)

y ′′(x)

)1/s

dx ≤ V.

For convenience, let us put

ψ(x, λ, ξ) =



(
f (x)+ λ

ξ

)1/s
, (x, λ, ξ) ∈ �,

+∞, else.

If the set where f equals a linear function is not negligible, the definition of

� forces y ′′ to vanish in that same set, and then h can be chosen arbitrarily on

the admissible interval [h−, h+]. But that set does not contribute to the cost

functional (f ′′ = 0) so that we would use as little material as we would be

allowed, i.e. we would choose h(x) = h− in that set. This possibility has to be

compared with other choices when looking for optimal profiles.

Theorem 2.1. Our original optimal design problem is equivalent to the varia-

tional problem

Minimize I (l, y) =
∫ 1

0
ϕ(x, l(x), y ′′(x)) dx
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subject to

l, linear, y ∈ H 2(0, 1), y(0) = y(1) = y ′(0) = y ′(1) = 0,∫ 1

0
ψ(x, l(x), y ′′(x)) dx ≤ V,

in the sense that for any given feasible design h, there exists a feasible pair (l, y),

and for any such given admissible pair (l, y) there is an admissible design h,

such that J (h) = I (l, y). In particular the passage from optimal solutions of

one problem to optimal solutions of the other is given by

h(x) =
(
f (x)+ l(x)

y ′′(x)

)1/s

.

The proof has almost been indicated, and as a matter of fact, the new variational

principle has been set up so that this equivalence is guaranteed.

We would like to clarify the existence-nonexistence of optimal solutions

through the analysis of this equivalent variational problem by using the classical

tool of the direct method.

3 Existence of optimal solutions

It is well-known that there are two main ingredients in the direct method of the

Calculus of Variations in order to show existence of optimal solutions: weak

lower semicontinuity and coercivity ([8]). Moreover weak lower semicontinuity

is equivalent to convexity of the functionals involved in those variables where

we have weak but not strong convergence ([13]). We treat those two issues

succesively.

We first elucidate the weak lower semicontinuity property for our variational

problem. This essentially involves the convexity of the functions ϕ and ψ with

respect to ξ . Notice that the weak convergence

lj ⇀ l in L2(0, 1)

when all lj ’s are linear implies that l itself is linear and the convergence is indeed

strong. This is straightforward. Because of this fact, convexity of ϕ and ψ with

respect to λ is not enforced nor needed.
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Lemma 3.1. The function ϕ(x, λ, ξ) is convex with respect to ξ for any value

of s while ψ(x, λ, ξ) is convex with respect to ξ provided s ≥ −1.

Proof. The proof consists in the realization that the set where both ϕ andψ are

finite, i.e. the set �, is convex in ξ for fixed (x, λ). In fact

�(x, λ) = {ξ ∈ R : (x, λ, ξ) ∈ �}
can be given explicitly as the interval with end-points

f (x)+ λ

hs−
and

f (x)+ λ

hs+
.

In any case this is indeed a convex set. In addition, on such interval the functions

ϕ andψ are convex. On the one hand, ϕ is even linear. On the other,ψ is convex

if s ≥ −1 because in � f (x)+ λ and ξ must have the same sign. �
The weak lower semicontinuity is a direct consequence of the convexity shown

in the lemma. This is a standard fact.

Proposition 3.2. The functionals with integrandsϕ andψ are weak lower semi-

continuous with respect to weak convergence in L2(0, 1) × H 2(0, 1). Namely,

if

lj → l in L2(0, 1), yj ⇀ y in H 2(0, 1),

then

lim inf
j→∞

∫ 1

0
ϕ(x, lj (x), y

′′
j (x)) dx ≥

∫ 1

0
ϕ(x, l(x), y ′′(x)) dx,

lim inf
j→∞

∫ 1

0
ψ(x, lj (x), y

′′
j (x)) dx ≥

∫ 1

0
ψ(x, l(x), y ′′(x)) dx.

Coercivity is another main ingredient for the success of the direct method in

providing optimal solutions. In our situation, this is immediate because

hs−ξ
2 ≤ (f (x)+ λ) ξ

if (x, λ, ξ) ∈ �. Concerning coercivity for λ it is also elementary to obtain

h2s
− ξ

2 ≤ |f (x)+ λ|2

if (x, λ, ξ) ∈ �. The following theorem is a rather routine application of the

direct method.

Comp. Appl. Math., Vol. 22, N. 1, 2003



82 A VARIATIONAL APPROACH IN DIMENSION ONE

Theorem 3.3. Our variational problem admits optimal solutions if s ≥ −1,

and consequently, so does our original optimal design problem.

4 Optimality conditions

Once the existence of optimal solutions has been rigorously established, we

are entitled to pursue the analysis of optimality conditions in order to better

understand the features of optimal solutions. Since the analysis that follows

does not depend on the particular value of s as long as s > 0 and the value s = 3

is particularly important, we have restrict our computations in this section to this

value s = 3, though the same calculations are valid for any such value of s.

It turns out that the best way we have found to write optimality conditions

down is to go back to the genuine design variable h but keeping the variational

form of the problem. In particular we still use (2.1) to write

y ′′(x) = f (x)+ l(x)

h3(x)
,

and thus eliminate the variable y ′′ from the variational form of the problem. It is

elementary to check that in this way we can write the problem in a new equivalent

form as

Minimize
∫ 1

0
f (x)

f (x)+ l(x)

h3(x)
dx

subject to ∫ 1

0

f (x)+ l(x)

h3(x)
dx = 0,

∫ 1

0
x
f (x)+ l(x)

h3(x)
dx = 0,

∫ 1

0
h(x) dx ≤ V,

h− ≤ h(x) ≤ h+.

These two new integral constraints come from the fact that

y ′′(x) = f (x)+ l(x)

h3(x)
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must comply with the boundary conditions

y(0) = y(1) = y ′(0) = y ′(1) = 0.

If we consider the condition l′′ = 0 as a “state equation" regarding l as the state

and h as the control, it is elementary to apply Pontryaguin’s maximum principle

to obtain optimality conditions. Indeed, if we let

l1 = l, l2 = l′, l′1 = l2, l′2 = 0,

the hamiltonian is

H(x, l1, l2, p1, p2, h) = (f (x)+ l1(x))(f (x)+ λ1 + λ2x)

h3 + λ3h+ p1l2,

where multipliers λi are associated with the three integral constraints and λ3 ≥ 0.

Indeed λ3 > 0 is expected because the optimal h will yield maximum volume

V . The dynamics for the costates pi are governed by

p′
1 = −(f (x)+ λ1 + λ2x)

h3 , p′
2 = −p1,

together with the transversality conditions

p1(0) = p1(1) = p2(0) = p2(1) = 0.

Therefore we can write

p1(x) = −
∫ x

0

(f (t)+ λ1 + λ2t)

h(t)3
dt

and demand
∫ 1

0

(f (t)+ λ1 + λ2t)

h(t)3
dt = 0. (4.1)

Likewise

p2(x) =
∫ x

0

∫ s

0

(f (t)+ λ1 + λ2t)

h(t)3
dt ds,

∫ 1

0

∫ s

0

(f (t)+ λ1 + λ2t)

h(t)3
dt ds = 0.
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Integrating by parts in this last integral and bearing in mind (4.1), we conclude

∫ 1

0
t
(f (t)+ λ1 + λ2t)

h(t)3
dt = 0. (4.2)

(4.1) and (4.2) imply that l1(x) = λ1 + λ2x. Therefore the remaining optimality

condition enforces h(x) to be the point of attainment of the minimum

min
h−≤h≤h+

(
(f (x)+ l1(x))

2

h3 + λ3h

)
. (4.3)

This together with the three integral constraints

∫ 1

0

f (x)+ l1(x)

h3(x)
dx = 0,

∫ 1

0
x
f (x)+ l1(x)

h3(x)
dx = 0,

∫ 1

0
h(x) dx = V,

(4.4)

determines uniquely the optimal h(x) and l1(x), and the multiplier λ3. Even

further if we put

γ (t) =



t, h− ≤ t ≤ h+,

h−, t ≤ h−,

h+, t ≥ h+,

then

h(x) = γ
(
(3/λ3)

1/4
√|f (x)+ l1(x)|

)
.

This information already yields interesting qualitative properties about optimal

designs and how they can be found. If we rewrite this last formula in terms of

g(x) =
(

3

λ3

)1/2

(f (x)+ l1(x)) ,

we see that

h(x) = γ
(√|g(x)|

)
,
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where
∫ 1

0

g(x)

h(x)3
dx =

∫ 1

0
x
g(x)

h(x)3
dx = 0,

∫ 1

0
γ

(√|g(x)|
)
dx = V.

Notice that F = (λ3/3)1/2g′′(x) implies that g is smooth. In particular, we see

that in the region h− < h(x) < h+, hmust be the square root of g. For instance,

if F is constant, then transition from h− to h+ must take place by arcs of the

square root. We will see this behavior in the numerical computations of the

next section. These computations are based on the optimality information in this

section.

5 Numerical computations

The numerical simulations that follow have been implemented by using in an

elementary way the equilibrium conditions (4.3) and (4.4). The algorithm used

is an elementary fixed point scheme transforming the multipliers λi , i = 1, 2, 3,

by utilizing (4.4). We have chosen two typical load regimes: the uniformly

distributed constant load and the point Dirac delta load. Several simulations

have been conducted in each case

1. for different values of the volume V ;

2. for different values of h−;

3. for different values of the power s.

For the uniform distributed constant vertical load F , numerical results appear

in Figures 1, 2, and 3, for the varying volume, varying h− and different powers

s, respectively.

For the point Dirac delta load situated in the middle point of the beam, numer-

ical optimal profiles, for the same three above situations, appear in Figures 4, 5,

and 6.
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Figure 1 – Optimal profile for different values of V .
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Figure 2 – Optimal profile for different values of h−.
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Figure 3 – Optimal profile for different powers s.
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Figure 4 – Optimal profile for different values of V .
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Figure 5 – Optimal profile for different values of h−
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Figure 6 – Optimal profile for different powers s.
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