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Abstract. When applied to an unconstrained minimization problem with a convex objective, the

steepest descent method has stronger convergence properties than in the noncovexcase: the whole

sequence converges to an optimal solution under the only hypothesis of existence of minimizers

(i.e. without assuming e.g. boundedness of the level sets). In this paper we look at the projected

gradient method for constrained convex minimization. Convergence of the whole sequence to a

minimizer assuming only existence of solutions has also been already established for the variant

in which the stepsizes are exogenously given and square summable. In this paper, we prove the

result for the more standard (and also more efficient) variant, namely the one in which the stepsizes

are determined through an Armijo search.
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1 Introduction

1.1 The problem

We are concerned in this paper with the following smooth optimization problem:

minf (x) (1)

s. t. x ∈ C, (2)
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38 GRADIENT METHOD FOR CONVEX OPTIMIZATION

wheref : R
n → R is continuously differentiable andC ⊂ R

n is closed and

convex. Each iteration of the projected gradient method, which we describe

formally in subsection 1.3, basically consists of two stages: starting from the

k-th iteratexk ∈ R
n, first a step is taken in the direction of−∇f (xk), and then

the resulting point is projected ontoC, possibly with additional one-dimensional

searches in either one of the stages. The classical convergence result establishes

that cluster points of{xk} (if any) are stationary points for (1)–(2), i.e. they

satisfy the first order optimality conditions, but in general neither existence nor

uniqueness of cluster points is guaranteed. In this paper we prove a much stronger

result for the case in whichf is convex, namely that the whole sequence{xk}
converges to a solution of (1)–(2) under the only assumption of existence of

solutions. An analogous result is known to hold for the steepest descent method

for unconstrained optimization, which we describe in the next subsection.

1.2 The steepest descent method

Given a continuously differentiablef : R
n → R, thesteepest descent method

generates a sequence{xk} ∈ R
n through

xk+1 = xk − βk∇f (xk), (3)

whereβk is some positive real number. Several choices are available forβk. The

first one is to set theβk ’s exogenously, and a relevant option is

βk = αk∥∥∇f (xk)∥∥ , (4)

with
∞∑
k=0

αk = ∞,

∞∑
k=0

α2
k < ∞. (5)

Other options consist of performing an exact line minimization, i.e.

βk = argminβ>0f (x
k − β∇f (xk)), (6)

or an inexact linesearch, e.g. following an Armijo rule, namely

βk = β̄2−�(k) (7)
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with

�(k) = min

{
j ∈ Z≥0 : f (xk − β̄2−j∇f (xk))

≤ f (xk)− σ β̄2−j ∥∥∇f (xk)∥∥2
}
,

(8)

for someβ̄ > 0, σ ∈ (0,1).
The basic convergence result on this method (and in general on descent di-

rection methods), under either exact linesearches or Armijo searches, derives

from Zangwill’s global convergence theorem (see [16]) and establishes that ev-

ery cluster point̄x of {xk}, if any, is stationary, i.e. such that∇f (x̄) = 0. In order

to ensure existence of cluster points, it is necessary to assume that the starting

iteratex0 belongs to a bounded level set off (see [15] for this and other related

results). The situation is considerably better whenf is convex: it is possible

to prove convergence of the whole sequence to a minimizer off under the sole

asumption of existence of minimizers (i.e. without any additional assumption

on boundedness of level sets). Results of this kind for the convex case can be

found in [8], [10] and [14] for the method with exogenously givenβk ’s satisfying

(4)–(5), in [12] for the method with exact lineasearches as in (6), and in [2], [7]

and [13] for the method with the Armijo rule (7)–(8). We observe that in the case

of βk ’s given by (4)–(5) the method is not in general a descent one, i.e. it is not

guaranteed thatf (xk+1) ≤ f (xk) for all k.

1.3 The projected gradient method

In this subsection we deal with problem (1)–(2). Convexity ofCmakes it posible

to use the orthogonal projection ontoC,PC : R
n → C, for obtaining feasible

directions which are also descent ones; namely a step is taken fromxk in the

direction of−∇f (xk), the resulting vector is projected ontoC, and the direction

from xk to this projection has the above mentioned properties. We remind that a

pointz ∈ C is stationary for problem (1)–(2) iff∇f (z)t (x−z) ≥ 0 for allx ∈ C.

A formal description of the algorithm, called theprojected gradient method, is

the following:

Initialization: Takex0 ∈ C.
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Iterative step: If xk is stationary, then stop. Otherwise, let

zk = PC(x
k − βk∇f (xk)), (9)

xk+1 = xk + γk(z
k − xk), (10)

whereβk, γk are positive stepsizes, for which, again, several choices are possible.

Before discussing them, we mention that in the unconstrained case, i.e.C = R
n,

then method given by (9)–(10) withγk = 1 for all k reduces to (3). Following

[3], we will focus in three strategies for the stepsizes:

i) Armijo search along the feasible direction:{βk} ⊂ [β̃, β̂] for some 0<

β̃ ≤ β̂ andγk determined with an Armijo rule, namely

γk = 2−�(k) (11)

with

�(k) = min

{
j ∈ Z≥0 : f (xk − 2−j (zk − xk))

≤ f (xk)− σ2−j∇f (xk)t (xk − zk)

}
,

(12)

for someσ ∈ (0,1).
ii) Armijo search along the boundary ofC: γk = 1 for allk andβk determined

through (7) and the following two equations instead of (8):

�(k) = min

{
j ∈ Z≥0 : f (zk,j )

≤ f (xk)− σ∇f (xk)t (xk − zk,j )

}
,

(13)

with

zk,j = PC(x
k − β̄2−j∇f (xk)). (14)

iii) Exogenous stepsize before projecting:βk given by (4)–(5) andγk = 1 for

all k.
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Several comments are in order. First, observe that in the unconstrained case

(C = R
n) options (i) and (ii) reduce to the steepest descent method (3) with

the Armijo rule given by (7)–(8), while option (iii) reduces to (3) with theβk ’s

given by (4)–(5). Secondly, note that option (ii) requires a projection ontoC for

each step of the inner loop resulting from the Armijo search, i.e. possibly many

projections for eachk, while option (i) demands only one projection for each

outer step, i.e. for eachk. Thus, option (ii) is competitive only whenPC is very

easy to compute (e.g. whenC is a box or a ball). Third, we mention that option

(iii), as its counterpart in the unconstrained case, fails to be a descent method.

Finally, it it easy to show that for option (iii) it holds that
∥∥xk+1 − xk

∥∥ ≤ αk for

all k, with αk as in (4). In view of (5), this means that all stepsizes are “small",

while options (i) and (ii) allow for occasionally long steps. Thus option (iii) seems

rather undesirable. Its redeeming feature is that its good convergence properties

hold also in the nonsmooth case, when∇f (xk) is replaced by a subgradientξk

of f at xk. Subgradients do not give raise to descent directions, so that Armijo

searches are not ensured to succeed, and therefore exogenous stepsizes seem to

be the only available alternative. This is the case analyzed in [1]. We will not be

concerned with option (iii) in the sequel.

Without assuming convexity off , the convergence results for these methods

closely mirror the ones for the steepest descent method in the unconstrained case:

cluster points may fail to exist, even when (1)–(2) has solutions, but if they exist,

they are stationary and feasible, i.e.〈∇f (x̄), x − x̄〉 ≥ 0, x̄ ∈ C for all cluster

point x̄ of {xk} and allx ∈ C. These results can be found in Section 2.3.2 of [3];

for the case of option (ii), they are based upon the results in [9].

Whenf is convex, the stronger results for the unconstrained case, withβk ’s

given by (4)–(5), have also been extended to the projected gradient method under

option (iii): it has been proved in [1] that in such a case, the whole sequence{xk}
converges to a solution of problem (1)–(2) under the sole assumption of existence

of solutions. On the other hand, the current situation is rather worse for options

(i) and (ii): as far as we know, neither existence nor uniqueness of cluster points

for options (i) and (ii) has been proved, assuming only convexity off . We will

prove both for option (i) in the following two sections. The corresponding results

for the less interesting option (ii) have very similar proofs, and we sketch them
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in Section 4.

Of course, results of this kind are immediate under stronger hypotheses on

the problem: cluster points of{xk} certainly exist if the intersection ofC with

some level set off is nonempty and bounded, and strict convexity off ensures

uniqueness of the cluster point.

2 Preliminaries

This section contains some previously established results needed in our analysis.

We prove them in order to make the paper closer to being self-contained. We

start with the so called quasi-Fejér convergence theorem (see [7], Theorem 1).

Proposition 1. Let T ⊂ R
n be a nonempty set and {ak} ⊂ R

n a sequence such

that

∥∥ak+1 − z
∥∥2 ≤ ∥∥ak − z

∥∥2 + εk (15)

for all z ∈ T and all k, where {εk} ⊂ R+ is a summable sequence. Then

i) {ak} is bounded.

ii) If a cluster point ā of {ak} belongs to T , then the whole sequence {ak}
converges to ā.

Proof.

i) Fix somez ∈ T . Applying iteratively (15) we get

∥∥ak − z
∥∥2 ≤ ∥∥a0 − z

∥∥2 +
k−1∑
j=0

εj ≤ ∥∥a0 − z
∥∥2 +

∞∑
j=0

εj .

Since{εk} is summable, it follows that{ak} is bounded.

ii) Let now ā ∈ T be a cluster point of{ak} and takeδ > 0. Let {a�k } be a

subsequence of{ak} convergent tōa. Since{εk} is summable, there exists
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k0 such that
∑∞

j=k0
εj < δ/2, and there existsk1 such that�k1 ≥ k0 and∥∥a�k − ā

∥∥2
< δ

2 for anyk ≥ k1. Then, for anyk > �k1 we have:

∥∥ak − ā
∥∥2 ≤ ∥∥a�k1 − ā

∥∥2 +
k−1∑
j=�k1

εj ≤ ∥∥a�k1 − ā
∥∥2

+
∞∑

j=�k1
εj < δ/2 + δ/2 = δ.

We conclude that limk→∞ ak = ā. �

Next we show that the linesearch for option (i) is always successful. We start

with an immediate fact on descent directions.

Proposition 2. Take σ ∈ (0,1), x ∈ C and v ∈ R
n such that ∇f (x)tv < 0.

Then there exists γ̄ < 1 such that f (x + γ v) < f (x) + σγ∇f (x)tv for all

γ ∈ (0, γ̄ ].

Proof. The result follows from the differentiability off . �

Next we prove that the directionzk − xk in option (i) is a descent one.

Proposition 3. Take xk and zk as defined by (9)–(12). Then

i) xk belongs to C for all k.

ii) If ∇f (xk) 
= 0, then ∇f (xk)t (zk − xk) < 0.

Proof.

i) By induction. It holds fork = 0 by the initialization step. Assume that

xk ∈ C. By (9), zk ∈ C. By (12),γk ∈ [0,1]. By (10),xk+1 ∈ C.

ii) A well known elementary property of orthogonal projections states that

〈v − u, PC(u) − u〉 ≥ 0 for all u ∈ R
n, v ∈ C. By (i), xk ∈ C. Thus, in
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view of (9),

0 ≤
〈
xk − βk∇f (xk)− xk, PC(x

k − βk∇f (xk))− xk + βk∇f (xk)
〉

= −βk〈∇f (xk), zk − xk〉 − β2
k

∥∥∥∇f (xk)
∥∥∥2
.

(16)

Sinceβk > 0 and∇f (xk) 
= 0, it follows from (16) that∇f (xk)t (zk −
xk) ≤ −βk

∥∥∇f (xk)∥∥2
< 0. �

Corollary 1. If ∇f (xk) 
= 0, then γk is well defined for the algorithm (9)–(12).

Proof. Consider Proposition 2 withx = xk, v = zk−xk. By Proposition 3(ii),

∇f (x)tv < 0. Thus the assumption of Proposition 2 holds, and the announcedγ̄

exists, so that the inequality in (12) holds for allj such that 2−j ≤ γ̄ . It follows

that both�(k) andγk are well defined. �

Finally, we prove stationarity of the cluster points of{xk}, if any.

Proposition 4. Let {xk} be the sequence defined by (9)–(12). If {xk} is infinite,

x̄ is a cluster point of {xk} and Problem (1)–(2) has solutions, then x̄ is stationary

for Problem (1)–(2).

Proof. SinceC is closed,x̄ belongs toC by Proposition 3(i). Let{xjk } be a

subsequence of{xk} such that limk→∞ xjk = x̄. Observe that{γk} ⊂ [0,1] by

(11) and Corollary 1, and that{βk} ⊂ [β̃, β̂]. Thus, we may assume without loss

of generality that limk→∞ γjk = γ̂ ∈ [0,1], limk→∞ βjk = β̄ > β̃ > 0. By (10),

(11) and (12),

0< −σγk∇f (xk)t (zk − xk) ≤ f (xk)− f (xk+1). (17)

It follows from (17) that{f (xk)} is a decreasing sequence. Since{xk} ⊂ C by

Proposition 3(i) and Problem (1)–(2) has solutions,{f (xk)} is bounded below,

hence convergent, so that limk→∞[f (xk)− f (xk+1)] = 0. Taking limits in (17)

along the subsequence, and taking into account (9), we get

0 ≤ −σ γ̂∇f (x̄)t [PC(x̄ − β̄∇f (x̄))− x̄] ≤ 0, (18)

Comp. Appl. Math., Vol. 22, N. 1, 2003



A. N. IUSEM 45

using also continuity of both∇f andPC . Now we consider two cases. Suppose

first thatγ̂ > 0. Let ū = x̄ − β̄∇f (x̄). Then, it follows from (18) that

0 = ∇f (x̄)t [PC(ū)− x̄] = β̄−1(x̄ − ū)t [PC(ū)− x̄], (19)

implying that 0= (ū − x̄)t [PC(ū) − x̄]. Sincex̄ belongs toC, an elementary

property of orthogonal projections implies thatx̄ = PC(ū) = PC(x̄− β̄∇f (x̄)),
and, taking into account that̄β > 0, it follows easily that∇f (x̄)t (x − x̄) ≥ 0

for all x ∈ C, i.e. x̄ is stationary for Problem (1)–(2).

Consider finally the case of 0= γ̂ = limk→∞ γjk . Fix q ∈ N. Sinceγjk =
2−�(jk), there existsk such that�(jk) > q, so that, in view of (12),

f
(
xjk − 2−q(zjk − xjk )

)
> f (xjk )− σ2−q∇f (xjk )t (xjk − zjk ). (20)

Taking limits in (20) withk → ∞, and defininḡz = PC(x̄ − β̄∇f (x̄)), we

get, for an arbitraryq ∈ N,

f (x̄ − 2−q(z̄− x̄)) ≥ f (x̄)+ σ2−q∇f (x̄)t (z̄− x̄). (21)

Combining (21) with Proposition 2, we conclude that∇f (x̄)t (z̄− x̄) ≥ 0. Using

now Proposition 3(ii), we get that 0= ∇f (x̄)t (z̄ − x̄) = ∇f (x̄)t (PC(ū) − x̄),

i.e. (19) holds also in this case, and the conclusion is obtained with the same

argument as in the previous case. �
Two comment are in order. First, no result proved up to this point requires

convexity off . Second, all these results are rather standard and well known (see

e.g. Section 2.3.2 in [3] or [16]) The novelty of this paper occurs in the following

sections.

3 Convergence properties in the convex case

In this section we prove that whenf is convex then the sequence generated by

variant (i) of the projected gradient method (i.e. (9)–(12)) converges to a solution

of Problem (1)–(2), under the only assumption of existence of solutions.

Theorem 1. Assume that Problem (1)–(2) has solutions. Then, either the algo-

rithm given by (9)–(12) stops at some iteration k, in which case xk is a solution

of Problem (1)–(2), or it generates an infinite sequence {xk}, which converges

to a solution x∗ of the problem.
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Proof. In the case of finite stopping, the stopping rule states thatxk is stationary.

Sincef is convex, stationary points are solutions of Problem (1)–(2). We assume

in the sequel that the algorithm generates an infinite sequence{xk}.
Let x̂ be any solution of Problem (1)–(2). Using (10) and elementary algebra:∥∥xk+1 − xk

∥∥2 + ∥∥xk − x̂
∥∥2 − ∥∥xk+1 − x̂

∥∥2

= 2〈xk − xk+1, xk − x̂〉 = 2γk〈zk − xk, x̂ − xk〉.
(22)

The already used elementary property of orthogonal projections can be restated

as〈PC(u)− u, v − PC(u)〉 ≥ 0 for all u ∈ R
n and allv ∈ C. In view of (9)

0 ≤ 〈zk − xk + βk∇f (xk), x̂ − zk〉 =
〈zk − xk + βk∇f (xk), x̂ − xk〉 + 〈zk − xk + βk∇f (xk), xk − zk〉. (23)

By (23),

〈zk − xk, x̂ − xk〉 ≥ βk〈∇f (xk), xk − x̂〉 − 〈zk − xk + βk∇f (xk), xk − zk〉
≥ βk[f (xk)− f (̂x)] + 〈zk − xk + βk∇f (xk), zk − xk〉
≥ 〈zk − xk + βk∇f (xk), zk − xk〉 =

∥∥∥zk − xk
∥∥∥2 + βk〈∇f (xk), zk − xk〉,

(24)

using the gradient inequality for the convex functionf in the second inequality,

and feasibility ofxk, resulting from Proposition 3(i), together with optimality of

x̂ and positivity ofβk, in the third one. Combining now (22) and (24), and taking

into account (10),∥∥xk+1 − xk
∥∥2 + ∥∥xk − x̂

∥∥2 − ∥∥xk+1 − x̂
∥∥2

≥ 2γk
[∥∥zk − xk

∥∥2 + βk〈∇f (xk), zk − xk〉
]

= 2γ−1
k

∥∥xk+1 − xk
∥∥2 + 2γkβk〈∇f (xk), zk − xk〉.

(25)

After rearrangement, we obtain from (25),∥∥xk+1 − x̂
∥∥2 ≤ ∥∥xk − x̂

∥∥2 + (1 − 2γ−1
k )

∥∥xk+1 − xk
∥∥2

−2γkβk〈∇f (xk), zk − xk〉 ≤ ∥∥xk − x̂
∥∥2 − 2γkβk〈∇f (xk), zk − xk〉,

(26)

using the fact thatγk belongs to[0,1] in the second inequality. Now we look at

the specific way in which theγk ’s are determined. By (11), (12), for allj ,

−σγj∇f (xj )t (zj − xj ) ≤ f (xj )− f (xj+1). (27)

Comp. Appl. Math., Vol. 22, N. 1, 2003



A. N. IUSEM 47

Multiplying (27) by (2βk)/σ , and defining

εj = −2βjγj∇f (xj )t (zj − xj ), (28)

we get, since{f (xj )} is nonincreasing,

εj ≤ 2βj
σ

[f (xj )− f (xj+1)] ≤ 2β̂

σ
[f (xj )− f (xj+1)] (29)

Summing (29) withj between 0 andk,

k∑
j=0

εj ≤ 2β̂

σ
[f (x0)− f (xk+1)] ≤ 2β̂

σ
[f (x0)− f (̂x)], (30)

and it follows from (30) that
∑∞

j=0 εj < ∞. By (26) and (28),∥∥xk+1 − x̂
∥∥2 ≤ ∥∥xk − x̂

∥∥2 + εk. (31)

LetS∗ be the set of solutions of Problem (1)–(2). Sincex̂ is an arbitrary element

of S∗ and theεk ’s are summable, (31) means that{xk} is quasi-Fejér convergent

toS∗. SinceS∗ is nonempty by assumption, it follows from Proposition 1(i) that

{xk} is bounded, and therefore it has cluster points. By Proposition 4 all such

cluster points are stationary. By convexity off , they are solutions of Problem

(1)–(2), i.e. they belong toS∗. By Proposition 1(ii), the whole sequence{xk}
converges to a solution of Problem (1)–(2). �

4 Option (ii): search along an arc

We sketch in this section the analysis corresponding to option (ii), which we

restate next:

Initialization: Takex0 ∈ C.

Iterative step: If xk is stationary, then stop. Otherwise, take

xk+1 = PC(x
k − βk∇f (xk)), (32)

whereβk is given by

βk = β̂2−�(k), (33)

Comp. Appl. Math., Vol. 22, N. 1, 2003
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with

�(k) = min

{
j ∈ Z≥0 : f (zk,j ) ≤ f (xk)

− σ∇f (xk)t (xk − zk,j )

}
,

(34)

and

zk,j = PC(x
k − β̂2−j∇f (xk)). (35)

Results for this variant follow closely those for option (i), developed in the

previous two sections. Without assuming convexity off , the following results

hold:

Proposition 5. If {xk} is the sequence generated by (32)–(35), then

i) {xk} ⊂ C.

ii) βk is well defined by (32)–(35).

iii) If ∇f (xk) 
= 0, then 〈∇f (xk), PC(xk − βk∇f (xk))− xk〉 < 0.

iv) If Problem (1)–(2) has solutions and x̄ is a cluster point of {xk}, then x̄ is

stationary for Problem (1)–(2).

Proof. Item (i) follows immediately from (32); for the remaining items see

Proposition 2.3.3 and Lemma 2.3.1 in [3]. �

For convexf , we have the following result.

Theorem 2. Assume that Problem (1)–(2) has solutions. Then, either the algo-

rithm given by (31)–(35) stops at some iteration k, in which case xk is a solution

of Problem (1)–(2), or it generates an infinite sequence {xk}, which converges

to a solution x∗ of the problem.

Proof. The result for the case of finite termination follows from the stopping

criterion and the convexity off . For the case of an infinite sequence, we ob-

serve that the computations in the proof of Theorem 1 up to (26) do not use the
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specific form of theβk ’s and theγk ’s, so that they hold for the sequence under

consideration, where nowγk = 1 for all k andβk is given by (33)–(35). Thus,

for all solutionx̂ of Problem (1)–(2), we have∥∥xk+1 − x̂
∥∥2 ≤ ∥∥xk − x̂

∥∥2 + εk, (36)

with

εk = 2βk∇f (xk)t
[
xk − PC(x

k − βk∇f (xk))
]

(37)

Note thatεk ≥ 0 for all k by Proposition 5(iii). We prove next that{εk} is

summable.

In view of (32)–(35) (particularly the criterion of the arc-search), we have

σ∇f (xk)t [xk − PC(x
k − βk∇f (xk))

] ≤ f (xk)− f (xk+1). (38)

Combining (37) and (38), and using then (33),

εk ≤ 2βk
σ

[f (xk)− f (xk+1)] ≤ 2β̂

σ
[f (xk)− f (xk+1)]. (39)

By (39),
∑∞

k=0 εk ≤ 2β̂
σ

[f (x0) − f (̂x)] < ∞. In view of (36) it follows, as

in Theorem 1, that{xk} is quasi-Fejér convergent to the solution set, and then

Proposition 1(i) implies that{xk} is bounded, so that it has cluster points. By

Proposition 5(iv) and convexity off , all of them solve Problem (1)–(2). Finally,

Proposition 1(ii) implies that the whole sequence{xk} converges to a solution.�

5 Final remarks

1. The purpose of this paper is theoretical, and it consists of determining the

convergence properties of the projected gradient method in the case of a convex

objective. We make no claims whatsoever on the advantages and/or drawbacks

of this algorithm viz-a-viz others.

2. Despite the previous remark, we mention that some variants of the projected

gradient methods have been proved to be quite successful from a computational

point of view, particularly thespectral projected gradient method (SPG); see e.g.
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[5], [6], [4]. In this methodβk is taken as a safeguarded spectral parameter, with

the following meaning. Let

ηk =
∥∥xk − xk−1

∥∥2

〈xk − xk−1,∇f (xk)− ∇f (xk−1)〉 .

We mention that whenf is twice differentiableη−1
k is the Rayleigh quotient

asociated with the averaged Hessian matrix
∫ 1

0 ∇2f (txk + (1 − t)xk−1)dt , thus

justifying the denomination ofspectral parameter given toηk. Thenβk is taken as

follows: β0 is exogenously given; fork ≥ 1,βk = βk−1 if 〈xk −xk−1,∇f (xk)−
∇f (xk−1)〉 ≤ 0. Otherwise,βk is taken as the median betweenβ̃, ηk and

β̂ (β̃ and β̂ act as the ‘‘safeguards’’ for the spectral parameter). Since our

strategy (i) encompasses such choice ofβk, the result of Theorem 1 holds for

this variant. On the other hand, SPG as presented in [5], [6], includes another

feature, namely a backtracking procedure generating a possibly nonmonotone

sequence of functional values{f (xk)}. In fact, (12) is replaced by

�(k) = min

{
j ∈ Z≥0 : f (xk − 2−j (zk − xk))

≤ ψk − σ2−j∇f (xk)t (xk − zk)

}
,

with ψk = max0≤j≤mf (xk−j ) for some fixed m. The proof of The-

orem 1 does not work for this nonmonotone Armijo search: one getsεk ≤
2β̂
σ

[ max0≤j≤mf (xk−j ) − f (xk+1)], but the right hand side of this inequality

does not seem to be summable, as required for the application of the quasi-Fejér

convergence result. The issue of the validity of Theorem 1 for SPG with this

nonmonotone search remains as an open problem. We end this remark by men-

tioning that a variant of SPG with a search along the arc, similar to our option

(ii), has also been developed in [5]. Our comments above apply to this variant

in relation with Theorem 2.

3. When∇f is Lipschitz continuous inC with known Lipschitz constantL, it

is well known that theArmijo search can be avoided, by taking, asγk in option (i)

or βk in option (ii), a constantθ ∈ (0,2/L), without affecting the convergence

properties for the nonconvex case (i.e. Propositions 2–5). It is not difficult to

Comp. Appl. Math., Vol. 22, N. 1, 2003



A. N. IUSEM 51

verify that in the convex case Theorems 1 and 2 also remain valid for this choice

of the stepsizes (in fact, the proofs are indeed simpler).

4. Unpublished results related to those in this paper were obtained by B.F.

Svaiter in [16].
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