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Abstract. In this paper we present special subsets of positive semidefinite matrices where the

linear function κ becomes a geometric similarity and its inverse can be easily computed. The

images of these special subsets are characterized geometrically. We also study the systems of

coordinates for spherical matrices and at the end, we introduce the class of multibalanced distance

matrices.
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1 Introduction and preliminaries

Although of interest for over a century, most useful results concerning Euclidean

distancematrices (EDMs) have appearedduring the last thirty years,motivated by

applications to the multidimensional scaling problem in Statistics and molecular

conformation problems inChemistry andMolecular Biology. These applications

focus on the (re-)construction of sets of points in �n such that the distances be-
tween these points are as close as possible to a given set of inter-point distances.

#660/06. Received: 04/IV/06. Accepted: 16/IV/07.
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Recent work by Tarazaga et. al. has focused on the interplay between configu-

rations of points (coordinate matrices), the corresponding distance matrices, and

the set of positive semidefinite (PSD) matrices.

We begin by introducing basic notation and definitions. The set of symmet-
ric matrices of order n will be denoted by Sn , and by �n we indicate the set

of symmetric positive semidefinite matrices. It is important to recall that �n

is a closed convex cone. A subspace of a vector space generated by vectors

v1, . . . , vk will be denoted by span {v1, . . . , vk}. The vector with all ones is de-
noted e, and M is the orthogonal complement of span {e} in �n . This vector e
and the subspace M play a key role in the theory of EDMs. The Frobenius inner
product in the space of matrices is given by 〈A, B〉F = trace

(
At B

)
.

A matrix D is called a Euclidean Distance Matrix if there are n points
x1, . . . , xn ∈ �r such that

di j = ∥∥xi − x j∥∥22 .

Observe that the entries of D are squared inter-point distances. The set of all
EDMs of order n form a convex cone that we denote by �n . If a matrix is

symmetric, nonnegative and thediagonal entries are zero, it is called a predistance
matrix. We say that D is spherical if the points that generate it lie on the surface
of a sphere.

There are well-known relations between the sets �n and �n that we now

summarize. The EDMs are the image under a linear transformation of the cone

�n (see [3] and [5]).

Given B ∈ �n we define the linear transformation

κ(B) = bet + ebt − 2B

where b is the vector whose components are the diagonal entries of B. Then
D = κ (B) ∈ �n , and κ (�n) = �n .

Let s ∈ �n be a vector. A maximal face of the set�n is defined by the formula

�n (s) = {
X ∈ �n|Xs = 0

}
.

Throughout this paper, we will assume without loss of generality that ste = 1.

When κ is restricted to such maximal faces, it becomes one-to-one, and the
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inverse transformation is given by

τs (D) = −1
2

(
I − est) D (I − set) .

Every face �n (s) with ste = 1 corresponds to a different location of the origin

of coordinates (for more information, see section 2 of [5]).

A very important particular case is when s = e
n . In that case we will denote

τe/n by just τ , and τ and κ are inverse to each other between �n and �n (e).
Matrices in �n (e) are called centered positive semidefinite matrices and the
origin of coordinates is set at the centroid of the configuration’s points.

Given these preliminaries, we turn now to the paper at hand. First of all, we

will show in Section 2 that the function κ , when restricted to special subsets of

�n , becomes a geometric similarity. A key example of these special subsets is

the set of correlation matrices. Further, the inverse of κ when restricted to one

of these subsets has a particularly simple form. Finally, we can characterize the

image of these special subsets in�n and establish additional sufficient conditions

to see if a given distance matrix D belongs to one of these images. There is a
difference between this approach and the classical approach which looks for

right inverses for the linear function κ . In the classical approach the origin of

the system of coordinates is the key idea, here the diagonal values of positive

semidefinite matrices are crucial.

In Section 3, we deal with the location of the origin of coordinates, determined

by a vector s such that ste = 1. There, we characterize systems of coordinates

associated with spherical matrices, and explore the set of EDMs that can be

associated with a particular system of coordinates.

In the final section, we introduce the class of multibalanced matrices, a gen-

eralization of the class of balanced EDMs introduced by Hayden and Tarazaga

in [4]. The geometrical structure of matrices in this class is given by points

in k spheres with centers at the origin such that the centroid for the points in
each sphere is also the origin of coordinates. As in the paper mentioned above,

here we are able to characterize this class of distance matrices using only some

spectral properties.
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2 Similarities between subsets of EDMs and PSD matrices

In this section we show how the linear transformation κ becomes a geometric

similarity when restricted to a special subset of positive semidefinite matrices.

We characterize the images of these subsets under κ and we also find the inverse

function on these subsets. We will denote by �n+ the vectors in �n with positive
components.

Given b ∈ �n+, we define the set

�b
n = {

X ∈ �n : xii = bi i = 1, .., n
}
.

In other words �b
n is the set of all positive semidefinite matrices with fixed

diagonal b. Note that �e
n is the set of correlation matrices.

Lemma 2.1. Given b ∈ �n+ then κ restricted to �b
n is a geometric similarity.

Proof. Given X and Y ∈ �b
n , then

‖κ(X) − κ(Y )‖ = ‖(ebt + bet − 2X) − (ebt + bet − 2Y )‖
= 2‖X − Y‖. �

Corollary 2.2. The linear transformation κ is one-to-one on �b
n for every

b ∈ �n+.
We will denote by �b

n the image of �
b
n under κ , in other words �b

n = κ(�b
n).

Now we are interested in the exact form of the inverse of κ on �b
n and a charac-

terization of �b
n .

Since we are working with κ restricted to �b
n , from the definition of κ ,

D = κ(B) = ebt + bet − 2B.

We can solve for B and we obtain the following expression for the inverse

τ b(D) = 1

2
(ebt + bet − D).

Lemma 2.3. The linear transformations κ and τ b are inverses of each other
and similarities between �b

n and �b
n .

Comp. Appl. Math., Vol. 26, N. 3, 2007



PABLO TARAZAGA, BLAIR STERBA-BOATWRIGHT and KITHSIRI WIJEWARDENA 419

Remark. Although not crucial here, it is worth noting that κ and τ b are sim-

ilarities and inverse to each other between the following linear variety Sbn =
{X ∈ Sn : xii = bi , i = 1, . . . , n} and the subspace of hollow matrices
Hn = {X ∈ Sn : xii = 0, i = 1, . . . , n}. This fact is especially important
when b = e since the correlation matrices are the intersection of �n and Sen .
Let us consider now the set �b

n . Now D ∈ �b
n if and only if D = κ(B) with

B ∈ �b
n which implies the existence of a coordinatematrix X such that B = XXt

and the norm of i th row of X is exactly
√
bi .

If we add the origin of coordinates to the configuration of points, these n + 1
points generate a new distance matrix in �n+1.

Lemma 2.4. If D ∈ �b
n , then

D̂ =
(
D b
bt 0

)
∈ �n+1.

Proof. Just note that the square of the distance from the origin to the n original
points are exactly the components of b. �

This condition is also sufficient.

Theorem 2.5. If D ∈ �n , then D ∈ �b
n if and only if

D̂ =
(
D b
bt 0

)
∈ �n+1 .

Proof. Let

D̂ =
(
D b
bt 0

)
∈ �n+1,

then take τen+1 (the subindex of e indicates the dimension of the vector e here)

τen+1(D̂) = −1
2
(I − en+1etn+1)D̂(I − en+1etn+1)

= − 1

2

[
D̂ − (D̂en+1)etn+1 − en+1(D̂en+1)t + en+1etn+1 D̂en+1etn+1

]
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= − 1

2
D̂ + 1

2

[[
b
0

]
etn+1 + en+1

[
b
0

]]

= − 1

2

[
D b
bt 0

]
+ 1

2

[
betn + enbt b

bt 0

]

=
[

− 1
2
D + 1

2
(betn + enbt) 0

0 0

]
≥ 0.

But this says that − 1
2
D + 1

2
(bet + ebt) is in �b

n , which completes the proof. �

Corollary 2.6. Given D ∈ �n , then D ∈ �b
n if and only if

−1
2
D + 1

2
(bet + ebt)

belongs to �n .

A very special case is the set �e
n , the image of the correlation matrices. From

Lemma 2.3 it is clear that

τ e(D) = eet − 1

2
D

and the rank of τ e(D) is not always the embedding dimension of D. Note that
because of Lemma 2.1 the set�e

n is a stretch of�e
n . Also note that�

e
n is formed

only by spherical distance matrices with radius less than or equal to one. This

set was described as E − En by Alfakih and Wolkowicz and used to give a
characterization of the EDMs in [2].

Let us assume that D ∈ �n is spherical and r(D) ≤ 1, where r(D) denotes

the radius of the configuration of points that generates D. Then because of
Theorem 3.4 from [6] there exist a s such that ste = 1 and Ds = 2r2e. Now if
we compute τs(D), we obtain

τs(D) = − 1

2
(I − est)D(I − set)

= − 1

2
(D − 2r2eet)

= r2eet − 1

2
D.

Now the following result gives us some information on the geometry of �e
n .
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Lemma 2.7. Given D ∈ �n with radius less than or equal to one, then

1. If r(D) = 1, then τs(D) = τ e(D) and the rank of τ e(D) gives the embed-
ding dimension of D.

2. If r(D) < 1, then rank(τ e(D)) = e. d. (D) + 1.

Proof. The first part is immediate since for r(D) = 1,

τs(D) = r2eet − 1

2
D

= eet − 1

2
D

= τ e(D)

and τs(D) always has its rank equal to the embedding dimension of D.
In order to prove the second part just note that

τs(D) + (1− r2)eet = r2eet − 1

2
D + (1− r2)eet

= eet − 1

2
D

= τ e(D)

and because r < 1, then (1− r2) > 0 and (1− r2)eet is a rank one matrix. Thus
rank(τ e(D)) = τs(D) + 1 = e. d. (D) + 1. �

Now we go back to the general class of sets �b
n for b ∈ �n+. Here we will

introduce a very simple necessary condition for a matrix D to belong to�b
n , that

can be checked using the entries of the matrix D.

Theorem 2.8. If D ∈ �b
n , then

|√bi −√
b j | ≤ √

di j ≤ √
bi +

√
b j

for i 	= j .

Proof. From the cosine law

di j = ‖xi − x j‖2 = ‖xi‖2 + ‖x j‖2 − 2‖xi‖‖x j‖ cos θ
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and because −1 ≤ cos θ ≤ 1, then
‖xi‖2 + ‖x j‖2 − 2‖xi‖‖x j‖ ≤ di j ≤ ‖xi‖2 + ‖x j‖2 + 2‖xi‖‖x j‖

(‖xi‖ − ‖x j‖)2 ≤ di j ≤ (‖xi‖ + ‖x j‖)2
|‖xi‖ − ‖x j‖| ≤ √

di j ≤ ‖xi‖ + ‖x j‖
|√bi −√

b j | ≤ √
di j ≤ √

bi +
√
b j .

A trivial consequence of this result is that �b
n is bounded. This necessary

condition tells us also that there is a significant difference between �b
n for an

arbitrary b ∈ �n+ and the case when b is a constant vector, a multiple of vector
e or just the vector e. Note that λ�b

n = �λb
n and because the linearity of κ we

have that

λ�b
n = λκ(�b

n) = κ(λ�b
n) = κ

(
�λb
n
) = �λb

n .

This allows us to normalize the vector b, taking for example etb = 1.

Lemma 2.9. Given D ∈ �b
n , then λD with 0 ≤ λ ≤ 1 belongs to �b

n if and
only if b is a constant vector.

Proof. The condition is clearly necessary since if b is not constant then for
some i and j

0 <
√
bi −

√
b j ≤ √

λdi j

and this implies that λD with λ small enough is not in �b
n .

Let us now prove that the conditions is sufficient for a constant vector b = βe.
Since D ∈ �b

n there exists B in �b
n such that κ(B) = D. Besides this note

that D is spherical since the diagonal of B is constant b = βe. Now because κ

is linear

λD = λκ(B) = κ(λB) = κ((1− λ)βeet + λB) = κ(B̂)

where B̂ = (1− λ)βeet + λB. Now observe that κ((1− λ)βeet) = 0 since eet

is in the null space of κ . Besides this (1 − λ)βeet and λB are in �n , then the

addition is also in �n . Even more every diagonal entry is equal to β and then

B̂ ∈ �b
n and λD = κ(B̂). �

Finally we give a necessary condition for a matrix in �b
n to be in the topologi-

cal boundary of the set.

Comp. Appl. Math., Vol. 26, N. 3, 2007
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Lemma 2.10. Given D ∈ �b
n with b ∈ �n+, if one inequality of the set of in-

equalities given in Lemma 2.8 is satisfied exactly then D belongs to the boundary
of �b

n .

Proof. Suppose that di j = (
√
bi + √

b j )2 or di j = (
√
bi − √

b j )2. Now for
D ∈ �b

n let us compute τ b(D)

τ b(D) = 1

2
(ebt + bet − D)

= 1

2




2b1 b1 + b2 − d12 . . . b1 + bn − d1n
b2 + b1 − d21 2b2 . . . b2 + bn − d2n

...
...

. . .
...

bn + b1 − dn1 bn + b2 − dn2 . . . 2bn




= B.

Since B ∈ �b
n , principal minors of every principal submatrix of B should be

greater than or equal to zero. If q = {i, j} we define

Mq×q =
(

2bi bi + b j − di j
bi + b j − di j 2b j

)

and if we compute the determinant we have

det(Mq×q) = 4bib j − (bi + b j − di j )2
= (2

√
bib j )2 − (bi + b j − di j )2

= (2
√
bib j − (bi + b j − di j ))(2

√
bib j + (bi + b j − di j ))

= (−(
√
bi −

√
b j )2 + (di j ))((

√
bi +

√
b j )2 + (di j )).

But now clearly if one of the inequalities from Theorem 2.8 is in fact an equality

then det(Mq×q) = 0 which implies B = τ b(D) is in ∂�b
n and then D ∈ ∂�b

n ,

which finishes the proof. �

3 Characterization of spherical vectors and their corresponding

distance matrices

As has been noted above, a matrix D is a spherical EDM if and only if there is
a vector s such that ste = 1 and Ds = 2r2e. In this case, we say that the vector

Comp. Appl. Math., Vol. 26, N. 3, 2007
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s is spherical also. Let 	n denote the set of spherical vectors of dimension n.
In this section of the paper, we present a simple characterization of elements of

	n . We also investigate the sets 
s
n = {D ∈ �n |Ds = e } for fixed s ∈ 	n . For

dimensions n ≤ 4, we can completely describe 
s
n for a given s.

Let’s consider s ∈ �n , n ≥ 2, such that ste = 1. We say that s satisfies the
Halves Condition if and only if the following hold:

(i) At least two components of s are positive; and

(ii) If s has p non-negative components, the sum of any p− 1 of them is ≥ 1
2
.

Note that if s ∈ �n+, then the Halves Condition simplifies to that condition that
each component of s is ≤ 1

2
. Note also that if Ds = 2r2e, then

(
1

2r2 D
)
s = e,

so to understand the set of spherical vectors it suffices to consider the condition

Ds = e. As a final preliminary comment, if Ds = e, then any configuration of
points giving rise to D lies on a hypersphere of radius 1√

2
which we may take to

be centered at the origin.

Since the property of being a distance matrix is preserved by permutations

applied to rows and columns (they need to preserve symmetry), it follows that

	n is closed under permutations. Hence if s satisfies the Halves Condition so
will any permutation of s. In the proofs below we permute s without further
justification.

Lemma 3.1. If s is spherical, then s satisfies the Halves Condition.

Proof. Assume that the p non-negative elements of s occur at the beginning
of the vector, and let n be the dimension of s. Since D is a distance matrix,
all elements of D are non-negative; since Ds = e, s must have at least one
non-negative element. If s has only one non-negative element, then the product
of the first row of D with s would have a non-positive result. Thus p ≥ 2.
To understand the second condition, consider the product of row p of D with

s. Since the pth element of row p is 0, and the p + 1st through nth elements of
s are negative, the product of the pth through nth elements of row p with s is
non-positive. Since the product of row p with s should be 1, this means that the
product of the first p − 1 elements of row p with the first p − 1 elements of s
Comp. Appl. Math., Vol. 26, N. 3, 2007
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must be≥ 1. However, since Ds = e, every element of the matrix D is bounded
above by 2. Therefore, the sum of the first p − 1 elements of s must be at least
1
2
. Since this argument is unaffected by reordering the non-negative elements of

s, the lemma is proved. �

Lemma 3.2. If s ∈ �2, then s is spherical if and only if s = (
1
2
, 1
2

)t .
Proof. From Lemma 3.1, if s is spherical, then it must satisfy the Halves
Condition, which implies in turn that s = (

1
2
, 1
2

)t
. On the other hand, if s =(

1
2
, 1
2

)t
then points x1 = 1√

2
and x2 = −1√

2
on the real line give rise to a distance

matrix D such that Ds = e. �

Lemma 3.3. Suppose s ∈ �n , n ≥ 3, has a negative element, which we assume
to be the first one. Then,

(a) s ∈ 	n if and only if ŝ ∈ 	n , where ŝ = 1
1−2s1 (−s1, s2, . . . , sn−1, sn)t

(b) If s satisfies the Halves Condition, so does ŝ.

Proof. There is a spherical matrix D satisfying Ds = e if and only if there
is a configuration of points {xi } centered at the origin such that Xts = 0 [3].

Replace point x1 with the point −x1, calling the resulting configuration X̂ . X̂
is still spherical, and satisfies X̂ t ŝ = 0. The converse of part (a) follows in the
same fashion.

To prove (b), part (i) of the Halves Condition is obviously true for ŝ so we
must check part (i i). Let p represent the number of non-negative elements of
s; thus, to see if ŝ satisfies the Halves Condition, we must check sums of p
non-negative elements of ŝ. Without loss of generality, let the non-negative
components of s be s2, . . . , sp+1. If the sum of p components of ŝ contains
components 2, . . . , p + 1, then we have

p+1∑
j=2
ŝ j =

p+1∑
j=2

s j
1− 2s1 =

∑p+1
j=2 s j

2
∑p+1

j=2 s j + 2
∑n

j=p+2 s j − 1
.
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Since
∑n

j=p+2 s j is a (potentially empty) sum of negative elements, we see that
the denominator of the fraction is < 2

∑p+1
j=2 s j , and therefore the fraction as a

whole is greater than 1
2
, as desired. If, on the other hand, we have a sum of p

components of ŝ that includes ŝ1 and p − 1 components from 2, . . . , p + 1, we
have

−s1 +∑
s j

1− 2s1 ≥ −s1 + 1
2

1− 2s1 = 1

2
. �

Remark. The effect of part (a) of Lemma 3.3 is that ŝ has fewer negative
elements that s, but remains in 	n . Then, if s has m negative elements, m
applications of Lemma 3.3 produces a vector ŝ, still in 	n , with no negative

elements.

Lemma 3.4. Suppose s ∈ �n, n ≥ 3, has a zero element, say, sn = 0. Define
s− = (s1, s2, . . . , sn−1)t .

(a) If s− ∈ 	n−1, then s ∈ 	n .

(b) If s satisfies the Halves Condition, so does s−.

Proof. Let X be a configuration of n − 1 points in �n−2, such that D− =
κ
(
XXt

)
satisfies D−s− = e. Then the points of X lie on a hypersphere of radius

1√
2
and topological dimension n − 3. Let this hypersphere be the “equator” of

a hypersphere of the same radius and dimension n − 2 in �n−1. Augment X by
adding an nth point at the “north pole” of this hypersphere; that is,

xn =
(
0, . . . , 0,

1√
(n)

)t
∈ �n−1 .

The distance matrix from this augmented configuration is then

D =
[
D− e
e 0

]
.

It is easy to check that Ds = e. The proof of (b) is obvious. �

Remark. The converse to part (a) of Lemma 3.4 will follow from Theorem 3.7

below.

Comp. Appl. Math., Vol. 26, N. 3, 2007
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Lemma 3.5. If s ∈ �3, then s is spherical if and only if s satisfies the Halves
Condition.

Proof. From Lemma 3.1, we need only consider the sufficiency of the Halves

Condition. By Lemma 3.3, we may assume that s has no negative components.

Case 1: Suppose s has a zero component. Then the Halves Condition implies
that the other two components of s are both 1

2
, and we are done by 3.4 and 3.2.

Case 2: Suppose s ∈ �3+. For notational convenience, let

D =

 0 x y
x 0 z
y z 0




and s = (u, v,w)t . Solving Ds = e and using the fact that u+ v +w = 1 gives

solutions

x = 1− 2w
2uv

, y = 1− 2v
2uw

, z = 1− 2u
2vw

.

Since we are assuming that s has all positive components, then each of u, v,w

is less than or equal to 1
2
, so each of x, y, z is nonnegative. Similarly, to see

that x = 1−2w
2uv ≤ 2, substitute w = 1 − u − v to get 2u+2v−1

2uv ≤ 2. Cross-

multiplying, re-writing and factoring the result gives (2u − 1) (2v − 1) ≥ 0,

which again is true because u and v are bounded above by 1
2
. Therefore, we have

0 ≤ √
x, √y,√z ≤ √

2, which implies that each of
√
x,√y, √z is potentially

a distance between two points on the circle of radius 1√
2
. Consult Figure 3.1.

√
x, √y, √z are the sides of an inscribed triangle as shown if and only if the

equation (z − x − y + xy)2 − xy(2− x)(2− y) = 0 holds. Substituting

x = 1− 2w
2uv

, y = 1− 2v
2uw

, z = 1− 2u
2vw

, w = 1− u − v ,

into the left hand side of this equation produces 0, so the values for x, y, z
derived from u, v,w do indeed describe a configuration of points on a circle of

radius 1√
2
. �
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Figure 3.1

Lemma 3.6. Suppose s ∈ �n+, n ≥ 4, and suppose s1 and s2 are the smallest
two components of s. Define s̃ = (s1 + s2, s3, . . . , sn)t ∈ �n−1+ .

(a) If s̃ ∈ 	n−1, then s ∈ 	n .

(b) If s satisfies the Halves Condition, then so does s̃.

Proof. If s̃ ∈ 	n−1, there is a spherical configuration of points

X̃ = [
x̃ t12, x̃

t
3, . . . , x̃

t
n
]
in �n−2 satisfying X̃ s̃ = 0.

Define a new configuration X in �n−2 by taking x1 = x2 = ˜x12 and x j = x̃ j ,
j = 3, . . . , n. Then Xts = 0 and X is a configuration of points whose distance
matrix D satisfies Ds = e. The proof of (b) is obvious. �

Theorem 3.7. If s ∈ �n, n ≥ 2, then s is spherical if and only if s satisfies the
Halves Condition.

Proof. The cases for n = 2, 3 are covered above, as is the case if s is spher-
ical. Therefore let s ∈ �n, n ≥ 4 satisfy the Halves Condition. We will use

induction on n. From Lemma 3.3, we may assume that s has only non-negative
components. If some component of s is 0, then reduce s to s− as in Lemma 3.4.
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s− satisfies the Halves Condition, so by induction, s− is spherical. Then Lemma
3.4 implies that s is spherical as well. If no component of s is 0, then reduce
s to s̃ as in Lemma 3.6. Again, s̃ satisfies the Halves Condition, and thus s̃ is
spherical. Therefore, by Lemma 3.6, s is spherical, and we are done. �

We turn now to finding
s
n: that is, given a vector s ∈ �n satisfying the Halves

Condition, what is the set of all EDMs D such that Ds = e? We examine the
resulting algebra for dimensions n = 2, 3, and 4 below.

Case n=2: Lemma 3.2 above covers the only case.

Case n=3: Again, for convenience, we use

D =

 0 x y
x 0 z
y z 0


 .

Suppose first that one component of s is 0: say, the first. Then since s satisfies
the Halves Condition, s = (

0, 1
2
, 1
2

)t
. Solving Ds = e gives us that x + y = 2

and z = 2: that is, in any configuration X corresponding to D, points 2 and 3
are antipodal on a circle of radius 1√

2
. Further, wherever point 1 is placed on that

circle, the three points form the vertices of a right triangle, and the Pythagorean

Theorem ensures that x + y = z = 2. Therefore, in this case

D =

 0 x 2− x

x 0 2

2− x 2 0


 , 0 ≤ x ≤ 2.

Next suppose that no component of s is 0. Then the solutions

x = 1− 2w
2uv

, y = 1− 2v
2uw

, z = 1− 2u
2vw

are noted above in the proof of Lemma 3.5. The determinant of D is 2xyz. If no
component of s is 1

2
, then none of x, y, z is 0, and D is invertible and therefore

the unique EDM for s.

If one component of s is
1

2
, say u, then v + w = 1

2
and we get x = y = 2,

z = 0. Again there is a unique D for this s.
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Case n=4: This case is substantially more difficult than the previous two, and

only an outline of the argument is provided here. As with the argument for

n = 3 above, different cases are used for different numbers of 0 components.

For convenience, we will use

D =



0 x y z
x 0 g h
y g 0 k
z h k 0


 and s =



t
u
v

w


 .

(i) Two components of s are 0: say, v = w = 0. The equations Ds = e and
sT e = 1 reduce to


xu
xt

yt + gu
zt + hu


 =



1

1

1

1


 and t + u = 1.

This implies that t = u = 1
2
and x = 2. Then y + g = 2 and z + h = 2, while

k is constrained only by 0 ≤ k ≤ 2. To see what configurations correspond to

these distances, take any four points on a sphere of radius 1√
2
such that points

1 and 2 are antipodal. For any arbitrary point 3 on the sphere, points 1, 2, and

3 will form a right triangle, so y + g = 2 as in the case for n = 3. The same

is true for points 1, 2, and 4, so z + h = 2. Therefore, choosing
√
k to be the

distance from point 3 to point 4, we get a distancematrix D that satisfies Ds = e.
Topologically, 
s

4 is parameterized by the difference of two spheres, S2 − S0.
(ii) One component of s is 0: say, t = 0. Then we can use the equations

Ds = e and sT e = 1 to solve for z, g, h, k, and w in terms of x, y, u,
and v:

z = 1− ux − vy
1− u − v

g = u + v − 1/2
uv

h = 1/2− v

u(1− u − v)

k = 1/2− u
v(1− u − v)

.
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Thus, we can parameterize the set of possible D’s by the values of x
and y.
A necessary (but not sufficient) condition for D to be an EDM is for each

component of D to fall between 0 and 2; that is, 0 ≤ x, y, z, g, h, k ≤ 2. Call

such a matrix D 2-bounded. It can be shown that for any s satisfying the Halves
Condition with t = 0 that 0 ≤ g, h, k ≤ 2. The condition 0 ≤ z ≤ 2 creates

a region in the x-y plane bounded by parallel lines with non-empty intersection
of the square 0 ≤ x, y ≤ 2. The resulting polygonal region in the x-y plane
parameterizes the set of all 2-bounded matrices D such that Ds = e.
To see which of these 2-bounded matrices are actually EDM’s, we turn to

B = τs (D) and, in particular, to the characteristic polynomial of B. If D is an
EDM such that Ds = e, then

τs (D) = − 1

2

(
I − esT ) D (I − seT )

= − 1

2
D + 1

2
esT D + 1

2
DseT − 1

2
esT DseT

= − 1

2
D + 1

2
eeT .

One eigenvalue of B will be zero, since
(− 1

2
D + 1

2
eeT

)
s = 0. Therefore, the

characteristic polynomial of B will take the form λ
(
λ3 − 2λ2 + Qλ + L

)
. A

necessary condition for D to be an EDM is for the remaining eigenvalues of B
to be non-negative [3]. In turn, this requires that L ≤ 0. The equation L = 0

defines an ellipse that is tangent to each side of the polygonal boundary of the

2-bounded matrices in the x-y plane. For the vector s = (0, 0.7, −0.3, 0.6), the
ellipse and surrounding polygonal region appears in Figure 3.2.

An argument similar to the one used in case (ii) of Lemma 3.5 can be used to

show that if D is a matrix generated by a pair (x, y) lying on the ellipse, then D
is an EDM (the proof consists of showing that each potential triangle is in fact

a triangle). Any D corresponding to a value of (x, y) inside the above ellipse
is a convex combination of matrices generated by (x, y) on the ellipse itself.
Since the set of EDM’s �4 is convex, this implies that 


s
4 is parameterized by

the ellipse and its interior.

(iii) No component of s is 0. The argument in this case follows the same
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Figure 3.2

general outline as the argument in the previous case. Using the equations

Ds = e and sT e = 1 to solve for z, g, h, and k in terms of other variables,
we get:

z = 1− u
w
x − v

w
y

g = 1/2− w

uv
− t

v
x − t

u
y

h = tv
uw
y + 1/2− v − t

uw

k = tu
vw
x + 1/2− u − t

vw
.

The conditions 0 ≤ x, k ≤ 2 creates a vertical strip in the x-y plane; 0 ≤ y, h ≤ 2
defines a horizontal strip; and 0 ≤ z, g ≤ 2 defines a diagonal strip. It can be

shown that if s satisfies the Halves Condition, these three strips have non-empty
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intersection which parameterizes the set of 2-bounded matrices D. Again, the
equation L = 0 defines a rational algebraic curve tangent to all six sides of this

region with the property that each pair (x, y) on or interior to the curve L = 0

defines an EDM, and hence this set parameterizes 
s
4. This concludes the case

n = 4.

4 Multibalanced Euclidean distance matrices

In this section we will generalize a class of matrices introduced by Hayden

and Tarazaga in [4] called balanced Euclidean distance matrices, since they are
spherical and the centroid of the points is the center of the sphere.

We will need some notation that we introduce now. Given a positive integer n
consider a partition in k subsets of the set {1, 2, . . . , n} with cardinalities of the
subsets equal to n1, n2, . . . , nk . Thus

∑k
i=1 ni = n. Without loss of generality

we can assume that the first n1 integers are in the first subset and so on. For a
reason that will be obvious soon we ask ni ≥ 2, i = 1, . . . , k.
Wewill start by defining amultibalanced configuration of n points, and thenwe

will describe its properties and a characterization of the corresponding distance

matrices.

A configuration of n points is multibalanced if there are k ≥ 2 spheres with

center in the origin such that the i th sphere contains ni points and the centroid of
these ni points is the origin (the case k = 1 was introduced in [4]). A particular

case when ni = 2, i = 1, . . . , k, was studied by A. Alfakih [1] but from a
different point of view.

We need another piece of notation. For i = 1, . . . , k the vector ei is defined
as follows

(ei ) j =



1 if

i−1∑
s=1
ns < j ≤

i∑
s=1
ns

0 otherwise

(1)

Of course e stands as always for the vector of all ones, and e = ∑k
i=1 ei . A

vector is called a blocked vector (with respect to the partition introduced above)
if it belongs to span{e1, . . . , ek}.
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We now look to analytical properties of these multibalanced configurations. It

is important to point out that these configurations are invariant under rotations

and reflections, so in place of considering a coordinate matrix X we can work
with the corresponding B matrix where B = XXt . Remember that the null
space of X and B are the same.

Lemma 4.1. The coordinate matrix X represents a multibalanced configura-
tion of points if and only if the vectors ei , i = 1, . . . , k are in the null space of
B = XXt .

Proof. Notice that Bei = 0 if and only if Xtei = 0 and this happens if and

only if the centroid of the points in the i th sphere is the origin (see [4]). �

Corollary 4.2. If the coordinate matrix X represents a multibalanced config-
uration then e and b (the diagonal of B) are in the null space of X and B.

Proof. Just note that both vectors are linear combinations of the vectors ei , i =
1, . . . , k. �

Corollary 4.3. When computing D = κ(B) = bet + ebt − 2B the rank two
perturbation bet + ebt is orthogonal to B.

Proof. The matrix B has spectral decomposition B = ∑n
i=1 λi xi x ti , but only r

eigenvalues are different from zero (rank(B) = r), so B = ∑r
i=1 λi xi x ti . Now

any eigenvector xi , i = 1, . . . , r is orthogonal to vectors in the null space of B.
If we compute now the Frobenius inner product between bet + ebt and B we
have

〈bet + ebt , B〉F =
〈
bet + ebt ,

r∑
i=1

λi xi x ti

〉
F

= trace

( r∑
i=1

λi (b(et xi )xt + e(bt xi )xti )
) (2)

But we are computing the trace of the zero matrix since e and b are in the null
space of B and they are orthogonal to xi , i = 1, . . . , r . �
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Clearly the matrix bet + ebt is symmetric and has two eigenvalues different
from zero. If (λ, x) is an eigenpair of bet +ebt with λ 	= 0 then it is an eigenpair

of D. Moreover, because trace of bet + ebt is positive one of the eigenvalues
has to be positive (by the way D has only one positive eigenvalue) and the
corresponding eigenpair has to be the Perron-Frobenius eigenpair. A somewhat

lengthy but direct computation proves the following result. Let’s denote by b̄ the
vector in the direction of b but with the length of e, in other words b̄ = b‖e‖

‖b‖ .

Lemma 4.4. The rank two perturbation bet + ebt has the following eigenpairs
for nonzero eigenvalues(

etb + ‖b‖‖e‖, b̄ + e
‖b̄ + e‖

)
and

(
etb − ‖b‖‖e‖, b̄ − e

‖b̄ − e‖
)

(3)

The first one is thePerron-Frobenius eigenpair of bet+ebt and also of D = κ(B).

Corollary 4.5. Because e and b are blocked vectors, then these two eigenvec-
tors have to be blocked vectors, in particular the Perron-Frobenius eigenvector
has to be blocked.

In [7] Tarazaga showed that N (B) = N (D) ⊕ span{x, e}, where x solves
the linear system Dx = e. Note that for a nonspherical distance matrix (like
multibalanced matrices with k ≥ 2) x ∈ M as noted in [6]. For our class of

multibalanced distance matrices, x is easy to compute.

Lemma4.6. If D is amultibalanced Euclidean distancematrix, then amultiple
of the projection of b over M solves the linear system Dx = e.

Proof. Since the projection of b on M is given by x = b− (etb/ete)e, then we
only need to show that Dx is a multiple of the vector e, as we do in the following
computation. First of all

Dx = (bet + ebt − 2B)x = bet x + ebt x − 2Bx = bet x + ebt x (4)
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where the last equality holds because x is a linear combination of e and b both
in the null space of B. Now

Dx = bet x + ebt x (5)

= bet
(
b − etb

ete
e
)

+ ebt
(
b − etb

ete
e
)

(6)

= betb − bet e
tb
ete
e + ebtb − ebt e

tb
ete
e (7)

= betb − betb +
(
btb − (etb)2

ete

)
e (8)

=
(
btb − (etb)2

ete

)
e. (9)

Note that the coefficient of e is greater than or equal to zero because of the
Cauchy-Schwarz inequality. And it is zero only when b is a positive multiple of e
(since it is the diagonal of a positive semidefinite matrix). This case corresponds

to only one sphere as introduced in [4]. �

Let’s denote by x̂ the projection of b over M . Now it is possible to get a basis
for the subspace of N (B) spanned by ei , i = 1, . . . , k (remember e and b belong
to that subspace as well as x̂) that includes e and x̂ . To begin with e ∈ N (B),

x̂ ∈ N (B) and e ⊥ x̂ . A Gram-Schmidt procedure can complete an orthonormal
basis for that subspace. Note that since all the vectors used are blocked, the

orthogonal basis is formed by blocked vectors. We will call a basis like this a

MB-basis. The previous argument allows us to establish the following result.

Lemma 4.7. There is an orthogonal basis for the span of ei , i = 1, . . . , k that
include multiples of e and x̂ . Moreover all the vectors in the basis are blocked.

Because of the mentioned relation between null spaces of B and D given in
[7] we have the following result.

Corollary 4.8. The vectors in aMB-basis different from e and x̂ are null vectors
of D. Moreover they span the null space of D.

Now we are ready to establish our main result in this section.
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Theorem 4.9. The following statements are equivalent:

1. X is a multibalanced configuration of points.

2. B = XXt has the vectors ei , i = 1, . . . , k in its null space.

3. (a) κ(B) = D has a blocked Perron-Frobenius eigenvector x̄ .

(b) span{x̄, e} is an invariant subspace.
(c) D has k − 2 blocked eigenvectors in its null space.

Proof. Lemma 4.1 shows that 1) and 2) are equivalent. On the other hand

Lemma 4.4 and Corollary 4.8 show that 2) implies 3). We will prove now that

3) implies 2).

If span{x̄, e} is invariant then there is another blocked eigenvector x̃ such that
e ∈ span{x̄, x̃}. But using the definition of τ we have that

b = D
e
n

− et De
2n2

e (10)

which implies that b ∈ span{x̄, x̃}. Now x̂ the projection of b over M , in other
words x̂ = b− et b

et e e also belongs to span{x̄, x̃}. But since e and x̂ are independent
(and orthogonal) and as we mentioned τ(D)e = τ(D)b = 0, then we have two

blocked eigenvectors in the null space of B. We also have another independent
k − 2 blocked null vectors in the null space of B coming from the null space of
D. Now it is clear that the blocked vectors ei , i = 1, . . . , k must be in the null
space of B which finishes the proof of the theorem. �
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