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Abstract. This paper pursues the study carried out by the authorsin Stability and Hopf bifur-
cation in the Watt governor system [14], focusing on the codimension one Hopf bifurcationsin the
centrifugal Watt governor differential system, as presented in Pontryagin’s book Ordinary Differ-
ential Equations, [13]. Here are studied the codimension two and three Hopf bifurcations and the
pertinent Lyapunov stability coefficients and bifurcation diagrams, illustrating the number, types
and positions of bifurcating small amplitude periodic orbits, are determined. As a consequence
itisfound aregion in the space of parameters where an attracting periodic orbit coexists with an
attracting equilibrium.
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1 Introduction

The Watt centrifugal governor is a device that automatically controls the speed
of an engine. Dating to 1788, it can be taken as the starting point for the theory
of automatic control (see MacFarlane [10] and referencestherein). In this paper
the system coupling the Watt-centrifugal -governor and the steam-engine will be
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20 BIFURCATION ANALYSIS OF THE WATT GOVERNOR SYSTEM

called simply the Watt Governor System (WGS). See Section 2 for adescription
and illustration, in Fig. 1, of this system.

Landmarksfor thestudy of thelocal stability analysisof the WGSaretheworks
of Maxwell [11] and Vyshnegradskii [16]. A simplified version of the WGSIocal
stability based on the work of Vyshnegradskii is presented by Pontryagin [13].
A local stability study generalized to a more general Watt governor design was
carried out by Denny [4] and pursued by the authorsin [14].

Enlightening historical comments about the Watt governor local mathematical
stability and oscillatory analysis can befound in MacFarlane [10] and Denny [4].
There, aswell asin [13], we learn that toward the mid X7 X century, improve-
ments in the engineering design led to less reliable operations in the WGS,
leading to fluctuations and oscillations instead of the ideal stable constant speed
output requirement. The first mathematical analysis of the stability conditions
and subsequent indication of the modification in the design to avoid the problem
was carried out by Maxwell [11] and, in auser friendly style likely to be better
understood by engineers, by Vyshnegradskii [16].

Fromthemathematical point of view, theoscillatory, small amplitude, behavior
in the WGS can be associated to a periodic orbit that appears from a Hopf
bifurcation. This was established by Hassard et al. in [5] and Al-Humadi and
Kazarinoff in[1]. Another procedure, based in the method of harmonic balance,
has been suggested by Denny [4] to detect large amplitude oscillations.

In [14] we characterized the surface of Hopf bifurcations in a WGS, which
ismore general than that presented by Pontryagin [13], Al-Humadi and Kazari-
noff [1] and Denny [4]. See Theorem 4.1 and Fig. 3 for areview of the critical
curve on the surface where the first Lyapunov coefficient vanishes.

Inthe present paper, restricting ourselvesto Pontryagin’s system, we go deeper
investigating the stability of the equilibrium aong the above mentioned critical
curve. To this end the second Lyapunov coefficient is calculated (Theorem 4.4)
and it is established that it vanishes at a unique point (see Fig. 4 and 5). The
third Lyapunov coefficient is calculated at this point (Theorem 4.5) and found
to be positive. The pertinent bifurcation diagrams are established. See Fig. 6,
7 and 9. A conclusion derived from these diagrams, concerning the region — a
solid “tongue” — in the space of parameters where an attracting periodic orbit
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coexists with an attracting equilibrium, is specifically commented in Section 5.

The extensive calculations involved in Theorems 4.4 and 4.5 have been cor-
roborated with the software MATHEMATICA 5 [18] and the main steps have
been posted in the site[17].

This paper is organized as follows. In Section 2 we introduce the WGS and
review the Pontryagin differential equations[13]. Thestability of theequilibrium
pointsisalso analyzed. Thissectionisessentially areview of [13, 5, 1, 14]. The
Hopf bifurcations in the WGS differential equations are studied in Sections 3
and 4. Expressions for the second and third Lyapunov coefficients, which fully
clarify their sign, are obtained, pushing forward the method found in the works
of Kuznetsov [8, 9]. With this data, the bifurcation diagrams are established.
Concluding comments, synthesizing and interpreting the results achieved here,
are presented in Section 5.

2 The Watt centrifugal governor system

2.1 Differential equations for the Watt governor system

According to Pontryagin [13], p. 217, the differentia equations of the WGS
illustrated in Fig. 1 are

dy

w =

d ) ) b

dv _ 2q2 sing cosg — S sng — 2y (1)
dt l m

e _ 1( cosg — F)

dr 1 H v

wherey € (0, Z) istheangle of deviation of thearms of the centrifugal governor
from its vertical axis Sy, Q € [0, c0) is the angular velocity of the rotation of
the flywheel D, 6 isthe angular velocity of Si, [ isthe length of the arms, m is
the mass of each ball, H is a sleeve which supports the arms and dides along
S1, T isaset of transmission gears, V isthe valve that determines the supply of
steam to the engine, 7 isthetime, ¥ = dg/dt, g isthe standard acceleration
of gravity, 6 = ¢ Q, ¢ > 0isaconstant transmission ratio, b > 0 is a constant
of the frictional force of the system, I isthe moment of inertia of the flywhesel,
F is an equivalent torgue of the load and . > 0 is a proportionality constant.
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22 BIFURCATION ANALYSIS OF THE WATT GOVERNOR SYSTEM

Thereader isreferred to Pontryagin [13] for the derivation of (1) from Newton's
Second Law of Motion.

/_\

Bailer

AT

Steam Engine

Steam A R —
I

Figure 1 — Watt-centrifugal -governor-steam-engine system.

After the following change in the coordinates and time

l l l
X =0, y:\/;lp, ZZC\/;Q, r:\/;t, (2)

the differential equations (1) can be written as

,_dx .

YT T
d . .

y = d—f = z2sinx cosx —SiNx—¢y 3

=& (cosx — B)

= — = o X —

‘T

wherea > 0,0 < 8 < lande¢ > O, given by

b |1 [ F

e=— |- a="E p=2 @
m\ g gl 2

are the normalized variable parameters. Thus the differential equations (3) are
in fact athree-parameter family of differential equations which can be rewritten
asx = f(x, u), where

x = (x,y,2) € (0,%) x R x [0, 00),

nw = (B,a,e) €(0,1) x (0, 00) x (0, 0) ®)
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and
f(x,,u)=(y,z2 Sinx CoSx —SNx —e y, o (COSx—,B)). (6)

2.2 Stability analysis of the equilibrium points

The differential equations (3) have one admissible equilibrium point

Py = (x0, y0, 20) = (arccos,B, 0, \/%) . @)

The Jacobian matrix of f a Py has the form

0 1 0
1-p2
Df (Po)=| - 5 —& 21— B (8)

—ay/1-p2 0 0

and its characteristic polynomial is given by p(1), with

1-— B2 1— B2
P ,\+2aﬁ3/2—ﬁ.

—pW) =234+e22+
p) € 5 5

(9)

1

Figure 2 — Surface of critical parameterse. = 2 o B%/2.
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24 BIFURCATION ANALYSIS OF THE WATT GOVERNOR SYSTEM

Theorem 2.1. For all
e>2a p¥? (20)

the WGS differential equations (3) have an asymptotically stable equilibrium
point at Py. If0 < & < 2 o B%? then Py is unstable.

The proof of this theorem can essentially be found in Pontryagin [13]; it has
also been established in amore general setting in [14].

The surface of critical parameters o = (8, «, &) such that e, = ¢(8, @) =
2« B3¥?isillustrated in Fig. 2. In the Section 4 we will analyze the stability
of Pyase. = 2a B%2. The change in the stability at the equilibrium P, asthe
parameters cross the critical surface produces a Hopf bifurcation in the WGS,
whose analysis has been carried out by [1], [5] and, in a more general setting,
by [14].

From (4), ¢ represents the friction coefficient of the system. Thecasee = 0
maybe of theoretical interest due to its connection with conservative systems.
However, as made explicit in Vyshnegradskii’s Rules, friction is an essentia
ingredient to attain stability. This point is neatly presented in Pontryagin [13],
of which Figure 2 is ageometric, dimensionless, synthesis.

3 Lyapunov coefficients

The beginning of this section is areview of the method found in [8], pp. 177-
181, and in [9] for the calculation of the first and second Lyapunov coefficients.
The calculation of the third Lyapunov coefficient has not been found by the au-
thorsinthecurrent literature. Theextensive calculationsandthelongexpressions
for these coefficientshave been corroborated with the software MATHEMATICA
5[18].

Consider the differential equations

X = f(x, u), (11)

wherex € R" and u € R™ are respectively vectors representing phase variables
and control parameters. Assumethat f isof classC*® inR” x R™. Suppose (11)
has an equilibrium point x = x¢ a © = e and, denoting the variable x — xq
also by x, write

F(x) = f(x, o) 12)
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as
F() = Ax+ = Boux) + = C0x % %) + — DY )
X) = Ax+ = B(x,Xx -Cxx,Xx,Xx — D(X, X, X, X
2 6 24
1 1
+ 120 E(X,X,X,X,X) + 720 K(x, X, X, X, X, X) (13)
1
+ M) L(Xv X? X? X? X? X? X) + 0(||X||8)9
where A = f;(0, uo) and
" 9%F; (§)
Bi(x,y) = Xj Yk (14)
POA T
SN 1)
Cix,y,z) = — | Xj Yk, (15)
j,?[:l 8§j 0& 0§ £=0 !
. I*Fi (&)
Di(x,y,z,u) = ————|  Xj Yk U, (16)
Lk;_l 0Ej 0& 08 &, |e—g '
‘ I°F;(§)
E;(X,y,z,u,v) = Xi Yk 2 Uy Uy, an
j,k,LZm):l 08 D& 08 &, 0p |c—q ' ’
. 3OF; (&)
Kl(xa 7Z’u5vas): X LUy Vp Sqg, 18
! E_l 9%, 06 98, 08, 08, 0F, ;g Vo (9

n

Li(x,y,z,u,v,s,t) = Z

Joh=1

dTF;(§)
0E;0&0&1 08, 08,08, &)

Xj Yk 2 Ur Vp Sq Ip, (19)
£=0

fori=1,...,n.

Suppose (xg, 119) isanequilibrium point of (11) wherethe Jacobian matrix A hasapair
of purely imaginary eigenvalues Ap 3 = tiwg, wo > 0, and admits no other eigenvalue
with zero real part. Let 7 be the generalized eigenspace of A corresponding to Az 3.
By thisis meant that it is the largest subspace invariant by A on which the eigenvalues
are o s.

Let p, ¢ € C" be vectors such that

n

Ag=iwoq, A'p=—iwop, (p.q)=)» piqi =1, (20)
i=1

where AT is the transposed matrix. Any vector y € T¢ can be represented as y =
wq + wq, where w = (p,y) € C. The two dimensiona center manifold can be
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26 BIFURCATION ANALYSIS OF THE WATT GOVERNOR SYSTEM

parametrized by w, w, by means of an immersion of the form x = H(w, w), where
H : C? — R" hasaTaylor expansion of theform

1 .
Hw.w)=wq +ig+ Y —hjw! ot + 0(wl®), (21)
2<jth<7 I

with jr € C" and hjr = ﬁkj. Substituting this expression into (11) we obtain the
following differential equation

Hyw' + Hpw' = F(H(w, ), (22)

where F isgiven by (12).
The complex vectors /;; are to be determined so that system (22), on the chart w for
acentral manifold, writes as follows

W' = iwow + = Gawlw + —= Gapwlwl* + —— Gagwlwl®+ 0(wl®),
2 12 144

with G j; € C.

Solving for the vectors #;; the system of linear equations defined by the coefficients
of the quadratic terms of (22), taking into account the coefficients of F in the expres-
sions (13) and (14), one has

hi=—A"1B(q, ), (23)
hao = (2iwol, — A)"1B(q, q), (24)

where I, is the unit n x n matrix. Pursuing the calculation to cubic terms, from the
coefficients of the terms w3 in (22) follows that

h3o = Biwol, — A) "1 [3B(q. h20) + C(q. 4. 9)]. (25)
From the coefficients of the terms w2w in (22) one obtains asingular system for /21
(iwoly — Ah1 = C(q, q,q) + B(q, h2o) + 2B(q, h11) — G21q, (26)
which has asolution if and only if
(p.C(q.9.9) + B(g, h20) + 2B(q, h11) — G219) = 0.
Therefore

G2 = (p.C(q.9.9) + B@G, Qiwol, — A)"'B(q. 9)) — 2B(q. A™'B(q.9))). (27)
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The first Lyapunov coefficient l1 is defined by

1
Ih = E Re Goq. (28)

The complex vector i21 can befound by solving the nonsingular (n + 1)-dimensional

system
iopl, — A ¢ ho1
p 0 s B

( C(q.,4.q) + B(G, h2) + 2B(q, h11) — G219 )
0 ,

(29)

with the condition (p, h21) = 0.

For the sake of completeness, in Remark 3.1 we prove that the system (29) is non-
singular and that if (v, s) isasolution of (29) with the condition (p, v) = Othenwv isa
solution of (26).

Remark 3.1. WriteR" = T7¢ @ T**, where T¢ and T5* areinvariant by A. It can be
proved that y € 75" if and only if (p, y) = 0. Define

a=C(q,q9,9) + B(q, ho) + 2B(q, h11) — G214.
Let (v, s) beasolution of the homogeneous equation obtained from (29). Equivalently
(fwol, — A)v+sq =0, (p,v)=0. (30)

From the second equation of (30), it follows that v € T5*, and thus (iwol, — A)v €
T*". Therefore (p, (iwol, — A)v) = 0. Taking the inner product of p with the first
equation of (30) one has (p, (iwgl, — A)v + sq) = 0, which can be written as
(p, iwol, — A)v) + s(p,q) = 0. Since (p,q) = 1 and (p, (iwol, — A)v) = 0
it follows that s = 0. Substituting s = 0 into the first equation of (30) one has
(iwol, — A)v = 0. Thisimpliesthat

v=oaq, x € C. (31

But0 = (p,v) = (p,aq) = a{p, q) = a. Substituting o = 0 into (31) it follows that
v = 0. Therefore (v, s) = (0, 0).
Let (v, s) beasolution of (29). Equivalently

(iwgl, — A)v+sq =a, (p,v) =0. (32
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From the second equation of (32), it followsthat v € T5* and thus (iwgl,, — A)v € T*".
Therefore (p, (iwpl, — A)v) = 0. Taking the inner product of p with thefirst equation
of (32) onehas (p, (iwgl, — A)v + sq) = {p, a), which can be written as

(p, iwoly, — A)v) +s({p,q) = (p, a).

As{(p,a) =0, (p,q) = 1and (p, (iwol, — A)v) = O it followsthat s = 0. Substi-
tuting s = O into the first equation of (32) results (iwgl, — A)v = a. Thereforev isa
solution of (26).

The procedure above will be adapted below in connection with the determination of
h3p and ha3.

From the coefficients of the terms w*, w3w and w?w? in (22), one has respectively

hao = (diwol, — A)"Y[3B(hao, h2o) + 4B(q, h3o)

(33
+ 6C(q.q,h20) + D(q,49.9.9)]
h31 = iwol, — A)"Y[3B(q. h21) + B(G. h3o) + 3B(h2o. h11) (3
+ 3C(q.q. h11) +3C(q. 4. h20) + D(q. 4. q.q) — 3G21h2).
hzo = — A"Y[D(4,4.4.9) +4C(q.§. h11) + C(q. G, h20) + C(q. . h20) -

+ 2B(h11, h11) + 2B(q, h21) + 2B(G., h21) + B(h2o, h2o)],

where the term —2h11(G21 + G21) has been omitted in the last equation, since Go1 +
Gy =0asly =0.
Defining H3p as

Hzp = 6B(h11. h21) + B(h2o, h3o) + 3B(h21, h2o) + 3B(q. h22)
+ 2B(q, ha1) + 6C(q, h11. h11) + 3C(q. h2o, h2o)
+3C(g, ¢, h21) + 6C(q, G, h21) + 6C(q, hz0, h11) (36)
+C(q, 4, h3o) + D(q, 4, 4. h20) + 6D(q. 4, G, h11)
+3D(q.4.4.h20) + E(q.9.9.3.4) — 6Ga1ha1 — 3G 21h2,

and from the coefficients of the terms w3w? in (22), one has asingular system for Az,
(iwoly — A)hzz = Hzp — G3zq, (37)
which has solution if and only if
(p, Hzz — G32q) = 0, (38)

where the terms —6G 21421 — 3G 21h21 in thelast line of (36) actually does not enter in
last equation, since (p, ho1) = 0.
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The second Lyapunov coefficient is defined by
1
l2 = 15 Re Gz, (39)
where, from (38), G2 = (p, H32).
The complex vector h3» can be found solving the nonsingular (» + 1)-dimensional

system
iwol, — A ¢ hzz \ [ Hzz—Gzq

with the condition (p, h3) = 0.
From the coefficients of the terms w*w, w*w? and w3w?3 in (22), one has respectively
hay = Biwoly — A) " [4B(h11, h3o) + 6B(hao, ha1) + 4B(q, hap)
+ B(q, hag) + 12C(q, h11, hoo) +6C(q, q, hp1) +4C(q, G, h3p)
+3C(q, h20, h2o0) +4D(q. q,q, h11) +6D(q, q, G, h20)
+E(4.9.9.9,9) — 6G21h3o],

(41)

hap = (2iwoly — A) "L [8B(h11. h31) + 6B(hz0. hg2) + B(hgo. hao)
+ 6B(hat, h21) + 4B(ha1, h3o) + 4B(q, h32) + 2B(G, hay)
+ 12C (h11, h11. ho) + 3C(h20. hoo. hoo) + 24C(q. h11., ho1)
+12C(g, h2o, h21) +4C (g, h20, h3o) + 6C(q, ¢, h22) +8C (g, q. h31)
+8C(q. h11, h3o) +12C(g, hoo. ho1) + C(G. G, hao)
+12D(q, q. h11, h11) +6D(q. q. h20, h20) +4D(q. q. q, h21)
+12D(q,q. G, h21) + 24D(q. §, h11, h20) +4D(q. G, 4, h30)
+3D(G, 4, h20, h20) + E(q. 4,4, 4, h20) +8E(q, 4.4, G, h11)
+6E(q,9,9.4,h20) +K(4,9.9,9.9,9)
— 4(G32h20 + 3G 21h31 + G21h31)],

hzg = — AT [9B(h11, hgo) + 3B(hoo, ha1) + 3B(h2o, ha1) + 9B(ha1, hz1)

+ B(h30, h3o) + 3B(q, h32) + 3B(g, h3p) + 6C (h11, h11, h11)
+9C (h11, hoo, hoo) + 18C(q. h11. ho1) + 3C(q, hoo, h3o)
+9C(q. hoo, h21) +3C(q. 9. h31) +9C(q. G, h2)
+18C(q, h11, ha1) + 9C (G, hao, h21) + 3C(G, h2o, h3o)
+3C(q, 4, h31) +9D(q, 4, h20, h11) + D(q, 4. 4, h30)
+9D(q.q.G. ho1) +18D(q. G, h11. h11) + 9D(q. G. h20, h20)
+9D(q.G.4. h21) +9D(G. q. h11. h20) + 3E(q. 4. 4. . h20)
+9E(q,9.4.4.h11) +3E(q.4.4.4.h20) + K(q.9.9.4.9.9)
—3(G32 + G32)h11 — 9(Ga1 + G21)h2)-

(42)

(43)
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Defining H 43 as
Hyz = 12B(h11, h3p) + 6B(ho, h3p) + 3B(hog, ha1)
+18B(ha1, h2p) + 12B(ha1, h31) + 4B(h30, h31) + B(h3o, hao)
+4B(q, h33) + 3B(q, haz) + 36C (h11, h11, h21) + 36C (h11, h2o, h21)
+ 12C(h11, h20, h30) + 3C (h20, h20, h30) + 18C (h20, h20, h21)
+36C(g, h11, h22) + 12C(q. h20, h31) + 12C (g, h2o, h31)
+36C(q. ho1. ho1) +4C(q. h3o. h3o) + 6C(q. 4. h3p)
+12C(q, g, h32) + 24C(q, h11, h31) + 18C(q, h2o, h22)
+3C(g. 120, hao) + 18C(q, ho1, h21) + 12C (G, h21, h3o)
+3C(q. 4. har) + 24D(q, h11. h11, h11) + 36D(q. h11. hoo. h2o)
+36D(q. q. h11. h21) + 6D(q. q. h20. h3o) + 18D(q. ¢, hg, ho1) (44)
+4D(q.q.9.h31) +18D(q.q. 4. h22) + 72D(q. G, h11, h21)
+36D(q. q. h20, h21) + 12D(q. . hoo. h3p) + 12D(q, G. . h31)
+36D(q, h11, h11, h2o) + 9D(§, h2o. h20, h20) + 12D(q, G, h11, h30)
+18D(q. g, h20. h21) + D(G. 4. 4. hao) +12E(q. 4. 4. h11. h20)
+E(q.9.9.9.h30) + 12E(q.q. 4. 4. h21) + 36E(q. 4. . h11. h11)
+18E(q. 4. q. h20. h20) + 18E(q. 4. G. 4. h21) + 36E(q. §. q. h11. h20)
+4E(q.4,q.4,h30) +3E(G. 4, q. h20, h20) + 3K (¢, 9.4, 4. G, h20)
+12K(q.9.9.4.q.h11) +6K(q.9.4.4.4.h20) + L(q.9.9.9.4.9.9)
— 6(2G32h21 + G32h21 + 3G 21h32 + 2G21h32),
and from the coefficients of the terms w*w?3, one has asingular system for h43
(iwoly — A)hag = Haz — Gazq (45)
which has solution if and only if
(p, Haz — Gazq) =0, (46)

where the terms —6(2G 3ph21 + Gapho1 + 3G21hap + 2G21h3p) appearing in the last
line of equation (44) actually do not enter in the last equation, since (p, h21) = 0 and
(p,h32) =0.

The third Lyapunov coefficient is defined by

Is = 127 Re G, (a7)

where, from (46), G43 = (p, Hau3z).

The expressions for the vectors hsg, heo, hs1, 70, he1, hs2 have been omitted since
they are not important here.
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Remark 3.2. Other equivalent definitions and algorithmic procedures to write the
expressions for the Lyapunov coefficients/;, j = 1, 2, 3, for two dimensional systems
canbefoundinAndronov eta. [2] and Gasull etal. [6], among others. Theseprocedures
apply also to the three dimensional systems of this work, if properly restricted to the
center manifold. The authors found, however, that the method outlined above, due
to Kuznetsov [8, 9], requiring no explicit formal evaluation of the center manifold, is
better adapted to the needs of this work.

A Hopf point (Xg, pg) is an equilibrium point of (11) where the Jacobian matrix
A = fx(xo, o) hasapair of purely imaginary eigenvalues A 3 = +iwp, wo > 0, and
admits no other critical eigenvalues —i.e. located on the imaginary axis. At a Hopf
point a two dimensional center manifold is well-defined, it is invariant under the flow
generated by (11) and can be continued with arbitrary high class of differentiability
to nearby parameter values. Infact, what iswell defined isthe oco-jet —or infinite Taylor
series—of the center manifold, aswell asthat of its continuation, any two of them having
contact in the arbitrary high order of their differentiability class.

A Hopf point is called transversal if the parameter dependent complex eigenvalues
cross the imaginary axis with non-zero derivative. In a neighborhood of a transver-
sal Hopf point — H1 point, for concision — with /1 # 0 the dynamic behavior of the
system (11), reduced to the family of parameter-dependent continuations of the center
manifold, is orbitally topologically equivalent to the following complex normal form

w =+ io)w + hw|wl?,

w € C, n, w and [1 are real functions having derivatives of arbitrary high order, which
are continuations of 0, wgp and the first Lyapunov coefficient at the H1 point. See [8].
Asly < 0 (/1 > 0) one family of stable (unstable) periodic orbits can be found on this
family of manifolds, shrinking to an equilibrium point at the H1 point.

A Hopf point of codimension 2 isaHopf point where /1 vanishes. It is called trans-
versal if n = 0 and I3 = 0 have transversal intersections, where n = n(u) is the
real part of the critical eigenvalues. In a neighborhood of a transversal Hopf point of
codimension 2 — H2 point, for concision — with [> # 0 the dynamic behavior of the
system (11), reduced to the family of parameter-dependent continuations of the center
manifold, is orbitally topologically equivaent to

w' =+ iwo)w + tw|w|? + Lw|w|?,

where n and = are unfolding parameters. See[8]. The bifurcation diagramsfor I, # 0
can befoundin[8], p. 313, and in[15].

A Hopf point of codimension 3 is a Hopf point of codimension 2 where I, vanishes.
A Hopf point of codimension 3 is called transversal if n = 0,17 = 0and I = 0 have
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transversal intersections. In a neighborhood of a transversal Hopf point of codimen-
sion 3—H3 point, for concision —with I3 # 0 the dynamic behavior of the system (11),
reduced to the family of parameter-dependent continuations of the center manifold, is
orbitally topologically equivalent to

w = +iwo)w + twlwl? + vww|* + lw|wl®,
where n, T and v are unfolding parameters. The bifurcation diagram for /3 # 0 can be

found in Takens[15].

Theorem 3.3. Suppose that the system

X/Zf(X,IJ«)v X:(x»y»Z), M:(ﬁ7a’€)

has the equilibrium x = 0 for u = 0 with eigenvalues

A23(n) = n(w) io(w),
where w(0) = wo > 0. For u = 0 the following conditions hold
n(0) =0, 1(0)=0, 20 =0,
where 11() and la(w) are the first and second Lyapunov coefficients, respectively.
Assume that the following genericity conditions are satisfied
1. 13(0) # O, where I3(0) is the third Lyapunov coefficient;

2. the map n — (n(w), l1(w), l2(w)) is regular at p = 0.

Then, by the introduction of a complex variable, the above system reduced to the family
of parameter-dependent continuations of the center manifold, is orbitally topologically
equivalent to

w = +iwo)w + Tww|? + vw|w|* + law|w|®

where 1, T and v are unfolding parameters.

Remark 3.4. The proof of this theorem given by Takens for C*° families of vec-
tor fields, using the Malgrange-Mather Preparation Theorem [7], is aso valid in the
present case of arbitrarily high, but finite, class of differentiability, using the appro-
priate extensions of the Preparation Theorem. See Bakhtin [3] and Milman [12],
among others.
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4 Hopf bifurcations

The stability of the equilibrium point Pg givenin (7) ase. = (B, a) = 2a 3% is
analyzed here. According to (13) and the subsequent expressions (14), (15), (16), (17),
(18) and (19), for B; to L;, one has

0 1 0
A= - —& 2Bwo |. (48)
Bwg O 0
where
1-p2
wg = , (49)
B
and referring to the expressions in equations (11) and (12)
F(X) - AX = (07 FZ(X)a F3(X)) ) (50)
where
3 32,2, 228 - 1) 4782 ,
Fo(x) = — = wo x? + wo / Xz X
g VP enf V] 66
5 4
—bdwg BxPz+ (282 -V x 2+ —\/Ewox4 + —ﬁ_l/z(l —2%)x%;
3182 - 16 2-4&
_2g3/2 °P .5 3.2
2B wox?z? + 1207 —|—,Ba)xz+ 3 x°z
7 6, 4 1/2.5,2 5 32 42
- — 282 _1 Zg3/
Sovﬁipox + A VA@B% - Dx z+-3ﬁ wox"'z
64— 12782 , 8 6. A42-2 5, 8
50408 x' = 45,3wox 7+ T + O(lIx]%),
Fo) = — S pa?+ = aBoo®+ = o VB
X)= — = - v ~ Tan
3 20{ X 6a wox 24a b 120(x wox
2 o Bx0+ o /B oo + O(XIP)
— —_— X .
720 5040 “ VP 0%
From equations (13), (14), (15), (16), (17), (18), (19) and (50) one has
B(x,y) = (0, B2(x,y), —a B x1 y1) , (51)
where

Ba(x,y) = — 3wo /B x1y1+ 2w0 B¥% x3 y3
2(2p2 -
VB

) (x1 y3+x3 1),
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Cx,y. 9 = (0. Catx, v, 2), @ /Bwoxiyiza), (52)
where
4-7p2
Co(x,y,2) = x1y121 — 8wo B (x1 y1 23+ x1 y3 21 + X3 y1 21)
B
+ 2(28%—1) (x1 y3 23+ x3 y1 23 + X3 ¥3 21),
D(x,y,z,u) = (0, D2(X,y, z, w), afx1y1z1u1), (53)
where

_ /32
Da(x,y,z,u) = 15w %x1y1z1u1 + 8 (W (xlylzlug
+ x1yizaui + x1yzziui + xgylzlul)
— 8woB/?(x1y123u3 + X1y321U3 + X1y3Z3U1
+ x3y3ziui + x3y1zius + X3y113u1),

1/2

E(X5 y’ Z,u, V) = (05 EZ(Xv Y9 Z,u, V)) _0‘0)0,3 xl)’lZlulvl)s (54)

where

3182 — 16
Ex(X,y,z,u,V) = ——— x1y12141v1 + 32w0f (X1y1211103

B
X1Y121U3V1 + X1y123U1v1 + X1Y321U41V1
x3y1zaurvy) + 8(1 — 28?) (x1y1z1u3v3
X1Y123U1V3 + X1Y123U3V1 + X1y321U41V3

X1Y321U3V1 + X1Yy3Z3U1V1 + X3y371U1V1

+ + 4+ + +

X3y123U1v1 + x3y121u3v1 + xsylzlulvs),

K(x,y,z,u,v,s) = (0, K2(X,y,2,u,v,8), —afx1y12141V151) , (55)

where
_ 1/2
K>(x,y,z,u,v,8) = — 63wof~“Xx1y12141V151

22 -1
+ 32 g (x1y1z1u1v153 + X1y121410351

+ X1y1z7143v1S1 + X1Y123U1V151 + X1Y3Z1U1V1S1
3/2

+ xay1z1u1v151) + 3200B%?(x1y121010353

+ X1y1z21u3v1S53 + X1Y123U1V153 + X1Y3Z21U1V1S3

+ X3Y1Z141V1S3 + X1Y121U3V3S51 + X1Y1Z3U1V3S1
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+ X1Yy32141V351 + X3Y12141V351 + X1Y123U3V151
+ X1y3z143v1S1 + X3Y12143V151 + X1Y323U1V1S51
+ X3y123u1v181 + x3y321u1v1S1),

1/2

Lx,y,z,u,v,s,t) = (0, L2(X,y,2z,u,V,8, t), 0B~ “x1y1z1u1v1s1r1),  (56)

where
2
La(x,y,z,u,v,s,t) = (64w§ — 638)x1y121u1v1s1t1 — 128woB (x1y12101015173
X1y12141018311 + X1Y12141V35111 + X1Y121U3V15111
X1y123u1v15111 + X1y3z21u1v1sity + X3y111M1v1S1t1)
2
328(B — wp) (x1y121u1v15313 + X1y12141V35113

X1y12143V15113 + X1y123U1V15113 + X1Y321U1V15113

X1Y1Z3U1V15311 + X1Y3Z1U41V153f1 + X3Y121U1V15311
X1Y121U3V3S1t1 + X1y1Z23U1V35111 + X1Y321U1V35111

+
+
+
+
+ X3y121U1V1S13 + X1Y12141V38311 + X1y121U3V15311
+
+
+ X3y12141V3S171 + X1Y123U3V18171 + X1y321U3V15171
+

X3y12143V15111 + X1y323U1V15111 + X3y123U1V15111

+ x3y3z1u1v1sifi).
The eigenvalues of A (equation (48)) are
M= —& = —20[,33/2, A =1 wg, A3 = —I wg. (57)

and from (20) one has

q = <—i, o, ;—;) and (58)

(59)

=
I

<i wo — P&, ﬁ(sc—i—iwo))

2" 2(02+2) w242
Theorem 4.1. Consider the three-parameter family of differential equations (3). The

first Lyapunov coefficient is given by

1 (ap¥?(1— B2 (3+ (@ — 5B+ a*B®)
hB,a,ec) = — 2 ( (1= P2+ a2p%) (1— B2+ 4a2p?) . (60)

2

If
g(B, @) =3+ (@® — 5% + a*p° (61)
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a glAa)=0

08F
5ih(s) <0
06

n4f

02r

Figure 3— Signs of the first Lyapunov coefficient.

is different from zero then the three-parameter family of differential equations (3) has a
transversal Hopf point at P for e = (B, o) = 2 %/2.

If (B,a,ec) € SUU (see Fig. 3) then the three-parameter family of differential
equations (3) has a HI point at Py. If (B,a,&.) € S then the HI point at Py is
asymptotically stable and for each ¢ < &, but close to €., there exists a stable periodic
orbit near the unstable equilibrium point Po. If (B, @, &.) € U then the HI point at Py
is unstable and for each ¢ > ¢., but close to &, there exists an unstable periodic orbit
near the asymptotically stable equilibrium point Pg.

This theorem summarizes Proposition 3.2 and Theorems 3.5, 3.6 and 3.7 established
in [14]. Equation (61) gives a simple expression for the sign of the first Lyapunov co-
efficient (60). Its graph isillustrated in Fig. 3, where the signs of the first Lyapunov
coefficient are also represented. The curvel; = 0 divides the surface of critical param-
eters into two connected components denoted by S and U wherel; < Oandl; > 0
respectively.

We have the following theorem.

Theorem 4.2. Consider the three-parameter family of differential equations (3) re-
stricted to € = &.. The second Lyapunov coefficient is given by

%4 ﬂ3/2 h(ﬁv «a, SC)

l ( LEad] C) = bl
2fae 36 (1 — B2+ a284)® (9 — 982 + 4a2B) (1 — B2 + 4a2p%)°

(62)
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where

h(B, o, ) = — 162 — 54(—9 + 37a?)B% — 9(—126 + 61a + 60a*) B*

— 18(405 — 321202 + 1128a*) 88

(13770 — 210843c> + 113612¢* — 5533x%) 88
— 6(2133 — 5768702 + 38218a* + 5186a:°) 510
(5994 — 30127502 + 2153400 + 2842640:® — 160220:8) 12
2(—567 + 67878 — 451960* — 3794300:% + 93470%) 14
a?(—25029 + 95400 + 9908310 + 1558560 — 2120548) 416
40*(513 — ?(163340 + 12061602 — 16768x)) 18
20/%(—86887 — 25883502 + 30173x* + 72082:%) 2
208(—96867 — 895602 + 23208a*) B2
«19(33671 — 58288x% — 48800*) g2
160:*2(1603 + 718x%) 8% — 16014(453 + 40a%) %8
640016 530'

o+ o+ 4 +

+ o+ 4+ o+

Proof. Define the following functions
T1=Re(p,E(q.4,4.3.9), T2=Re(p,D(q,q,q,h20)), T3=Re(p,D(q,q,q,h20)),
T4 =Re(p,D(q,q,q,h11)), Ts =Re(p,C(q,q,h30)), Te=Re(p,C(q,q,h2)),
T7 =Re(p, C(q,q, h21)), Tg =Re(p, C(q, h20, h20)), To = Re(p, C(q, h11, h11)),
T10 = Re({p, C(q, h20, h11)), T11 = Re(p, B(q, h31)), T12 = Re(p, B(q, h22)),
T13 = Re(p. B(h2o. h30)). Tia = Re(p, B(ho1. hoo)), Tis = Re(p., B(h11. ho1)).
From (39) one has
Re Gz = T1+ To + 313 + 674 + Ts5 + 3T + 677 + 313 + 679 + 6719
+ 2T11 + 3T12 + T13 + 37114 + 6T15.

The theorem follows by expanding the expressions in definition of the second Lya-
punov coefficient (39). It relies on extensive calculation involving the vector ¢ (58), the
vector p (59), the functions B, C, D and E, listed equations (51), (52), (53) and (54),
respectively, the long complex vectors h11, k2o, h3o, ho1, h31 and hao, and the above
functions 77 to Tis.

The calculations in this proof, corroborated by Computer Algebra, have been posted
in [17]. Here, the complex vectors h11, hog, h3g, h21, 31 and he have particularly
long expressions. They have listed in MATHEMATICA 5 files. |
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Theorem 4.3. For the system (3) there is unique point Q = (B, «, &), with coordinates
B = 0.86828033997971281542..., o = 0.85050048430685017856...

and
g, = 1.37624106484659953171....

where the curves 1 = 0 and lo = 0 on the critical surface intersect and there do it

transversally.

Computer assisted proof. Thepoint Q istheintersection of the curvesl; = 0 and
I, = 0 on the Hopf critical surface. It is defined and obtained by the solution of the
equations

8B, ) =0,

givenin (61), and
h(B,a) =h(B,a,e) =0, (63)

where h(B, «, &) is given by (62). The existence and uniqueness of Q with the above
coordinates has been established numerically with the software MATHEMATICA 5.

Figure 4 presents a geometric synthesis interpreting the long calculations involved
in this proof. The sign of i(8, @) gives the sign of the second Lyapunov coefficient
(62). The graph of (8, «) = 0, where the signs of the first and second Lyapunov
coefficients are also illustrated. Asfollows, I2 < 0 on the open arc of the curvel; = 0,
denoted by C3. On thisarc atypical reference point R is depicted. Alsol, > 0 on the
open arc of the curve /1 = 0, denoted by C». This arc contains the typical reference
point, denoted by T'. Seeaso Fig. 5.

The bifurcation diagrams of the system (3) at the points 7 and R are illustrated in
Fig. 6 and 7, as a consequence of [8] and [15].

Themain stepsof the calcul ationsthat provide the numerical evidencefor thistheorem
have been posted in [17]. |

Theorem 4.4. If (B, a, s.) € C1U Co then the three-parameter family of differential
equations (3) has a transversal Hopf point of codimension 2 at Py. If (B, @, &.) € C2
then the H2 point at Py is unstable and the bifurcation diagram is drawn in Fig. 6. If
(B, o, ec) € Cq then the H2 point at Py is asymptotically stable and the bifurcation
diagram is illustrated in Fig. 7.

This theorem is a synthesis of the discussion in the last part in the proof of Theo-
rem 4.3.
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@ gl 8 a)=0and b5, &)=0
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Figure 5—Signsof I onthecurvel; = 0.

Theorem 4.5. For the parameter values at the point Q determined in Theorem 4.3,
the three-parameter family of differential equations (3) has a tranversal Hopf point of
codimension 3 at Py which is asymptotically unstable since [3(Q) > 0. The bifurcation
diagram of system (3) at the point Q is illustrated in Figs. 8 and 9.

Computer assisted proof. For the point Q take five decimal round-off coordinates
B = 0.86828, « = 0.85050 and ¢, = 1.37624. For these values of the parameters
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Figure 6 — Bifurcation diagram of the system (3) at point T'.

one has

p = (—i/2,0.12224 — 0.31601i, 0.54878 + 0.21228i),

q = (—i,0.53237,0.79250),

hi1 = (— 175030, 0, 0.48792),

hao = (—2.24198 — 0.11191i, 0.11916 — 2.38715i, 0.04434 — 1.58196i),

hao = (—2.68329 + 5.27951i, —8.43202 — 4.28554i, —4.24045 — 0.86409i),

G = —2.90053i, (64)
th — (1.20918 + 0.65492i, —3.24920 + 0.64374i, 1.26042 + 1.11353;),

= (9.27690 + 25.24802i, —53.76550 + 19.75510i, —9.11345 + 11.36572i),
ha1 = (— 25.72175 — 5.12199i, 4.47976 — 7.87822i, 6.22842 — 15.97687i),

hap = (—15.72589,0, 10.92671),

Gz = —34.93331;, (65)
hap = (27.17768 + 53.16361i, —57.53733 + 3.94677i, 52.73722 4 27.89259 ),
(- 35.5370 + 180.2333i, —195.9736 — 10.0589i, —125.3480 — 33.7428i),
hap = (— 778.4924 — 466.4510i, 362.1612 + 81.2385i, 390.2364 — 503.3807),
has = (— 536.09324, 0, 835.33555),

Gaz = 56.23254 — 2424.27069i. (66)

hgr =
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Figure 7 — Bifurcation diagram of the system (3) at point R.

Figure 8 — Bifurcation diagram of the system (3) at point Q.
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Figure 9 — Bifurcation diagram of the system (3) at point R1.

From (28), (39), (47), (64), (65) and (66) one has
1
1(Q)=0, I2(Q)=0, I3(Q) = [ Re G43 = 0.39050.

The cal cul ations above have al so been corroborated with 20 decimal sround-off precision
performed using the software MATHEMATICA 5 [18]. See[17].

The gradients of the functions /1, given in (60), and /2, given in (62), at the point Q
are, respectively

(0.80095, —0.31847), (—0.38861, —0.85118).

The transversality condition at Q is equivalent to the non-vanishing of the determi-
nant of the matrix whose columns are the above gradient vectors, which is evaluated
gives —0.80552. The transversality condition being satisfied, the bifurcation diagrams
in Figs. 8 and 9, follow from the work of Takens [15], taking into consideration the
orientation and signs established in Theorems 4.3 and 4.4. |

5 Concluding comments

The historical relevance of the Watt governor study aswell asitsimportance for present
day theoretical and technological aspects of Automatic Control has been widely dis-
cussed by Denny [4] and others. See also [10, 14].
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This paper startsreviewing the stability analysis due to Maxwell and VVyshnegradskii,
which accounts for the characterization, in the space of parameters, of the structura
aswell as Lyapunov stability of the equilibrium of the Watt Centrifugal Governor Sys-
tem, WGS. It continues with recounting the extension of the analysis to the first order,
codimension one stable points, happening on the complement of a curve in the critical
surface where the eigenvalue criterium of Lyapunov holds, as studied in [5], [1] and
by the authors [14], based on the calculation of the first Lyapunov coefficient. Here
the bifurcation analysis at the equilibrium point of the WGS is pushed forward to the
calculation of the second and third Lyapunov coefficients which make possible the de-
termination of the Lyapunov aswell ashigher order structural stability at the equilibrium
point. Seealso [8, 9], [6] and [2].

The calculations of these coefficients, being extensive, rely on Computer Algebraand
Numerical evaluations carried out with the software MATHEMATICA 5 [18]. Inthe
site [17] have been posted the main steps of the calculations in the form of notebooks
for MATHEMATICA 5.

With the analytic and numeric data provided in the analysis performed here, the bifur-
cation diagrams are established along the points of the curve where the first Lyapunov
coefficient vanishes. Pictures 8 and 9 provide a qualitative synthesis of the dynami-
cal conclusions achieved here at the parameter values where the WGS achieves most
complex equilibrium point. A reformulation of these conclusions follow:

Thereisa*“solid tongue” where two stable regimes coexist: oneisan equilibrium and
the other is a small amplitude periodic orbit, i.e. an oscillation.

For parametersinside the “tongue’, this conclusion suggests, aiiysteresis explanation
for the phenomenon of “hunting” observed in the performance of WGSin an early stage
of the research on its stability conditions. Which attractor represents the actual state of
the system will depend onthe path along whichthe parametersevolvetoreach their actual
values of the parameters under consideration. See Denny [4] for historical comments,
where herefersto theterm “hunting” to mean an oscillation around an equilibrium going
near but not reaching it.

Finally, wewould like to stress that although thiswork ultimately focuses the specific
three dimensional, three parameter system of differential equations given by (1), the
method of analysis and calculations explained in Section 3 can be adapted to the study
of other systems with three or more phase variables and depending on three or more
parameters.
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