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Abstract. When applied to an unconstrained minimization problem with a convex objective, the
steepest descent method has stronger convergence properties than in tivexcase: the whole
sequence converges to an optimal solution under the only hypothesis of existence of minimizers
(i.e. without assuming e.g. boundedness of the level sets). In this paper we look at the projected
gradient method for constrained convex minimization. Convergence of the whole sequence to a
minimizer assuming only existence of solutions has also been already established for the variant
in which the stepsizes are exogenously given and square summable. In this paper, we prove the
result for the more standard (and also more efficient) variant, namely the one in which the stepsizes
are determined through an Armijo search.
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1 Introduction
1.1 Theproblem

We are concerned in this paper with the following smooth optimization problem:

min f(x) (1)

s.t.x e C, (2)
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38 GRADIENT METHOD FOR CONVEX OPTIMIZATION

where f : R" — R is continuously differentiable an@ c R” is closed and
convex. Each iteration of the projected gradient method, which we describe
formally in subsection 1.3, basically consists of two stages: starting from the
k-th iteratex® € R, first a step is taken in the direction eV f (x¥), and then

the resulting point is projected on€g possibly with additional one-dimensional
searches in either one of the stages. The classical convergence result establishes
that cluster points ofx*} (if any) are stationary points for (1)—(2), i.e. they
satisfy the first order optimality conditions, but in general neither existence nor
unigueness of cluster pointsis guaranteed. Inthis paper we prove amuch stronger
result for the case in whiclf is convex, namely that the whole sequefic€
converges to a solution of (1)—(2) under the only assumption of existence of
solutions. An analogous result is known to hold for the steepest descent method
for unconstrained optimization, which we describe in the next subsection.

1.2 The steepest descent method

Given a continuously differentiablg : R* — R, the steepest descent method
generates a sequenpg} € R” through

=Xk = gV Y, 3)

whereg;. is some positive real number. Several choices are availabg farhe
first one is to set thg,’s exogenously, and a relevant option is

(077
=— 4
IBk va(xk) ( )
with
Zakzoo, Za,f<oo. (5)
k=0 k=0

Other options consist of performing an exact line minimization, i.e.

B = argminy_o f (x* — BV £ (x")), (6)

or an inexact linesearch, e.g. following an Armijo rule, namely
B = 27" (7)
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with

(k) = min{j € Z=o: f(x* — B2V f(x*))
o , (8)
< fO&N) =027 |VIGEH| }

for someB > 0,0 € (0, 1).

The basic convergence result on this method (and in general on descent di-
rection methods), under either exact linesearches or Armijo searches, derives
from Zangwill’s global convergence theorem (see [16]) and establishes that ev-
ery cluster poing of {xX}, if any, is stationary, i.e. such th&tf (x) = 0. Inorder
to ensure existence of cluster points, it is necessary to assume that the starting
iteratex® belongs to a bounded level set pisee [15] for this and other related
results). The situation is considerably better wheis convex: it is possible
to prove convergence of the whole sequence to a minimiz¢rwider the sole
asumption of existence of minimizers (i.e. without any additional assumption
on boundedness of level sets). Results of this kind for the convex case can be
found in [8], [10] and [14] for the method with exogenously giv&s satisfying
(4)—(5), in [12] for the method with exact lineasearches as in (6), and in [2], [7]
and [13] for the method with the Armijo rule (7)—(8). We observe that in the case
of B:'s given by (4)—(5) the method is not in general a descent one, i.e. itis not
guaranteed thaf (x**1) < f(x*) for all k.

1.3 The projected gradient method

In this subsection we deal with problem (1)—(2). Convexitgahakes it posible

to use the orthogonal projection onfQPc : R* — C, for obtaining feasible
directions which are also descent ones; namely a step is takenxframthe
direction of—V £ (x*), the resulting vector is projected onfg and the direction
from x* to this projection has the above mentioned properties. We remind that a
pointz € C is stationary for problem (1)—(2) i f (z)' (x —z) > Oforallx € C.

A formal description of the algorithm, called tipeojected gradient method, is

the following:

Initialization: Takex? e C.
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40 GRADIENT METHOD FOR CONVEX OPTIMIZATION

Iterative step: If x* is stationary, then stop. Otherwise, let

= Pe(x* = BV £ (XY, 9)

= XKy (F =X, (10)

wheregy, y; are positive stepsizes, for which, again, several choices are possible.
Before discussing them, we mention that in the unconstrained casg,+eR",

then method given by (9)—(10) with. = 1 for all ¥ reduces to (3). Following

[3], we will focus in three strategies for the stepsizes:

i) Armijo search along the feasible directiofi.} c [B, A] for some 0<
B < B andy, determined with an Armijo rule, namely

=20 (11)
with

) = min{f € Zso: f(x* =277 = xb)
(12)
< fGH -2V FEN (F - Zk)},

for someo € (0, 1).

if) Armijo search along the boundary 6f y; = 1forallk andp, determined
through (7) and the following two equations instead of (8):

e(k) = min{j € Z=o: f(Z")
(13)
< fEH —oVFEH & - z“)},

with
K = Po(xk — B2V £ (xh). (14)

iii) Exogenous stepsize before projectingy: given by (4)—(5) andg,, = 1 for
all k.
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Several comments are in order. First, observe that in the unconstrained case
(C = R") options (i) and (ii) reduce to the steepest descent method (3) with
the Armijo rule given by (7)—(8), while option (iii) reduces to (3) with tBgs
given by (4)—(5). Secondly, note that option (ii) requires a projection Grfar
each step of the inner loop resulting from the Armijo search, i.e. possibly many
projections for eaclt, while option (i) demands only one projection for each
outer step, i.e. for each Thus, option (ii) is competitive only wheR is very
easy to compute (e.g. whehis a box or a ball). Third, we mention that option
(iii), as its counterpart in the unconstrained case, fails to be a descent method.
Finally, it it easy to show that for option (iii) it holds thii*** — x| < oy for
all k, with ; as in (4). In view of (5), this means that all stepsizes are “small",
while options (i) and (ii) allow for occasionally long steps. Thus option (iii) seems
rather undesirable. Its redeeming feature is that its good convergence properties
hold also in the nonsmooth case, whHeéri (x¥) is replaced by a subgradieit
of f atx*. Subgradients do not give raise to descent directions, so that Armijo
searches are not ensured to succeed, and therefore exogenous stepsizes seem to
be the only available alternative. This is the case analyzed in [1]. We will not be
concerned with option (iii) in the sequel.

Without assuming convexity of, the convergence results for these methods
closely mirror the ones for the steepest descent method in the unconstrained case:
cluster points may fail to exist, even when (1)—(2) has solutions, but if they exist,
they are stationary and feasible, i@ f(x),x — x) > 0,x e C for all cluster
pointx of {x*} and allx € C. These results can be found in Section 2.3.2 of [3];
for the case of option (ii), they are based upon the results in [9].

When f is convex, the stronger results for the unconstrained case Aygh
given by (4)—(5), have also been extended to the projected gradient method under
option (iii): it has been proved in [1] that in such a case, the whole seqiehce
converges to a solution of problem (1)—(2) under the sole assumption of existence
of solutions. On the other hand, the current situation is rather worse for options
() and (ii): as far as we know, neither existence nor uniqueness of cluster points
for options (i) and (ii) has been proved, assuming only convexity.ofVe will
prove both for option (i) in the following two sections. The corresponding results
for the less interesting option (ii) have very similar proofs, and we sketch them
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in Section 4.

Of course, results of this kind are immediate under stronger hypotheses on
the problem: cluster points @k*} certainly exist if the intersection af with
some level set of is nonempty and bounded, and strict convexityfansures
uniqueness of the cluster point.

2 Preliminaries

This section contains some previously established results needed in our analysis.
We prove them in order to make the paper closer to being self-contained. We
start with the so called quasi-Fejér convergence theorem (see [7], Theorem 1).

Proposition 1. Let 7 C R" beanonempty set and {a*} C R" a sequence such
that

k= 2| < o = 2"+« (15)
for all z € T and all k, where {¢,} C R, isa summable sequence. Then
i) {a*} isbounded.

ii) If a cluster point a of {a*} belongs to T, then the whole sequence {a*}
convergesto a.

Pr oof.

i) Fix somez € T. Applying iteratively (15) we get
k-1 00
a* =z)* < fa®=z)" + D¢ < la® — 2"+ e
j=0 j=0

Since{e;} is summable, it follows thafz*} is bounded.

i) Letnowa e T be a cluster point ofa*} and takes > 0. Let{a%} be a
subsequence ¢f*} convergent t@. Since{e;} is summable, there exists
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ko such thatz‘;iko €; < 8/2, and there existk; such that’;, > ko and
|at — Ez||2 < § foranyk > k;. Then, for anyk > ¢;, we have:

k—1
la* =] < la%s —a*+ 3" ¢ < a" —a
J=tiy

+ ) e <8/2+8/2=05.

J=tiy

We conclude that ligL o, a* = a. O

Next we show that the linesearch for option (i) is always successful. We start
with an immediate fact on descent directions.

Proposition 2. Takeo € (0,1), x € C andv € R" suchthat V f(x)'v < 0.
Then there exists y < 1 suchthat f(x + yv) < f(x) + oy Vf(x)'v for all
y € (0, 7]

Proof. The result follows from the differentiability of . O

Next we prove that the directiarf — x* in option (i) is a descent one.

Proposition 3. Take x* and z* as defined by (9)—(12). Then
i) x* belongsto C for all k.

i) If V£(x*) #£0,thenVfxk) (zF—x*) < 0.

Proof.

i) By induction. It holds fork = 0 by the initialization step. Assume that
x* € C. By (9),7" € C. By (12), % € [0, 1]. By (10),x**1 € C.

i) A well known elementary property of orthogonal projections states that
(v—u, Pc(u) —u) >0forallu e R",v e C. By (i), x* € C. Thus, in
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view of (9),

0< <x’< — BV R = XK, Pe(F — BV (R — 2k + ﬁka(x")> 6
16

= BV F (N, 2 — xky — ﬂ;g ”vf(xk)Hz.

Sincepy > 0 andV f(x*) # 0, it follows from (16) thatV f (x*)" (z* —
) < =B [V£H]* <. 0

Corollary 1. 1f V f(x*) # 0, then y, iswell defined for the algorithm (9)—(12).

Proof. Consider Proposition 2 with = x*, v = z¥ — x*. By Proposition 3(ii),

V f(x)'v < 0. Thus the assumption of Proposition 2 holds, and the annoynced
exists, so that the inequality in (12) holds for abuch that 2/ < y. It follows
that bothé (k) andy;, are well defined. O

Finally, we prove stationarity of the cluster points{ef}, if any.

Proposition 4. Let {x*} be the sequence defined by (9)—(12). If {x*} isinfinite,
x isacluster point of {x*} and Problem (1)—(2) hassolutions, then x isstationary
for Problem (1)—(2).

Proof. SinceC is closed,x belongs toC by Proposition 3(i). Lef{x/t} be a
subsequence dfc*} such that lim_ ., x** = x. Observe thafy,} C [0, 1] by
(11) and Corollary 1, and thg,} C [8, A]. Thus, we may assume without loss
of generality that lim_... ¥, = 7 € [0, 1], lim;_.o, B;, = B > B > 0. By (10),
(11) and (12),

0 < —onVFEH @ — x5 < FG&5) = M. 17)

It follows from (17) that{ f (x*)} is a decreasing sequence. Siie&} C C by

Proposition 3(i) and Problem (1)—(2) has solutiof(x*)} is bounded below,
hence convergent, so that lim..[ f (x*) — f(x**1)] = 0. Taking limits in (17)
along the subsequence, and taking into account (9), we get

0<—0oyVFf@) [Pc(x — BV (X)) —x] <0, (18)
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using also continuity of botl f and P-. Now we consider two cases. Suppose
first thaty > 0. Leti = x — BV f(X). Then, it follows from (18) that

0= Vf&) [Pc(it) — %] = B~H(x — it)'[Pc(ir) — X1, (19)

implying that 0= (& — X)'[Pc (1) — x]. Sincex belongs toC, an elementary
property of orthogonal projections implies that Pc (i) = Pe(x — BV f (%)),
and, taking into account th# > 0, it follows easily thatv f (x)'(x — x) > 0
forall x € C, i.e. x is stationary for Problem (1)—(2).

Consider finally the case of & ¥ = lim,_,« yj,. Fixg € N. Sincey; =
2700 there exist& such that(j,) > ¢, so that, in view of (12),

[ =270 = x7)) > fh) =027V f ) (ol =27, (20)

Taking limits in (20) withk — oo, and definingg = Pc(x — BV f (X)), we
get, for an arbitrary; € N,
JE=279Z—X) =2 f(X) + 027V f(X)'(z — X). (21)
Combining (21) with Proposition 2, we conclude tRaf (x)'(z —x) > 0. Using
now Proposition 3(ii), we getthat & V f(x)"(z — x) = Vf(X)"(Pc (i) — %),
i.e. (19) holds also in this case, and the conclusion is obtained with the same
argument as in the previous case. d

Two comment are in order. First, no result proved up to this point requires
convexity of f. Second, all these results are rather standard and well known (see
e.g. Section 2.3.2in[3] or [16]) The novelty of this paper occurs in the following
sections.

3 Convergence propertiesin the convex case

In this section we prove that whefiis convex then the sequence generated by
variant (i) of the projected gradient method (i.e. (9)—(12)) converges to a solution
of Problem (1)—(2), under the only assumption of existence of solutions.

Theorem 1. Assumethat Problem (1)—(2) hassolutions. Then, either the algo-
rithm given by (9)—(12) stops at some iteration k, in which case x* isa solution
of Problem (1)—(2), or it generates an infinite sequence {x*}, which converges
to a solution x* of the problem.
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Proof. Inthe case of finite stopping, the stopping rule statesithiatstationary.
Sincef is convex, stationary points are solutions of Problem (1)—(2). We assume
in the sequel that the algorithm generates an infinite sequehge
Letx be any solution of Problem (1)—(2). Using (10) and elementary algebra:
e I e e Eai 2
= 2(xk — XML Xk ) = 29 (2 — XK X — X,

The already used elementary property of orthogonal projections can be restated
as(Pc(u) —u,v— Pc(u)) > 0forallu € R" and allv € C. In view of (9)

0<(—x"+ BV, T2 =
(=X BV, T =X + (& =+ BV, =),
By (23),

(23)

(@ =T =25 = BUV SO o = F) = (=2 BV ), 2 -2
= Bl f () = F@D]+ (& =+ BV (9, 2 =) (24)
2
> (=t BV PER, - ) = T v F b, - ),

using the gradient inequality for the convex functiftin the second inequality,
and feasibility ofx*, resulting from Proposition 3(i), together with optimality of
x and positivity ofy, in the third one. Combining now (22) and (24), and taking
into account (10),

e IR L I B
> o[ = P+ BV £, & )] (25)
= 2y [ 2m BV - ).
After rearrangement, we obtain from (25),
[ = 2] <t =R @ 2 [ - )
—2p BV F (), 2 = 28 < [ =R = 2BV £ (), 2 = 2,

using the fact thag, belongs td0, 1] in the second inequality. Now we look at
the specific way in which theg,’s are determined. By (11), (12), for al|

(26)

—oy; V) @ —x)) < fxd) = fIHh). (27)
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Multiplying (27) by (28:) /o, and defining
€j = =28V fx) (2 —x7), (28)

we get, sincd f (x/)} is nonincreasing,

28, ) . 28 . .
= %[f(xf) LA = ;ﬂ[ﬂxf) — fxIh] (29)
Summing (29) withj between 0 and,
k 26 28
Y=L - retm = L - ren 6o
=0

and it follows from (30) thag‘;‘;o €; < oo. By (26) and (28),
<t — sz < |« - 55”2 + €. (31)

Let S* be the set of solutions of Problem (1)—(2). Siiide an arbitrary element

of $* and theg;’s are summable, (31) means that} is quasi-Fejér convergent

to $*. SinceS* is nonempty by assumption, it follows from Proposition 1(i) that
{x*} is bounded, and therefore it has cluster points. By Proposition 4 all such
cluster points are stationary. By convexity of they are solutions of Problem
(1)—(2), i.e. they belong t6*. By Proposition 1(ii), the whole sequengef}
converges to a solution of Problem (1)—(2). O

4 Option (ii): search alongan arc

We sketch in this section the analysis corresponding to option (ii), which we
restate next:

Initialization: Takex® e C.
Iterative step: If x* is stationary, then stop. Otherwise, take

A= P = BV f (), (32)
whereg, is given by

B =p2®, (33)
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with
2(k) = min{j €Z=o: f(Z) < F(x5)
(34)
— o V(xR (k- zk’j)},
and
9 = Pe(x* — B2V f(x%)). (35)

Results for this variant follow closely those for option (i), developed in the
previous two sections. Without assuming convexityfothe following results
hold:

Proposition 5. If {x*} is the sequence generated by (32)—(35), then
i) {xk} c C.
i) B iswell defined by (32)—(35).
iii) 1f V £(xk) £ 0, then (V £ (x%), Pe(x* — BV £ (x5)) — x*) < 0,

iv) If Problem (1)—(2) has solutions and x isa cluster point of {x*}, then x is
stationary for Problem (1)—(2).

Proof. Item (i) follows immediately from (32); for the remaining items see
Proposition 2.3.3 and Lemma 2.3.1in [3]. a

For convexf, we have the following result.

Theorem 2. Assume that Problem (1)—(2) has solutions. Then, either the algo-
rithmgiven by (31)—(35) stops at someiteration k, in which case x* isa solution
of Problem (1)—(2), or it generates an infinite sequence {x*}, which converges
to a solution x* of the problem.

Proof. The result for the case of finite termination follows from the stopping
criterion and the convexity of. For the case of an infinite sequence, we ob-
serve that the computations in the proof of Theorem 1 up to (26) do not use the
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specific form of thes,’s and they,’s, so that they hold for the sequence under
consideration, where now, = 1 for all X and g, is given by (33)—(35). Thus,
for all solutionx of Problem (1)—(2), we have

5542 = | < o = 7] + e, (36)
with
e = 2BV f () [x* = Pe(x* = BV F(x*))] (37)

Note thate, > 0 for all k¥ by Proposition 5(iii). We prove next thdt,} is
summable.
In view of (32)—(35) (particularly the criterion of the arc-search), we have

oV [x = Pe* = BV D] < FO05H = £ (38)
Combining (37) and (38), and using then (33),

2 28
b= Pt - s Lipah et @)

By (39), Y% pex < 2[f(x% — f®)] < oc. In view of (36) it follows, as

in Theorem 1, thafx*} is quasi-Fejér convergent to the solution set, and then
Proposition 1(i) implies thagx*} is bounded, so that it has cluster points. By
Proposition 5(iv) and convexity of, all of them solve Problem (1)—(2). Finally,
Proposition 1(ii) implies that the whole sequeri¢é} converges to a solutiofl

5 Final remarks

1. The purpose of this paper is theoretical, and it consists of determining the
convergence properties of the projected gradient method in the case of a convex
objective. We make no claims whatsoever on the advantages and/or drawbacks
of this algorithm viz-a-viz others.

2. Despite the previous remark, we mention that some variants of the projected
gradient methods have been proved to be quite successful from a computational
point of view, particularly thepectral projected gradient method (SPG); see e.g.
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[5], [6], [4]. In this methodB, is taken as a safeguarded spectral parameter, with
the following meaning. Let

.

(xk = xk=1 V f(xk) = V f(xk=1))”

Nk =

We mention that whery is twice differentiablenk‘1 is the Rayleigh quotient
asociated with the averaged Hessian mafngf(txk + (1 — )x*Ydr, thus
justifying the denomination afectral parameter giventon,. Theng, istakenas
follows: Bo is exogenously given; for > 1, B = Br_1 if (x¥ —x*71, V £ (x*) —
Vf(x*1)) < 0. Otherwiseg; is taken as the median betwegn r; and

B (B and B act as the “safeguards” for the spectral parameter). Since our
strategy (i) encompasses such choicggfthe result of Theorem 1 holds for

this variant. On the other hand, SPG as presented in [5], [6], includes another
feature, namely a backtracking procedure generating a possibly nonmonotone
sequence of functional valugg (x%)}. In fact, (12) is replaced by

ttk) = min{j €Zso: f(x* =27 —xb)
<Yy — o2V M (xF - zk)},

with ¢, = mamsjsmf(x"—f) for some fixedm. The proof of The-

orem 1 does not work for this nonmonotone Armijo search: one gets

2;3[ MaXo<j<m f(x*=7) — f(x*1)], but the right hand side of this inequality
does not seem to be summable, as required for the application of the quasi-Fejér
convergence result. The issue of the validity of Theorem 1 for SPG with this
nonmonotone search remains as an open problem. We end this remark by men-
tioning that a variant of SPG with a search along the arc, similar to our option
(i), has also been developed in [5]. Our comments above apply to this variant
in relation with Theorem 2.

3. WhenV f is Lipschitz continuous il with known Lipschitz constant, it

is well known that the Armijo search can be avoided, by taking; &soption (i)

or B, in option (i), a constan® < (0, 2/L), without affecting the convergence
properties for the nonconvex case (i.e. Propositions 2-5). It is not difficult to
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verify that in the convex case Theorems 1 and 2 also remain valid for this choice
of the stepsizes (in fact, the proofs are indeed simpler).

4. Unpublished results related to those in this paper were obtained by B.F.
Svaiter in [16].
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