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Abstract. This work introduces a new data transmission system in which the main blocks,

coding, modulation and channel are designed on a Riemannian manifolds. An intrinsic algebraic

structure to the manifolds (surface), the homology group will be used to compose an error corrector

code, a partition on the surface extracted from the embedding of a graph, which will compose

the modulation design, and the channel design is the result of an association rule applied to the

embedded graph.
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1 Introduction

Modulation on Riemannian manifold introduced in the 1960s [13], called

twister modulation, has been the subject of recent works [1, 9, 14], due to the

good performance presented and of course because of these surfaces which will

be the new spaces to be addressed. On a smaller scale, the first proposals for

coding on Riemannian manifolds are emerging [2,8]. The great source of math-

ematical results achieved in Riemannian geometry has aroused the interest of

researchers in the search of new projects of modulations and codification.
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In this work, the main components of a data transmission system, the coding,

modulation and the channel, will be offered on a Riemannian manifold from an

embedding of a graph. As these components are connected by an embedding

of a graph, the relation is called compatibility. The data transmission system

in which the coding, modulation and channel are compatible among themselves

and called of integrated system.

There are many algebraic structures existing in the Riemannian manifolds

theory that can be used to compose error corrector codes, however, the homology

group is the more natural and is related to the embedded graph [8]. To meet

the compatibility relation, we are presenting this structure as a component of a

compatible code which attends to the pattern of an integrated system.

The logical principles in which the relations of compatibilities among coding,

modulation and channel have been established and their respective geometric

constructions that gave rise to the definitions of these components are showed

in Section 2. The integrated system definition and a brief comment on the

performance are discussed in Section 3. The identification process of compatible

modulations is described in Section 4. An example of compatible code, which

give information on the integrated system performance is the topic of Section 5.

The complete process of the integrated system components’ identification will

be discussed in Section 6. The conclusions are in Section 7.

2 Compatibility concepts

Aiming to introduce the compatibility concepts, it is assumed that a data trans-

mission system uses an alphabet m-ary, indicated by set Zm , where m is a

positive integer, to transmit data through a discrete memoryless channel, DMC,

with m-ary input and n-ary output, denoted by Cm,n . The labeling of the graph

vertices, symbols and codewords of this system are represented through a trellis

8, which section is a sub graph of the complete graph Km,n . A particular

case of this representation is shown in Figure 1. Note that the sequence γ =

(0, 2, 2, 1, 0) corresponds to a codeword u = (02 22 21 10), it is defined on

a channel C4,4. Thus, γ is associated to a connected path of the trellis. The

connectivity of the path, results from the fact that a bit information is sent by

channel in each interval, condition represented by the trellis. As consequence,
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every source coding sequence or every codeword are represented by a con-

nected path on the trellis.

Figure 1 – Trellis corresponding a channel C4,4.

Observe that γ1 = (2, 1, 1, 2, 1, 0) and γ2 = (1, 3, 3, 3, 0) sequences cor-

respond, respectively, to codewords v = (21 11 12 21 10) and w = (13 33 30),

but we can not consider those as codewords coming from trellis 8. The trans-

ition 12 in v is not a trellis edge, and w is not defined on a connected path

of the 8.

2.1 Compatibility between coding and channel

In the trellis 8 are observed two properties: (I) every sequence on the channel

C4,4 it will be formed by elements of Z4; and (II), if the channel transition of

the vertices i to vertices j is represented by i j , then C4,4 does not have the

transitions 03, 12, 20, 31. Thus, it makes sense to use these two conditions to

introduce the concept of compatibility between coding system and channel. To

do so, let Zm be the input of the alphabet and output of the channel Cm,m .

Definition 2.1. It is said that a coding is compatible with the channel Cm,m if

every codeword u contains only elements of Zm and the whole subsequence i j

of u is one transition of Cm,m. Otherwise, we said that coding and channel are

incompatible.

If a codeword u satisfies the Definition 2.1, it is easy to see that u is rep-

resented by a unique connected path on the Cm,m trellis, important condition

that establishes the uniqueness of the codewords. The compatibility between
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source coding and channel depends on only the properties (I) and (II). It was

observed that linear, blocs and convolutional codes, among others, are import-

ant code classes compatible with channels. As it is known that, codewords

of linear codes are generated from operations on a generator matrix, then by

Definition 2.1, every set of sequences of Zm associated with connected paths of

the trellis are considered a code compatible with a channel Cm,m . As there are

sets that do not come from linear structures, the compatible code classes incor-

porate other classes of different codes from linear codes. It will be seen later

that exists a natural structure of linear code related with this process.

2.2 Compatibility between modulation and channel

The natural representative of a discrete memoryless channel Cm,n is a bipartite

graph Km,n or a sub graph that one. In both cases, a modulation project is nec-

essarily a metrical space partitioned in n decision regions (or Voronoi regions),

where signal is present in the center each respective region. One way that such

partitions can be obtained is through the dual embedding of 2-cells of bipar-

tite graph Km,n . While the embedding condition implies the uniqueness of the

channel transitions, the 2-cell embedding implies the uniqueness of the partition.

This condition was established by Dyck [4] and later proved by Youngs [12]

through the following enunciate.

Theorem 2.2. There is an one-to-one correspondence between rotation system

of the graph G and its embeddings on orientable surfaces.

Our purpose is to obtain a modulation project on the metric space that accur-

ately represents the channel transitions and has well defined the Voronoi regions.

This is possible if and only if the project is realizable on a surface coming from

a graph embedding.

The idea to obtain a modulation project associated with a DMC coming from

Lima-Palazzo’s work [8]. Later Lima-Lima [7] has showed that is possible to

obtain this project through an embedding of a complete graph. A recent ana-

lysis in the Lima-Lima’s work by Lima-Matias [5], has showed that associ-

ation process can be simplified and established through any connected graph.

It is not a trivial process, it evolves concepts of orientable graph and its dual.
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2.3 Association process

The process established by Lima-Lima-Matias consists in taking a connected

graph G p,q , embedding it on a surface � as 2-cells embedding, constructing

the dual embedding, and to define two modulation projects called quadrature

amplitude modulations on surface (QAMS). To be more specific, let’s suppose

that the embedding is of form

G p,q ↪→ � ≡ ∪k
i=1 Rαi

where Rα represents a region of α edges defined by sequence γ = (γ1, γ2, ∙ ∙ ∙ ,

γα) called orbital sequence. In the orbital sequence γ , γi ∈ {0, 1, ∙ ∙ ∙ , p − 1},

corresponds to the vertex vγi of G, and γ defines the closed path on surface �

corresponding the region frontier Ra . Furthermore, the dual embedding of G is

given by G ′
k,q ↪→ � ≡ ∪p

j=1 Rα j . As a modulation project for a constellation of

m signals might divide the metric space (�, δ) in m Voronoi regions, in particular,

we have two partitions on �: the embedding partition in k regions ∪k
i=1 Rαi , and

the dual partition in p regions ∪p
j=1 Rα j . So, we have two projects of modulation,

the modulation k-QAMS coming from embedding of G p,q , and dual modulation

p-QAMS. Of course there are modulations for k and p signals, respectively.

Once that the signals of the constellation are associated to points of �, k signals

of k-QAMS correspond to the k vertexes of dual G ′, and p signals of p-QAMS

correspond to the p vertexes of G. Finally, we might associate the channels Ck,k

and C p,p to modulations k-QAMS and p-QAMS, process that will be described

following.

2.4 Channel compatible with a modulation

In the Heawood’s description process [11] of the graph embedding G p,q ↪→

� ≡ ∪k
i=1 Rαi , the partition ∪k

i=1 Rαi is obtained through the orientable graph

(or digraph). In this process, an orientation on vertexes of G defines k regions

of partition (Voronoi regions of k-QAMS). But on the digraph G, each edge

e = (vi , v j ) contains its inverse e−1 = (v j , vi ), and so, each edge e = (vi , v j ) of

G defines two transitions on the channel Ck,k , and each edge e = (vh, vk) of dual

G ′ defines two transitions on the channel C p,p. Thus, we can define a channel

Ck,k compatible with a modulation k-QAMS, for this.
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Let G p,q ↪→ � ≡ ∪k
i=1 Rαi be a 2-cells embedding of a graph G, and G ′

k,q ↪→

� ≡ ∪p
j=1 Rα j , is a dual embedding. Suppose that A = {s0, s1, . . . , sk−1}

and A′ = {s ′
0, s ′

1, . . . , s ′
p−1} are the respectively alphabetic symbols used in

the channels Ck,k and C p,p.

Definition 2.3. It is said that the modulation k-QAMS (p-QAMS) is compat-

ible with the channel Ck,k (C p,p), if each edge e = (vi , v j ) (e′ = (vh, vk)) of the

graph G (G ′) defines two transitions (si , s j ) and (s j , si ) ((sh, sk) and (sk, sh))

of the channel Ck,k (C p,p).

If a modulation m-QAMS and a channel Ck,k satisfy the condition of Def-

inition 2.3, it still will said that the channel Ck,k is compatible with the modu-

lation k-QAMS.

In this process it is has been considered a discrete memoryless channel. The

2-cell embedding can even be used in this kind of project, it is missed only

the condition of uniqueness, because exist identical modulations coming from

distinct embeddings. But it is impossible discard the embedding condition,

therefore, there would not be uniformity of channel transitions. A modulation is

the process to broadcast a signal, but here, we are going to consider the modu-

lations as a space metric (�, d) with a region partition ∪Rα (where Rα is an

α-gon) on �, denoted by 4 = (�, d, ∪Rα). By Theorem 2.2, the modulation

4 compatible with channel Cm,n is well defined by rotation system of complete

graph, 2(Km,n). If the objective is to describe a modulation relating to its all

components, then we write

4 : Km,n(2) ↪→ � ≡ ∪Rα.

A modulation m-QAMS is compatible with a channel Cm,m , when the rotation

system 2 and the 2-cells embedding are fixed. From the algebraic point of view,

it is always possible to identify the kind of regions, genus surface and the own

partition, but, the topological embedding is highly complex. In this work, it will

be seen some non trivial examples.

In Figure 2, trellis section consists in a graph K4,4(8, 9) associated to the

channel C4,4, which the rotation system is given by

2(K4,4) =
{
0(135), 1(062), 2(137), 3(042), 4(357), 5(04), 6(17), 7(264)

}
.
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Figure 2 – Steps of a topological modulation projects.

This partition embedding is composed by a single region 22-gon defined by

orbital sequence γ = (1, 0, 3, 4, 5, 0, 1, 6, 7, 4, 3, 2, 7, 6, 1, 2, 3, 0, 5, 4, 7, 2).

It is a maximal embedding on bi-torus of the kind K4,4(8, 9) ↪→ 2T ≡ R22. As

is not used modulation for one signal, only dual modulation is defined. As K4,4

has 8 vertexes, the dual modulation is the form 8-QAMS, each decision region

is composed by 1-gon. To better understand this process, we will see the next

example. Choosing other rotation system for graph K4,4(8, 9), for example,

2′(K4,4) =
{
0(135), 1(026), 2(137), 3(024), 4(357), 5(04), 6(17), 7(264)

}

(see Figure 2(a)), we obtain a different embedding K4,4(8, 9) ↪→ T ≡ 2R6+

R10 defined by sequences γ1(0, 3, 2, 7, 6, 1), γ2(0, 5, 4, 3, 2, 1) and γ3(3, 5, 4,

7, 2, 1, 6, 7, 4) (see Figure 2(b-c)). The dual embedding is given by K ′(3, 9) ↪→

T ≡ 2R2 + 6R3, and defined by dual γx0(1, 0, 2), γy0(1, 2, 0), γx1(1, 0, 2),

γy1(1, 2, 0), γx2(1, 0, 0), γy2(1, 0), γx3(0, 2) e γy3(0, 2, 0) (see Figure 2(c-e)).

In Figure 2, embeddings (b) and (c) correspond to the planar and spacial

topological projects of modulation 3-QAMS on the torus for a constellation
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of three signals which decision regions are defined by orbital sequences γ1, γ2,

γ3. Its compatible channel C3,3 is shown in Figure 3(a). Embeddings (d) and

(e) of the Figure 2 correspond to the planar and spacial topological projects of

dual modulation 8-QAMS on the torus for a constellation of eight signals which

decision regions are defined by orbital sequences γx0, γy0, . . . , γx3, γy3 . Its com-

patible channel C8,8 is shown in Figure 3(a). The embeddings of K4,4(8, 9)

and their dual, shown in Figure 2, represent the complete steps of a topolog-

ical modulation projects 3-QAMS and 8-QAMS compatible with the chan-

nels C3,3 and C8,8 which associated graph was fixed by rotation in (a). The

plane model in (b) illustrates the partition on the torus caused by embedding

of K4,4 and its dual. The dual graph partition embedding together is shown in

(e). The constructions (b) and (d) are very important because they are necessary

to construct the modulation on torus, through its parametric equation, and to lead

the problem to the Riemann Geometry environment. Finally, (c) and (e) show

the spacial models corresponding to the embeddings (b) and (d). The goal of

these constructions is to verify that topological modulation is compatible with

channel which can be constructed on a topological riamannian manifolds.

Figure 3 – Dual graph and compatible channels.

It is observed that, the channel Ck,k compatible with modulation k-QAMS is

defined on the dual partition from an embedding of graph

G p,q ↪→ � ≡ ∪k
i=1 Rαi .

But Km,n and its dual, are both embeddings in � and is a dual in another. On

the other hand, if the dual defines the modulation p-QAMS compatible with

the channel C p,p, this is, defined on the graph G p,q . Thus, embedding of Km,n

defines a compatible modulation, called directed compatible modulation with

Cn,n . Sometimes we will call dual compatible modulation to refer the compat-

ible modulation coming from the dual embedding. Despite of the compatible
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modulation on the embedding partition is not always uniform, the dual always

will be, if the vertices degree of the associated channel is considered satisfying

a determined condition.

Proposition 2.4. Let G(p, q) ↪→ � ≡ ∪k
i=1 Ri

αi
be a 2-cells embedding of graph

G. If Ck,k and C p,p are DMC channels compatible with modulations k-QAMS

and p-QAMS, then are true the followings affirmations:

(i) For all k, γ (G p,q) ≤ m ≤ γM(G p,q), there are directed and dual com-

patible modulation in m�.

(ii) The directed and dual compatible modulations are modulations on � for

a constellation of k and p signals, respectively.

(iii) The dual compatible modulation is uniform if, and only if, all vertices

of G p,q have the same degree.

Proof. The affirmation (i) follows by Theorem 2.2, (ii) is an embedding parti-

tion consequence and dual definition, and (iii) is due the number of edges of one

dual region, the vertex degree in its inner, as the uniform modulation, all regions

have the same number of the edges. �

By Proposition 2.4, it follows that dual modulations coming from complete

graph Kn and bipartite complete graph of the form Kn,n , are uniform modu-

lations.

3 Data transmission integrated system

In the Definitions 2.1 and 2.3, we have the necessary conditions that we have

been looking for to define data transmission system to our interest.

Definition 3.1. We said that a data transmission system is an integrated system

(IS), if the coding and the modulation projects are compatible with the channel.

It is still said that in the IS, the coding, modulation and channel are compat-

ible among themselves. In the IS block model shown in Figure 4, the combina-

tion m-ary input in the modulator, the physical channel, and the n-ary output in
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the demodulator are modeled as a discrete memoryless channel (DMC), denoted

by Cn . The modulation design come from the partition of 2-cells embedding of

the complete graph Kn in the surface �3.

Figure 4 – Integrated system block model.

It’s known [8] that the modulation efficiency depends on the genus and uni-

formity degree α (number of regions of the same kind), additionally, it is shown

in [7] that they still depend on the number of edges of the regions. The identifica-

tion of these parameters is very important in order to know the IS performance.

In Figure 5 Pe(α) indicates the error probability in IS when is used an uniform

modulation of degree α. In IS, the metric spaces can be considered the same

or not [1]. About the compatibility conditions in Definitions 2.1 and 2.3, there

are relations one-to-one among coding, modulation and channel, since these are

directly related to the channel. This gave us the assurance that IS, in terms of

implementation, is the one which has the lowest complexity, since there is no

need to introduce additional devices of incompatibility control. Furthermore,

someone should consider that the project is done on a Riemannian manifold,

space that offers some options for projects with interest properties [1].

Figure 5 – Proposal overview (Adapted by [1]).
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4 Identification process of compatible modulations

We notice the existence not only of a unique compatible modulation with a

channel, but a whole compatible modulations set. Although this set was for a

finite number of elements, which it grows quickly with increasing signs and

channel transitions, it follows the more important topological invariants and

results used in the identification process of the IS components.

If V (G) is set of the vertices of G and deg(v) is the degree of the vertex

v ∈ V , then it is easy to verify that graph G has
∏

v∈V (G)

(deg(v) − 1)! rotations. (1)

If v, e and f are, respectively, the vertex, edges and regions number, then the

Eüler’s characteristic of the surface � is given by

χ (�) = v − e + f. (2)

The genus g and g̃ of the orientable � and non-orientable �̃ surfaces, in

relation to the χ (�), are given by

χ (�) = 2 − 2g and χ
(
�̃

)
= 2 − g̃. (3)

Let {x} be the smallest integer greater than or equal to the number x . The

minimal genus of the orientable surface [11] is given by

g(m, n) = {(m − 2)(n − 2)/4}, for m and n ≥ 2. (4)

Let [x] be the greatest integer less than or equal to number x . The maximal

genus of the orientable surface [10] is given by

γM(Km,n) =
[

1

2
(m − 1)(n − 1)

]
, for m and n ≥ 2. (5)

The following theorem [3] gave the orientable surfaces set where is present

in the compatible modulation with a channel Cm,n .

Theorem 4.1. If G has 2-cell embeddings on surfaces of genus m and n, then

for every integer k, m ≤ k ≤ n, G has a 2-cell embedding on the surface of

genus k.
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For example, if we take the bipartite complete graph K4,4, what would be

modulations coming from embedding of K4,4 and their compatible channels?

The first step of the identification process is to choose one of the four surfaces

families: Non-orientable and orientable with and without component boards. It

will be identified modulations for the two cases of surfaces without boards.

4.1 Compatible modulations on orientable surfaces

In relation to the orientable without board case, the equality (1) shown that

K4,4 has 1 679 616 rotations. Then there are 1 679 616 options to choose

a rotation, but, not all the partitions are distinct, then it is possible to find

them. By equalities (4)-(5), it is deducted that minimal and maximal embed-

dings of K4,4 it has been found in surfaces of genus γ = 1 and γM = 4. So,

by Theorem 4.1, orientable surfaces set to the K4,4 embeddings is given by

S(Km,n) = {T, 2T, 3T, 4T }. On the other hand, K4,4 has 16 edges, the re-

gions of the K4,4 ↪→ � have 32 edges and embedding regions of K4,4 only

contain an even number of the edges larger than or equal to four. These affirma-

tions conclude that 2-cell embeddings of K4,4 must necessarily be listed in the

Table 2, where partition of mT is the same of 2m P . The notation Ra1,a2,∙∙∙ ,ak

used in Table 2 indicates the embedding partition of Km,n in k regions with

a1, a2, ∙ ∙ ∙ , ak edges.

An attribute of great interest in a modulation is its uniformity or, equivalently,

the condition: Voronoi’s regions are all congruent. Condition equivalent to the

geometrically uniform signal space, here, correspondents to the embeddings with

regions of the same kind, as examples, the partitions 8R4 of T and 4R8 of 3T .

The Theorem 4.1 gave us the guarantee for the existence of, at least, an em-

bedding with element of S. Soon, we do not have doubt that the minimal embed-

ding K4,4 ↪→ T ≡ 8R4 exists, an example of uniform compatible modulation.

We still check the existence of the regular embedding K4,4 ↪→ 3T ≡ 4R8, other

important example of regularity. These examples illustrated in Figure 6 shows

that Km,n embeddings are a rich source of uniform compatible modulation. It

is observe that directed and dual modulations coming from minimal embedding

K4,4 are equals. This one is an uniform modulation for a constellation of 8 sig-

nals, with Voronoi’s regions of the kind 4-gon. Its dual graph and compatible

Comp. Appl. Math., Vol. 31, N. 1, 2012
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Figure 6 – Uniform modulations QAMS on the torus and 3-tory coming from K4,4

embeddings.

channel is the same kind of channel in Figure 7(c). And 3-tory one, directed

compatible modulation have 4 signals, with Voronoi’s regions of the kind 8-gon.

Dual graph (a) and compatible channel (b) is shown in Figure 7. Dual compat-

ible modulations are uniform modulations for a constellation of 8 signals with

decision regions of the kind 4-gon (see its channel in (c)). It is showing that

geometrically uniform signal space is not privilege only of hyperbolic spaces.

Figure 7 – Dual graph and compatible channels with the uniform modulations on 3T in

the Figure 6.

An embedding of a graph G, and thus, its compatible modulations, are deter-

mined by a rotation system 2 of G, dual embedding, and sets of orbital sequences

of embeddings of G and dual G ′. This process can be realized only with alge-

braic resource, using a algorithm descriptor of embedding [6]. (See algebraic

description process in Table 1).
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� Rotation Orbital sequence γi 4

(1573)0,(0426)1,(1537)2,(0264)3, (1254)1,(2365)2,(3476)3,(0143)4
T

(1375)4,(0624)5,(1735)6,(0462)7 (0327)5,(1672)6,(0745)7,(0561)8
8R4

(1753)0,(0642)1,(1375)2,(0642)3 1(30163412), 2(03654725)
3T

(1573)4,(0642)5,(1357)6,(0642)7 3(10761452), 4(70567432)
4R8

Table 1 – Uniform compatible modulations with C4,4.

In Table 1, the notation (1573)0 used in second column corresponds to the

rotation of the vertex 0, (1254)1 used in the 3rd column indicated the orbital

sequence γ1 on the torus, and 4 indicated the partition. It was verified even that

the R6,6,8,10 is the unique partition of the Table 2 non existent in one orientable

embedding of K4,4 [5]. It would be this partition in a non orientable embedding

of K4,4?

4.2 Irregular compatible modulation with C4,4

In Table 2, most of the embeddings of K4,4 are irregulars. Using the embedding

method through homology curves incises [8], plane (b) and space (a) models

of a compatible modulations with K4,4 are illustrated in Figure 8. This is an

embedding of the form K4,4 ↪→ 3T ≡ R4,6,6,16 (see plane model in (a)).

It can be used as a non-uniform directed compatible modulation project for

constellation of 4 signals, where decision regions R4, R6, R6, R16 correspond

orbital sequences γ1(4563), γ2(052743), γ3(012367), γ4(1032541650721476),

respectively, and an uniform dual compatible modulation for constellation of 8

signals coming from dual partition K4,4 ↪→ 3T ≡ 8R4 (see embedding (e)),

witch decision regions are defined by γ1(4243), γ2(4434), γ3(4432), γ4(1324),

γ5(1244), γ6(1424), γ7(1443), γ8(2434).

It is concluded, therefore, that each embedding of K4,4 defines two compat-

ible modulations: that directly coming from the embedding partition and the

dual partition. Despite of the compatible modulation on the embedding partition

of the graph G is not always uniform, the dual always will be, if the vertices

degree of G are equals. For example, when G is the complete graph or bipartite

complete graph.
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Figure 8 – Irregular modulations in 3-tory.

4.3 Compatible modulation on non-orientable surfaces

The identification process of modulation on non-orientable surfaces is similar

to the orientable case. The difference is the variation of Eüler characteristic,

it is of two in two unities in the orientable case and one to one it is the non-

orientable case. As consequence, there are partitions in non-orientable surfaces

that are not found in an orientable embeddings.

An orientable surface has been represented by a connected sum of g tory,

denoted by gT . Similarly, a non-orientable surface it will be indicated by a

connected sum of g̃ projective planes P , denoted by g̃ P . Taking into account

the fact that the embedding of K4,4 only has regions of the kind 2k-gon, k ≥ 2,

and sum of the region edges is 32, it is concluded that directed compatible
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modulations with the channel C4,4 in non-orientable surface are as the related

models in Table 2.

g̃ P Partitions N0

2P R4,4,4,4,4,4,4,4 1

3P R4,4,4,4,4,4,8,R4,4,4,4,4,6,6 2

4P R4,4,4,4,4,12,R4,4,4,4,6,10,R4,4,4,4,8,8,R4,4,4,6,6,8,R4,4,6,6,6,6 5

R4,4,4,4,16,R4,4,4,6,14,R4,4,4,8,12,R4,4,4,10,10,R4,4,6,6,12
5P

R4,4,6,8,10,R4,4,8,8,8,R4,6,6,6,10,R4,6,6,8,8,R6,6,6,6,8
10

3R4 R20,R4,4,6,18,R4,4,8,16,R4,4,10,14,R4,4,12,12,R6,6,6,14,R6,6,8,12,4R8
3T

R4,6,6,16,R4,6,8,14,R4,6,10,12,R4,8,8,12,R4,8,10,10,R6,6,10,10,R6,8,8,10
15

R4,4,24,R4,6,22,R4,8,20,R4,10,18,R4,12,16,R4,14,14,R8,12,12
7P

R6,8,18,R6,10,16,R6,12,14, R8,8,16,R8,10,14,R6,6,20,R10,10,12
14

8P R4,28,R6,26,R8,24,R10,22, R12,20,R14,18 R16,16 7

9P R32 1

Table 2 – Directed compatible modulations coming from K4,4 embeddings on non-orientable

surfaces.

Observe that partitions of non-orientable embeddings are always the same of

the orientable embeddings always g̃ is an even number, and in the cases where

g̃ is odd, the number of partitions is still quickly greater than the orientable

partitions. So the non-orientable embeddings of K4,4, when compared to ori-

entable case, is a modulation source with more than double of elements of

the orientable case, can have the same kind of partitions and present different

options of embeddings and regularities. In relation to topological projects,

these can be constructed with same difficulty degree of orientable embeddings,

as shown the Figure 9. A compatible directed modulation with the channel

C12,12[4, 4] is illustrated in (a). In the graph K6,6, deg v = 4 and rotation is

given by

2 =
{
0(1, 3, 11, 9), 1(0, 10, 2, 4), 2(1, 11, 9, 5), 3(0, 4, 6, 8),

4(1, 5, 7, 3), 5(2, 6, 8, 4), 6(3, 7, 9, 5), 7(4, 8, 10, 6), 8(5, 3, 11, 7),

9(6, 10, 0, 2), 10(9, 7, 11, 1), 11(10, 8, 0, 2)
}
.

The plane model in (b) and spacial model in (c) represent homeomorphic em-

beddings corresponding to the partition K6,6(12, 24) ↪→ 2P ≡ 12R4, is so
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Figure 9 – Compatible modulation with channel C12 coming from K6,6[4] on the surface

Klein’s Bottle.

an example of a compatible uniform modulation on a non-orientable surface of

genus 2, the Klein’s bottle, of the same homeomorphis class of the surface 2P .

As the dual is equal to the own embedding, directed and dual compatible modu-

lation are identical. This is a very important example because it is possible to be

realized, a Differential Geometry level, through its parametric equations.

5 Homology group and compatible code

It has been seen that a compatible code with a DMC can be taken in different

ways. The more natural way to do this choice [8] is that it should be through the

homology group. The reason is because this group can be determined, when the

Betti’s method is applied from a triangulation obtained from a graph embedding.

Thus, the proposal is to establish a compatible linear code extracted directly

from the calculus process of homology group via Betti’s method. In this sense,

it is known that homology group of orientable and non-orientable surfaces is

given by

H1(�) =






Z2m, if � ≡ mT

Z2 ⊕ Zm−1, if � ≡ m P,
(6)

where Z is the additive group of the integers, Z2 is the binary group and Z⊕ Z

is a directed sum of Z with its own.

A strong reason for choice the homology group structure as an error-correct-

ing code provider, beyond the uniqueness of this one, are the facts of the 2-cells

embedding introduce a unique modulation and the rotation system provide a

unique channel, conditions in which the own IS is determined by a unique way.
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Moreover, the Betti’s method determines the homology group through linear

system which is associated to the matrix that can be used as an error-correcting

code generator, similarly to linear codes. The idea is to identify and analyze

the correct error capacity of these structures.

Suppose the graph Km,n is embedding on the surfaces 2T and 4P , as a 2-cells

embeddings. It is easy to construct the triangulation on these embeddings. Thus,

let ϒ be a triangulation or a simplicial complex on �. But ϒ is a triangulation

with many edges, which makes the homology group calculation more laborious.

As the homology group is independent of the triangulations ϒ , this calculus can

be minimized using the central triangular diagrams (CTD) [8]. For surfaces

2T and 4P the CTD are shown in Figure 10.

Figure 10 – Central triangular diagrams on 2T and 4P .

From Betti’s method, the first homology group, indicated by H1(�), of the

surfaces 2T and 4P are given, respectively, by solutions of the linear systems

H (2T ) :






z1 + z2 + z6 = 0

z1 + z6 − z7 = 0

z2 + z7 − z8 = 0

z3 − z8 + z9 = 0

z3 + z4 + z10 = 0

z4 − z9 + z10 = 0

, H (4P) :






2z1 + z6 = 0

z2 + z7 − z6 = 0

z2 + z8 − z7 = 0

z3 + z9 − z8 = 0

z3 + z10 − z9 = 0

z10 − 2z11 = 0
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and using the fields Z2 and Z3 it follows the matrices

G =








1 1 0 0 1 0 0 0 0

0 1 0 0 0 1 0 0 0

0 0 1 0 0 0 1 1 0

0 0 0 1 0 0 1 1 1








,

G̃ =













1 0 0 2 0 0 0 0 0

0 1 0 0 2 1 0 0 0

0 0 1 0 0 0 2 1 0

0 0 0 1 0 0 0 0 1

0 0 0 0 1 1 1 0 0

0 0 0 0 0 0 1 1 1













.

Therefore, G(�) is a binary matrix and G(�̃) is a 3-ary matrix. These prop-

erties will be used to obtain the linear codes in orientable and non-orientable

surfaces, coming from homology group, with algebraic structures in the fields

Z2 and Z3 and patterns of a IS. Then, considering G(2T ) as a generated matrix

of an error-correcting code, it has a binary linear code (C1, 4, 9) with source se-

quences and codewords of lengths 4 and 9, respectively. Similarly, it is deduced

that matrix G(4P) generates a 3-ary linear code (C2, 6, 9). These structures of

codes are formalized bellow.

Definition 5.1. Let Km,n ↪→ � a 2-cells embedding of the graph Km,n, and

4(�) the CDT on �. It is called compatible generalized code, the linear code

(H, s, t) generated by matrix G(�)s×t , obtained from linear system H1(�).

The demands imposed are: the linear independence of the G(�) lines and, to

effect of correcting errors, the lines corresponding to the variables z2g+2 e z6g−4

are eliminated. Of course, these last conditions can be refused since they are not

lost on condition of linear independence. The parameter s tells us the source

code is a linear subspace of the space Zs
2 with 2s elements and sequences of

lengths s. The parameter t indicated the code is a linear subspace of the space

Zt
2 with 2t elements and codewords of lengths t .

Remark 5.2. If � is a compact surface of genus g, then 2g-gon ≡ �, and all

vertices of the boundary of the orientable polygon 2g-gon are transformed into
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a single vertex, after the geometric realization of 2g-gon in �. This property

is essential to proof the follow affirmation.

Proposition 5.3. The CDT 4(�) satisfies the following properties:

a) The maximal tree on 4(�) is composed by a unique 1-simplex (red edges

in Figure 10).

b) 4(�) is composed by 6g 1-simplexes, if � ≡ gT or � ≡ g̃ P where

g̃ = 2g.

c) The system of the homology group presentation H1(�), from 4(�) is

composed by 4g trivial relations, being two of two terms and the rest of

three terms.

d) The system H(�) contains 4g − 2 trivial relations and 6g − 2 variables.

e) H(gT ) has two equivalent lines to the trivial relations z2g+4 ≡ 0 and

z6g−4 ≡ 0.

f) The rank of the matrix G(�) is 2g if � ≡ gT and g̃ − 2 if � ≡ g̃ P,

g̃ = 2g.

Proof. Suppose that the maximal tree A has another 1-simplex e j different of

e12. If e j is an edge on the boundary of the 2n-gon, then e j is a loop of �. If e j

is a ray of the 2n-gon, then, by Remark 5.2, e j and e12 have two interceptions,

in the center and on the boundary, and so A has a loop. Both on this case, A

would not be a tree, which proofs the affirmation a). As g̃ = 2g, then, both the

surfaces gT and 2gP present polygonal forms 2g-gon. So its respective CDT

4(�) has g different 1-simplexes on the boundary and 2g 1-simplexes in the

interior of 2g-gon, a total of 6g 1-simplexes, which proves b). In the Betti’s

method, each trivial relation ri comes from a 2-simplex or triangle ti , and by

one property known [8], the number of the ri terms are equal to the number of

1-simplex in ti that does not belong to maximal tree 4(�). As only there are

two 2-simplexes of 4(�) has 1-simplex on A, it follows affirmation c). The

number of system variables H(�) is equal to the number of 1-simplex, i.e., 6g

and H(�) is obtained replacing the two trivial relations of two terms in two of

three terms. As each replacement missed one variable, then H(�) is formed by

4g − 2 trivial relations and 6g − 2 variables, which proof d). The affirmation e)
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was checked during the resolution of homology groups, including the solution

on CDT of a generic surface. In particular case of H(2T ), he have










1 1 0 0 0 1 0 0 0 0

1 0 0 0 0 1 −1 0 0 0

0 1 0 0 0 0 1 −1 0 0

0 1 0 0 0 0 0 −1 1 0

0 0 1 1 0 0 0 0 0 1

0 0 0 1 0 0 0 0 −1 1










⇒










1 1 0 0 0 1 0 0 0 0

0 1 0 0 0 0 1 0 0 0

0 0 0 0 0 0 0 −1 0 0

0 0 1 0 0 0 0 −1 1 0

0 0 0 1 0 0 0 −1 1 1

0 0 0 0 0 0 0 −1 0 0










Notice that the 3th and 4th lines in the second matrix above are identical and

both indicate that z8 = 0. For the coding purpose, this type of line does not

cause any effect, therefore their exclusion, amongst with variables which contain

the null columns in the composition of the generator matrix of compatible code.

Therefore, the generator matrix of compatible code on 2T , instead of 6 × 10,

it is a matrix of order 4 × 9 (in Z2, it is equal to the matrix G above). The

affirmation f) result of the equality (6), a classic theorem of the homology

groups of the algebraic topology. �

Constructing the DTC for generic surface � and its corresponding generate

matrices G(�), it is possible to conclude that, for all embedding Km,n ↪→ �,

exists a unique generalized code compatible G on a Riemann manifold � which

the graph associated to the channel Cm,n has a 2-cells embedding.

Theorem 5.4. If Km,n ↪→ � ≡ ∪k
i=1 Ri

αi
is a 2-cells embedding, then exists a

unique binary generalized code H, if � ≡ gT , or a unique 3-ary generalized

code H̃ , if � ≡ gT , compatibles with Ck, defined by following parameters,

H =






(H, 4g − 4, 6g − 3), if � ≡ gT

(H̃ , 2g̃ − 2, 3g̃ − 3), if � ≡ g̃ P.
(7)

Proof. By Definition 5.1, the generate matrix G(�) of code H coming from

a matrix H(�) associated to the coefficients of a simplified system of trivial re-

lations with three terms, obtained from the presentation of the homology group

of �, through Betti’s method. As G(�) is obtained through fundamental opera-

tions, then G(�) is equivalent to H(�) and so the code generated by G(�) is a

unique binary code. If � ≡ gT , by Proposition 5.3(d), H(�) has 2g − 2 trivial
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relations and and 6g − 2 variables. As G(�) is the matrix of the coefficients of

H(�) by eliminating two from the line of this one, it following that G(�) is

a binary matrix of order (4g − 4) × (6g − 3). In an analogous way, it is con-

clude that G(g̃ P) has a 3-ary matrix of order (2g − 2) × (3g − 3). As the order

s × t of G(�) defines the parameters (H, s, t) of a linear code, which proves

the equalities (8). �

Corollary 5.5. Dual code of a generalized code compatible with a channel

Cm+n is of the form:

H ′ =






(H ′, 2g + 1, 6g − 3), if � ≡ gT

(H̃ ′, g̃ − 1, 3g̃ − 3), if � ≡ g̃ P.
(8)

Proof. Directed consequence of the dual code and Theorem 5.4. �

As examples, the generalized codes (H1, 4, 9) e (H2, 6, 9) above, relatives the

generated matrices G(2T ) e G(4P), have as dual codes (H1, 5, 9) e (H2, 3, 9),

respectively.

6 Identification process of IS components

In the case of bipartite complete graph, the main components of IS, the modu-

lations, coding and channel, are obtained through the followings steps.

6.0.1 Surface sets

Equalities (4) given the genus γ of the minimal orientable embedding of Km,n .

(The minimal non-orientable embedding ˜γsatisfies the condition γ̃ = γ or

γ̃ = γ + 1 ). Thus, by Theorem 4.1, the orientable and non-orientable surface

sets for embeddings of Km,m are given by

S(�) =
{
γ T, (γ + 2)T, (γ + 4)T, . . . , γM T

}

S(�̃) =
{
γ̃ P, (˜γ+ 1)P, (˜γ+ 2)P, . . . , γ̃M P

}
,

where γM and ˜γM are the orientable and non orientable maximal genus of Km,n .
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6.0.2 Modulation models

It is determined the Eüler characteristic χ(γ T ) by equalities (3) and the re-

gion number τ of the minimal embedding (equalities (2)). As the regions of

a Km,n embedding partition have 2mn edges and one region is the form R2k ,

k ≥ 2, the modulation models are composed by all possible combinations of

partitions ∪t
i=1 Ri

αi
such that

t =

{
τ, τ + 2, τ + 4, . . . , 5, 3, 1, if t is odd

τ, τ + 2, τ + 4, . . . , 6, 4, 2 , if t is even.

In the non-orientable case, is determined the partitions ∪t̃
i=1 Ri

αi
such that

t̃ = τ̃ , τ̃ + 1, τ̃ + 2, . . . , 3, 2, 1, where τ̃ is the region number of the non-

orientable minimal embedding.

6.0.3 Compatible code

Equalities (8) given an algebraic structures for composition of correcting-code

error, Theorem 5.4 provides the generalized code compatible with channel

Cm,n , and Corollary 5.5 provides the dual code.

As an application of the method we consider the IS components compat-

ible with channel C4,4 identified in the Table 3. The elements of the associated

graph K4,4 are: v = 8 and e = 16.

g(�) � α N o H1 (�) Code Dual

T 8 1 Z2 (H, 1, 3)
(
H ′, 2, 3

)

2T 6 4 Z4 (H, 4, 9)
(
H ′, 6, 9

)

gT
3T 4 13 Z6 (H, 8, 15)

(
H ′, 7, 15

)

4T 2 6 Z8 (H, 12, 21)
(
H ′, 9, 21

)

2P 8 1 Z2 ⊕ Z (H, 2, 3)
(
H ′, 1, 3

)

3P 7 2 Z2 ⊕ Z2 (H, 4, 6)
(
H ′, 3, 6

)

4P 6 4 Z2 ⊕ Z3 (H, 6, 9)
(
H ′, 3, 9

)

5P 5 10 Z2 ⊕ Z4 (H, 8, 12)
(
H ′, 4, 12

)

g̃ P
6P 4 13 Z2 ⊕ Z5 (H, 10, 15)

(
H ′, 5, 15

)

7P 3 14 Z2 ⊕ Z6 (H, 12, 18)
(
H ′, 6, 18

)

8P 2 6 Z2 ⊕ Z7 (H, 14, 21)
(
H ′, 7, 21

)

9P 1 1 Z2 ⊕ Z8 (H, 16, 24)
(
H ′, 6, 24

)

Table 3 – IS components coming from K4,4 embeddings.
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By equalities (4) and (1), we have

γ (K4,4) =
{

1

4
(4 − 2)(4 − 2) = 1 and γM(K4,4) =

[
(4 − 1)(4 − 1)

4

]}
= 4.

Then, the orientable embedding surface sets is S(K4,4) = {T, 2T, 3T }, non-

orientable embedding surface sets is S(K4,4) = {2P, 3P, ∙ ∙ ∙ , 8P} (2nd column)

and the these partitions are related in the 3rd column. The 4th column indicates

the number α of the regions which it is constant in each surface. In the last

three columns are the structures of compatible codes.

The generalized codes on the sphere and torus are degenerated cases. By

Theorem 5.4, only dual code is defined on the torus. Indeed, generalized codes

are more appropriated for surfaces of large genus. As H1(S) = 0 the sphere is

the unique case where the code coming from homology group is degenerated.

7 Conclusion

The integrated system is an ambitious idea, which intends to integrate the three

main components of the data transmission system: codification, modulation and

channel. In this first approach, the goal is to establish mathematic definitions

considering the dependence relations of these components. In principle, the

aim is to design a new data transmission system more efficient than the cur-

rently used. However, many other advantages are observed. The topological

invariants such as orientability, genus, border component and partition, provide

quick answers to questions about the modulation efficiency. It is not differ-

ent with homology group. It is an important algebraic invariant which gives

quick answers related to probably code class that could be projected in met-

rical spaces, such as Riemannian manifolds. The initial project, the topologi-

cal constructing and identification of IS components, already has been solved

in this work. The final project, has found in Algebraic Topology environ-

ments and Riemann’s Geometry, recognized as promising areas for the com-

munication problem. For further works, the proposal for the suggestions is

to development embedding methods, constructing modulations that have been

identified in this work (or new projects) using Riemann’s Geometry tools and

Algebraic Topology, and using the invariants as efficiency analysis instruments

of the data transmission system.
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