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Abstract. This paper pursues the study carried out by the authors in Stability and Hopf bifur-

cation in the Watt governor system [14], focusing on the codimension one Hopf bifurcations in the

centrifugal Watt governor differential system, as presented in Pontryagin’s book Ordinary Differ-

ential Equations, [13]. Here are studied the codimension two and three Hopf bifurcations and the

pertinent Lyapunov stability coefficients and bifurcation diagrams, illustrating the number, types

and positions of bifurcating small amplitude periodic orbits, are determined. As a consequence

it is found a region in the space of parameters where an attracting periodic orbit coexists with an

attracting equilibrium.

Mathematical subject classification: 70K50, 70K20.
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1 Introduction

The Watt centrifugal governor is a device that automatically controls the speed

of an engine. Dating to 1788, it can be taken as the starting point for the theory

of automatic control (see MacFarlane [10] and references therein). In this paper

the system coupling the Watt-centrifugal-governor and the steam-engine will be
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20 BIFURCATION ANALYSIS OF THE WATT GOVERNOR SYSTEM

called simply the Watt Governor System (WGS). See Section 2 for a description

and illustration, in Fig. 1, of this system.

Landmarks for the study of the local stability analysis of the WGS are the works

of Maxwell [11] and Vyshnegradskii [16]. A simplified version of the WGS local

stability based on the work of Vyshnegradskii is presented by Pontryagin [13].

A local stability study generalized to a more general Watt governor design was

carried out by Denny [4] and pursued by the authors in [14].

Enlightening historical comments about the Watt governor local mathematical

stability and oscillatory analysis can be found in MacFarlane [10] and Denny [4].

There, as well as in [13], we learn that toward the mid X I X century, improve-

ments in the engineering design led to less reliable operations in the WGS,

leading to fluctuations and oscillations instead of the ideal stable constant speed

output requirement. The first mathematical analysis of the stability conditions

and subsequent indication of the modification in the design to avoid the problem

was carried out by Maxwell [11] and, in a user friendly style likely to be better

understood by engineers, by Vyshnegradskii [16].

From the mathematical point of view, the oscillatory, small amplitude, behavior

in the WGS can be associated to a periodic orbit that appears from a Hopf

bifurcation. This was established by Hassard et al. in [5] and Al-Humadi and

Kazarinoff in [1]. Another procedure, based in the method of harmonic balance,

has been suggested by Denny [4] to detect large amplitude oscillations.

In [14] we characterized the surface of Hopf bifurcations in a WGS, which

is more general than that presented by Pontryagin [13], Al-Humadi and Kazari-

noff [1] and Denny [4]. See Theorem 4.1 and Fig. 3 for a review of the critical

curve on the surface where the first Lyapunov coefficient vanishes.

In the present paper, restricting ourselves to Pontryagin’s system, we go deeper

investigating the stability of the equilibrium along the above mentioned critical

curve. To this end the second Lyapunov coefficient is calculated (Theorem 4.4)

and it is established that it vanishes at a unique point (see Fig. 4 and 5). The

third Lyapunov coefficient is calculated at this point (Theorem 4.5) and found

to be positive. The pertinent bifurcation diagrams are established. See Fig. 6,

7 and 9. A conclusion derived from these diagrams, concerning the region – a

solid “ tongue” – in the space of parameters where an attracting periodic orbit
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coexists with an attracting equilibrium, is specifically commented in Section 5.

The extensive calculations involved in Theorems 4.4 and 4.5 have been cor-

roborated with the software MATHEMATICA 5 [18] and the main steps have

been posted in the site [17].

This paper is organized as follows. In Section 2 we introduce the WGS and

review the Pontryagin differential equations [13]. The stability of the equilibrium

points is also analyzed. This section is essentially a review of [13, 5, 1, 14]. The

Hopf bifurcations in the WGS differential equations are studied in Sections 3

and 4. Expressions for the second and third Lyapunov coefficients, which fully

clarify their sign, are obtained, pushing forward the method found in the works

of Kuznetsov [8, 9]. With this data, the bifurcation diagrams are established.

Concluding comments, synthesizing and interpreting the results achieved here,

are presented in Section 5.

2 The Watt centrifugal governor system

2.1 Differential equations for the Watt governor system

According to Pontryagin [13], p. 217, the differential equations of the WGS

illustrated in Fig. 1 are

d ϕ

dτ
= ψ

d ψ

dτ
= c2 �2 sin ϕ cosϕ − g

l
sin ϕ − b

m
ψ (1)

d �

dτ
= 1

I
(µ cosϕ − F)

where ϕ ∈ (0, π2 ) is the angle of deviation of the arms of the centrifugal governor

from its vertical axis S1, � ∈ [0,∞) is the angular velocity of the rotation of

the flywheel D, θ is the angular velocity of S1, l is the length of the arms, m is

the mass of each ball, H is a sleeve which supports the arms and slides along

S1, T is a set of transmission gears, V is the valve that determines the supply of

steam to the engine, τ is the time, ψ = dϕ/dτ , g is the standard acceleration

of gravity, θ = c �, c > 0 is a constant transmission ratio, b > 0 is a constant

of the frictional force of the system, I is the moment of inertia of the flywheel,

F is an equivalent torque of the load and µ > 0 is a proportionality constant.

Comp. Appl. Math., Vol. 26, N. 1, 2007
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The reader is referred to Pontryagin [13] for the derivation of (1) from Newton’s

Second Law of Motion.

Figure 1 – Watt-centrifugal-governor-steam-engine system.

After the following change in the coordinates and time

x = ϕ, y =
√

l

g
ψ, z = c

√
l

g
�, τ =

√
l

g
t, (2)

the differential equations (1) can be written as

x ′ = dx

dt
= y

y′ = dy

dt
= z2 sin x cos x − sin x − ε y (3)

z′ = dz

dt
= α (cos x − β)

where α > 0, 0 < β < 1 and ε > 0, given by

ε = b

m

√
l

g
, α = c l µ

g I
, β = F

µ
, (4)

are the normalized variable parameters. Thus the differential equations (3) are

in fact a three-parameter family of differential equations which can be rewritten

as x′ = f (x, µ), where

x = (x, y, z) ∈ (0, π2 )× R× [0,∞),

µ = (β, α, ε) ∈ (0, 1)× (0,∞)× (0,∞)
(5)
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and

f (x, µ) = (
y, z2 sin x cos x − sin x − ε y, α (cos x − β)

)
. (6)

2.2 Stability analysis of the equilibrium points

The differential equations (3) have one admissible equilibrium point

P0 = (x0, y0, z0) =
(

arccosβ, 0,

√
1

β

)
. (7)

The Jacobian matrix of f at P0 has the form

D f (P0) =




0 1 0

−1 − β2

β
−ε 2

√
β(1 − β2)

−α
√

1 − β2 0 0




(8)

and its characteristic polynomial is given by p(λ), with

−p(λ) = λ3 + ε λ2 + 1 − β2

β
λ+ 2 α β3/2 1 − β2

β
. (9)

Figure 2 – Surface of critical parameters εc = 2 α β3/2.
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Theorem 2.1. For all

ε > 2 α β3/2 (10)

the WGS differential equations (3) have an asymptotically stable equilibrium

point at P0. If 0 < ε < 2 α β3/2 then P0 is unstable.

The proof of this theorem can essentially be found in Pontryagin [13]; it has

also been established in a more general setting in [14].

The surface of critical parameters µ0 = (β, α, εc) such that εc = ε(β, α) =
2 α β3/2 is illustrated in Fig. 2. In the Section 4 we will analyze the stability

of P0 as εc = 2 α β3/2. The change in the stability at the equilibrium P0 as the

parameters cross the critical surface produces a Hopf bifurcation in the WGS,

whose analysis has been carried out by [1], [5] and, in a more general setting,

by [14].

From (4), ε represents the friction coefficient of the system. The case ε = 0

maybe of theoretical interest due to its connection with conservative systems.

However, as made explicit in Vyshnegradskii’s Rules, friction is an essential

ingredient to attain stability. This point is neatly presented in Pontryagin [13],

of which Figure 2 is a geometric, dimensionless, synthesis.

3 Lyapunov coefficients

The beginning of this section is a review of the method found in [8], pp. 177-

181, and in [9] for the calculation of the first and second Lyapunov coefficients.

The calculation of the third Lyapunov coefficient has not been found by the au-

thors in the current literature. The extensive calculations and the long expressions

for these coefficients have been corroborated with the software MATHEMATICA

5 [18].

Consider the differential equations

x′ = f (x, µ), (11)

where x ∈ Rn and µ ∈ Rm are respectively vectors representing phase variables

and control parameters. Assume that f is of class C∞ inRn ×Rm . Suppose (11)

has an equilibrium point x = x0 at µ = µ0 and, denoting the variable x − x0

also by x, write

F(x) = f (x, µ0) (12)
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as

F(x) = Ax + 1

2
B(x, x)+ 1

6
C(x, x, x)+ 1

24
D(x, x, x, x)

+ 1

120
E(x, x, x, x, x)+ 1

720
K (x, x, x, x, x, x) (13)

+ 1

5040
L(x, x, x, x, x, x, x)+ O(||x||8),

where A = fx(0, µ0) and

Bi (x, y) =
n∑

j,k=1

∂2 Fi (ξ)

∂ξ j ∂ξk

∣∣∣∣
ξ=0

x j yk, (14)

Ci (x, y, z) =
n∑

j,k,l=1

∂3 Fi (ξ)

∂ξ j ∂ξk ∂ξl

∣∣∣∣
ξ=0

x j yk zl , (15)

Di (x, y, z,u) =
n∑

j,k,l,r=1

∂4 Fi (ξ)

∂ξ j ∂ξk ∂ξl ∂ξr

∣∣∣∣
ξ=0

x j yk zl ur , (16)

Ei (x, y, z,u, v) =
n∑

j,k,l,r,p=1

∂5 Fi (ξ)

∂ξ j ∂ξk ∂ξl ∂ξr ∂ξp

∣∣∣∣
ξ=0

x j yk zl ur vp, (17)

Ki (x, y, z,u, v, s) =
n∑

j,...,q=1

∂6 Fi (ξ)

∂ξ j ∂ξk ∂ξl ∂ξr ∂ξp ∂ξq

∣∣∣∣
ξ=0

x j yk zl ur vp sq , (18)

Li (x, y, z,u, v, s, t) =
n∑

j,...,h=1

∂7 Fi (ξ)

∂ξ j∂ξk∂ξl∂ξr∂ξp∂ξq∂ξh

∣∣∣∣
ξ=0

x j yk zl ur vp sq th, (19)

for i = 1, . . . , n.

Suppose (x0, µ0) is an equilibrium point of (11) where the Jacobian matrix A has a pair
of purely imaginary eigenvalues λ2,3 = ±iω0, ω0 > 0, and admits no other eigenvalue
with zero real part. Let T c be the generalized eigenspace of A corresponding to λ2,3.
By this is meant that it is the largest subspace invariant by A on which the eigenvalues
are λ2,3.

Let p, q ∈ Cn be vectors such that

Aq = iω0 q, A� p = −iω0 p, 〈p, q〉 =
n∑

i=1

p̄i qi = 1, (20)

where A� is the transposed matrix. Any vector y ∈ T c can be represented as y =
wq + w̄q̄, where w = 〈p, y〉 ∈ C. The two dimensional center manifold can be
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parametrized by w, w̄, by means of an immersion of the form x = H(w, w̄), where
H : C2 → R

n has a Taylor expansion of the form

H(w, w̄) = wq + w̄q̄ +
∑

2≤ j+k≤7

1

j !k! h jkw
j w̄k + O(|w|8), (21)

with h jk ∈ C
n and h jk = h̄k j . Substituting this expression into (11) we obtain the

following differential equation

Hww
′ + Hw̄w̄

′ = F(H(w, w̄)), (22)

where F is given by (12).
The complex vectors hi j are to be determined so that system (22), on the chart w for

a central manifold, writes as follows

w′ = iω0w + 1

2
G21w|w|2 + 1

12
G32w|w|4 + 1

144
G43w|w|6 + O(|w|8),

with G jk ∈ C.
Solving for the vectors hi j the system of linear equations defined by the coefficients

of the quadratic terms of (22), taking into account the coefficients of F in the expres-
sions (13) and (14), one has

h11 = −A−1 B(q, q̄), (23)

h20 = (2iω0 In − A)−1 B(q, q), (24)

where In is the unit n × n matrix. Pursuing the calculation to cubic terms, from the
coefficients of the terms w3 in (22) follows that

h30 = (3iω0 In − A)−1 [3B(q, h20)+ C(q, q, q)] . (25)

From the coefficients of the terms w2w̄ in (22) one obtains a singular system for h21

(iω0 In − A)h21 = C(q, q, q̄)+ B(q̄, h20)+ 2B(q, h11)− G21q, (26)

which has a solution if and only if

〈p,C(q, q, q̄)+ B(q̄, h20)+ 2B(q, h11)− G21q〉 = 0.

Therefore

G21 = 〈p,C(q, q, q̄)+ B(q̄, (2iω0 In − A)−1 B(q, q))− 2B(q, A−1 B(q, q̄))〉. (27)
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The first Lyapunov coefficient l1 is defined by

l1 = 1

2
Re G21. (28)

The complex vector h21 can be found by solving the nonsingular (n +1)-dimensional
system (

iω0 In − A q

p̄ 0

)(
h21

s

)
=

(
C(q, q, q̄)+ B(q̄, h20)+ 2B(q, h11)− G21q

0

)
,

(29)

with the condition 〈p, h21〉 = 0.

For the sake of completeness, in Remark 3.1 we prove that the system (29) is non-
singular and that if (v, s) is a solution of (29) with the condition 〈p, v〉 = 0 then v is a
solution of (26).

Remark 3.1. Write Rn = T c ⊕ T su , where T c and T su are invariant by A. It can be
proved that y ∈ T su if and only if 〈p, y〉 = 0. Define

a = C(q, q, q̄)+ B(q̄, h20)+ 2B(q, h11)− G21q.

Let (v, s) be a solution of the homogeneous equation obtained from (29). Equivalently

(iω0 In − A)v + sq = 0, 〈p, v〉 = 0. (30)

From the second equation of (30), it follows that v ∈ T su , and thus (iω0 In − A)v ∈
T su . Therefore 〈p, (iω0 In − A)v〉 = 0. Taking the inner product of p with the first
equation of (30) one has 〈p, (iω0 In − A)v + sq〉 = 0, which can be written as
〈p, (iω0 In − A)v〉 + s〈p, q〉 = 0. Since 〈p, q〉 = 1 and 〈p, (iω0 In − A)v〉 = 0
it follows that s = 0. Substituting s = 0 into the first equation of (30) one has
(iω0 In − A)v = 0. This implies that

v = αq, α ∈ C. (31)

But 0 = 〈p, v〉 = 〈p, αq〉 = α〈p, q〉 = α. Substituting α = 0 into (31) it follows that
v = 0. Therefore (v, s) = (0, 0).

Let (v, s) be a solution of (29). Equivalently

(iω0 In − A)v + sq = a, 〈p, v〉 = 0. (32)
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From the second equation of (32), it follows that v ∈ T su and thus (iω0 In − A)v ∈ T su .
Therefore 〈p, (iω0 In − A)v〉 = 0. Taking the inner product of p with the first equation
of (32) one has 〈p, (iω0 In − A)v + sq〉 = 〈p, a〉, which can be written as

〈p, (iω0 In − A)v〉 + s〈p, q〉 = 〈p, a〉.
As 〈p, a〉 = 0, 〈p, q〉 = 1 and 〈p, (iω0 In − A)v〉 = 0 it follows that s = 0. Substi-
tuting s = 0 into the first equation of (32) results (iω0 In − A)v = a. Therefore v is a
solution of (26).

The procedure above will be adapted below in connection with the determination of
h32 and h43.

From the coefficients of the terms w4, w3w̄ and w2w̄2 in (22), one has respectively

h40 = (4iω0 In − A)−1[3B(h20, h20)+ 4B(q, h30)

+ 6C(q, q, h20)+ D(q, q, q, q)
]
,

(33)

h31 = (2iω0 In − A)−1[3B(q, h21)+ B(q̄, h30)+ 3B(h20, h11)

+ 3C(q, q, h11)+ 3C(q, q̄, h20)+ D(q, q, q, q̄)− 3G21h20
]
,

(34)

h22 = − A−1[D(q, q, q̄, q̄)+ 4C(q, q̄, h11)+ C(q̄, q̄, h20)+ C(q, q, h̄20)

+ 2B(h11, h11)+ 2B(q, h̄21)+ 2B(q̄, h21)+ B(h̄20, h20)
]
,

(35)

where the term −2h11(G21 + Ḡ21) has been omitted in the last equation, since G21 +
Ḡ21 = 0 as l1 = 0.

Defining H32 as

H32 = 6B(h11, h21)+ B(h̄20, h30)+ 3B(h̄21, h20)+ 3B(q, h22)

+ 2B(q̄, h31)+ 6C(q, h11, h11)+ 3C(q, h̄20, h20)

+ 3C(q, q, h̄21)+ 6C(q, q̄, h21)+ 6C(q̄, h20, h11)

+ C(q̄, q̄, h30)+ D(q, q, q, h̄20)+ 6D(q, q, q̄, h11)

+ 3D(q, q̄, q̄, h20)+ E(q, q, q, q̄, q̄)− 6G21h21 − 3Ḡ21h21,

(36)

and from the coefficients of the terms w3w̄2 in (22), one has a singular system for h32

(iω0 In − A)h32 = H32 − G32q, (37)

which has solution if and only if

〈p,H32 − G32q〉 = 0, (38)

where the terms −6G21h21 − 3Ḡ21h21 in the last line of (36) actually does not enter in
last equation, since 〈p, h21〉 = 0.
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The second Lyapunov coefficient is defined by

l2 = 1

12
Re G32, (39)

where, from (38), G32 = 〈p,H32〉.
The complex vector h32 can be found solving the nonsingular (n + 1)-dimensional

system (
iω0 In − A q

p̄ 0

)(
h32

s

)
=
(
H32 − G32q

0

)
, (40)

with the condition 〈p, h32〉 = 0.
From the coefficients of the termsw4w̄,w4w̄2 andw3w̄3 in (22), one has respectively

h41 = (3iω0 In − A)−1[4B(h11, h30)+ 6B(h20, h21)+ 4B(q, h31)

+ B(q̄, h40)+ 12C(q, h11, h20)+ 6C(q, q, h21)+ 4C(q, q̄, h30)

+ 3C(q̄, h20, h20)+ 4D(q, q, q, h11)+ 6D(q, q, q̄, h20)

+ E(q, q, q, q, q̄)− 6G21h30
]
,

(41)

h42 = (2iω0 In − A)−1[8B(h11, h31)+ 6B(h20, h22)+ B(h̄20, h40)

+ 6B(h21, h21)+ 4B(h̄21, h30)+ 4B(q, h32)+ 2B(q̄, h41)

+ 12C(h11, h11, h20)+ 3C(h20, h20, h̄20)+ 24C(q, h11, h21)

+ 12C(q, h20, h̄21)+ 4C(q, h̄20, h30)+ 6C(q, q, h22)+ 8C(q, q̄, h31)

+ 8C(q̄, h11, h30)+ 12C(q̄, h20, h21)+ C(q̄, q̄, h40)

+ 12D(q, q, h11, h11)+ 6D(q, q, h20, h̄20)+ 4D(q, q, q, h̄21)

+ 12D(q, q, q̄, h21)+ 24D(q, q̄, h11, h20)+ 4D(q, q̄, q̄, h30)

+ 3D(q̄, q̄, h20, h20)+ E(q, q, q, q, h̄20)+ 8E(q, q, q, q̄, h11)

+ 6E(q, q, q̄, q̄, h20)+ K (q, q, q, q, q̄, q̄)

− 4(G32h20 + 3G21h31 + Ḡ21h31)
]
,

(42)

h33 = − A−1[9B(h11, h22)+ 3B(h20, h̄31)+ 3B(h̄20, h31)+ 9B(h21, h̄21)

+ B(h̄30, h30)+ 3B(q, h̄32)+ 3B(q̄, h32)+ 6C(h11, h11, h11)

+ 9C(h11, h̄20, h20)+ 18C(q, h11, h̄21)+ 3C(q, h20, h̄30)

+ 9C(q, h̄20, h21)+ 3C(q, q, h̄31)+ 9C(q, q̄, h22)

+ 18C(q̄, h11, h21)+ 9C(q̄, h20, h̄21)+ 3C(q̄, h̄20, h30)

+ 3C(q̄, q̄, h31)+ 9D(q, q, h̄20, h11)+ D(q, q, q, h̄30)

+ 9D(q, q, q̄, h̄21)+ 18D(q, q̄, h11, h11)+ 9D(q, q̄, h̄20, h20)

+ 9D(q, q̄, q̄, h21)+ 9D(q̄, q̄, h11, h20)+ 3E(q, q, q, q̄, h̄20)

+ 9E(q, q, q̄, q̄, h11)+ 3E(q, q̄, q̄, q̄, h20)+ K (q, q, q, q̄, q̄, q̄)

− 3(G32 + Ḡ32)h11 − 9(G21 + Ḡ21)h22
]
.

(43)
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Defining H43 as

H43 = 12B(h11, h32)+ 6B(h20, h̄32)+ 3B(h̄20, h41)

+ 18B(h21, h22)+ 12B(h̄21, h31)+ 4B(h30, h̄31)+ B(h̄30, h40)

+ 4B(q, h33)+ 3B(q̄, h42)+ 36C(h11, h11, h21)+ 36C(h11, h20, h̄21)

+ 12C(h11, h̄20, h30)+ 3C(h20, h20, h̄30)+ 18C(h20, h̄20, h21)

+ 36C(q, h11, h22)+ 12C(q, h20, h̄31)+ 12C(q, h̄20, h31)

+ 36C(q, h21, h̄21)+ 4C(q, h30, h̄30)+ 6C(q, q, h̄32)

+ 12C(q, q̄, h32)+ 24C(q̄, h11, h31)+ 18C(q̄, h20, h22)

+ 3C(q̄, h̄20, h40)+ 18C(q̄, h21, h21)+ 12C(q̄, h̄21, h30)

+ 3C(q̄, q̄, h41)+ 24D(q, h11, h11, h11)+ 36D(q, h11, h20, h̄20)

+ 36D(q, q, h11, h̄21)+ 6D(q, q, h20, h̄30)+ 18D(q, q, h̄20, h21)

+ 4D(q, q, q, h̄31)+ 18D(q, q, q̄, h22)+ 72D(q, q̄, h11, h21)

+ 36D(q, q̄, h20, h̄21)+ 12D(q, q̄, h̄20, h30)+ 12D(q, q̄, q̄, h31)

+ 36D(q̄, h11, h11, h20)+ 9D(q̄, h20, h20, h̄20)+ 12D(q̄, q̄, h11, h30)

+ 18D(q̄, q̄, h20, h21)+ D(q̄, q̄, q̄, h40)+ 12E(q, q, q, h11, h̄20)

+ E(q, q, q, q, h̄30)+ 12E(q, q, q, q̄, h̄21)+ 36E(q, q, q̄, h11, h11)

+ 18E(q, q, q̄, h20, h̄20)+ 18E(q, q, q̄, q̄, h21)+ 36E(q, q̄, q̄, h11, h20)

+ 4E(q, q̄, q̄, q̄, h30)+ 3E(q̄, q̄, q̄, h20, h20)+ 3K (q, q, q, q, q̄, h̄20)

+ 12K (q, q, q, q̄, q̄, h11)+ 6K (q, q, q̄, q̄, q̄, h20)+ L(q, q, q, q, q̄, q̄, q̄)

− 6(2G32h21 + Ḡ32h21 + 3G21h32 + 2Ḡ21h32),

(44)

and from the coefficients of the terms w4w̄3, one has a singular system for h43

(iω0 In − A)h43 = H43 − G43q (45)

which has solution if and only if

〈p,H43 − G43q〉 = 0, (46)

where the terms −6(2G32h21 + Ḡ32h21 + 3G21h32 + 2Ḡ21h32) appearing in the last
line of equation (44) actually do not enter in the last equation, since 〈p, h21〉 = 0 and
〈p, h32〉 = 0.

The third Lyapunov coefficient is defined by

l3 = 1

144
Re G43, (47)

where, from (46), G43 = 〈p,H43〉.
The expressions for the vectors h50, h60, h51, h70, h61, h52 have been omitted since

they are not important here.

Comp. Appl. Math., Vol. 26, N. 1, 2007



JORGE SOTOMAYOR, LUIS FERNANDO MELLO and DENIS DE CARVALHO BRAGA 31

Remark 3.2. Other equivalent definitions and algorithmic procedures to write the
expressions for the Lyapunov coefficients l j , j = 1, 2, 3, for two dimensional systems
can be found in Andronov et al. [2] and Gasull et al. [6], among others. These procedures
apply also to the three dimensional systems of this work, if properly restricted to the
center manifold. The authors found, however, that the method outlined above, due
to Kuznetsov [8, 9], requiring no explicit formal evaluation of the center manifold, is
better adapted to the needs of this work.

A Hopf point (x0, µ0) is an equilibrium point of (11) where the Jacobian matrix
A = fx(x0, µ0) has a pair of purely imaginary eigenvalues λ2,3 = ±iω0, ω0 > 0, and
admits no other critical eigenvalues – i.e. located on the imaginary axis. At a Hopf
point a two dimensional center manifold is well-defined, it is invariant under the flow
generated by (11) and can be continued with arbitrary high class of differentiability
to nearby parameter values. In fact, what is well defined is the ∞-jet – or infinite Taylor
series – of the center manifold, as well as that of its continuation, any two of them having
contact in the arbitrary high order of their differentiability class.

A Hopf point is called transversal if the parameter dependent complex eigenvalues
cross the imaginary axis with non-zero derivative. In a neighborhood of a transver-
sal Hopf point – H1 point, for concision – with l1 
= 0 the dynamic behavior of the
system (11), reduced to the family of parameter-dependent continuations of the center
manifold, is orbitally topologically equivalent to the following complex normal form

w′ = (η + iω)w + l1w|w|2,
w ∈ C, η, ω and l1 are real functions having derivatives of arbitrary high order, which
are continuations of 0, ω0 and the first Lyapunov coefficient at the H1 point. See [8].
As l1 < 0 (l1 > 0) one family of stable (unstable) periodic orbits can be found on this
family of manifolds, shrinking to an equilibrium point at the H1 point.

A Hopf point of codimension 2 is a Hopf point where l1 vanishes. It is called trans-

versal if η = 0 and l1 = 0 have transversal intersections, where η = η(µ) is the
real part of the critical eigenvalues. In a neighborhood of a transversal Hopf point of
codimension 2 – H2 point, for concision – with l2 
= 0 the dynamic behavior of the
system (11), reduced to the family of parameter-dependent continuations of the center
manifold, is orbitally topologically equivalent to

w′ = (η + iω0)w + τw|w|2 + l2w|w|4,
where η and τ are unfolding parameters. See [8]. The bifurcation diagrams for l2 
= 0
can be found in [8], p. 313, and in [15].

A Hopf point of codimension 3 is a Hopf point of codimension 2 where l2 vanishes.
A Hopf point of codimension 3 is called transversal if η = 0, l1 = 0 and l2 = 0 have
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transversal intersections. In a neighborhood of a transversal Hopf point of codimen-
sion 3 – H3 point, for concision – with l3 
= 0 the dynamic behavior of the system (11),
reduced to the family of parameter-dependent continuations of the center manifold, is
orbitally topologically equivalent to

w′ = (η + iω0)w + τw|w|2 + νw|w|4 + l3w|w|6,

where η, τ and ν are unfolding parameters. The bifurcation diagram for l3 
= 0 can be
found in Takens [15].

Theorem 3.3. Suppose that the system

x′ = f (x, µ), x = (x, y, z), µ = (β, α, ε)

has the equilibrium x = 0 for µ = 0 with eigenvalues

λ2,3(µ) = η(µ)± iω(µ),

where ω(0) = ω0 > 0. For µ = 0 the following conditions hold

η(0) = 0, l1(0) = 0, l2(0) = 0,

where l1(µ) and l2(µ) are the first and second Lyapunov coefficients, respectively.

Assume that the following genericity conditions are satisfied

1. l3(0) 
= 0, where l3(0) is the third Lyapunov coefficient;

2. the map µ → (η(µ), l1(µ), l2(µ)) is regular at µ = 0.

Then, by the introduction of a complex variable, the above system reduced to the family

of parameter-dependent continuations of the center manifold, is orbitally topologically

equivalent to

w′ = (η + iω0)w + τw|w|2 + νw|w|4 + l3w|w|6

where η, τ and ν are unfolding parameters.

Remark 3.4. The proof of this theorem given by Takens for C∞ families of vec-
tor fields, using the Malgrange-Mather Preparation Theorem [7], is also valid in the
present case of arbitrarily high, but finite, class of differentiability, using the appro-
priate extensions of the Preparation Theorem. See Bakhtin [3] and Milman [12],
among others.
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4 Hopf bifurcations

The stability of the equilibrium point P0 given in (7) as εc = ε(β, α) = 2 α β3/2 is
analyzed here. According to (13) and the subsequent expressions (14), (15), (16), (17),
(18) and (19), for Bi to Li , one has

A =




0 1 0

−ω2
0 −εc 2 β ω0

−α √
β ω0 0 0


 , (48)

where

ω0 =
√

1 − β2

β
, (49)

and referring to the expressions in equations (11) and (12)

F(x)− Ax = (0, F2(x), F3(x)) , (50)

where

F2(x) = − 3

2
ω0
√
β x2 + ω0 β

3/2 z2 + 2(2β2 − 1)√
β

x z + 4 − 7β2

6β
x3

− 4 ω0 β x2 z + (2β2 − 1) x z2 + 5

8

√
βω0x4 + 4

3
β−1/2(1 − 2β2)x3z

− 2β3/2ω0x2z2 + 31β2 − 16

120β
x5 + 4

3
βω0x4z + 2 − 4β2

3
x3z2

− 7

80

√
βω0x6 + 4

15
β−1/2(2β2 − 1)x5z + 2

3
β3/2ω0x4z2

+ 64 − 127β2

5040β
x7 − 8

45
βω0x6z + 4β2 − 2

15
x5z2 + O(||x||8),

F3(x) = − 1

2
α β x2 + 1

6
α
√
β ω0x3 + 1

24
α β x4 − 1

120
α
√
β ω0x5

− 1

720
α β x6 + 1

5040
α
√
β ω0x7 + O(||x||8).

From equations (13), (14), (15), (16), (17), (18), (19) and (50) one has

B(x, y) = (0, B2(x, y),−α β x1 y1) , (51)

where

B2(x, y) = − 3 ω0
√
β x1 y1 + 2 ω0 β

3/2 x3 y3

+ 2
(
2 β2 − 1

)
√
β

(
x1 y3 + x3 y1

)
,
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C(x, y, z) =
(
0,C2(x, y, z), α

√
β ω0 x1 y1 z1

)
, (52)

where

C2(x, y, z) = 4 − 7β2

β
x1 y1 z1 − 8ω0 β

(
x1 y1 z3 + x1 y3 z1 + x3 y1 z1

)
+ 2

(
2β2 − 1

) (
x1 y3 z3 + x3 y1 z3 + x3 y3 z1

)
,

D(x, y, z,u) = (
0, D2(x, y, z,u), αβx1y1z1u1

)
, (53)

where

D2(x, y, z,u) = 15ω0β
1/2x1y1z1u1 + 8

(
1 − 2β2

β1/2

) (
x1y1z1u3

+ x1y1z3u1 + x1y3z1u1 + x3y1z1u1
)

− 8ω0β
3/2(x1y1z3u3 + x1y3z1u3 + x1y3z3u1

+ x3y3z1u1 + x3y1z1u3 + x3y1z3u1
)
,

E(x, y, z,u, v) = (
0, E2(x, y, z,u, v),−αω0β

1/2x1y1z1u1v1
)
, (54)

where

E2(x, y, z,u, v) = 31β2 − 16

β
x1y1z1u1v1 + 32ω0β

(
x1y1z1u1v3

+ x1y1z1u3v1 + x1y1z3u1v1 + x1y3z1u1v1

+ x3y1z1u1v1
)+ 8

(
1 − 2β2)(x1y1z1u3v3

+ x1y1z3u1v3 + x1y1z3u3v1 + x1y3z1u1v3

+ x1y3z1u3v1 + x1y3z3u1v1 + x3y3z1u1v1

+ x3y1z3u1v1 + x3y1z1u3v1 + x3y1z1u1v3
)
,

K (x, y, z,u, v, s) = (0, K2(x, y, z,u, v, s),−αβx1y1z1u1v1s1) , (55)

where

K2(x, y, z,u, v, s) = − 63ω0β
1/2x1y1z1u1v1s1

+ 32

(
2β2 − 1

β1/2

) (
x1y1z1u1v1s3 + x1y1z1u1v3s1

+ x1y1z1u3v1s1 + x1y1z3u1v1s1 + x1y3z1u1v1s1

+ x3y1z1u1v1s1
)+ 32ω0β

3/2(x1y1z1u1v3s3

+ x1y1z1u3v1s3 + x1y1z3u1v1s3 + x1y3z1u1v1s3

+ x3y1z1u1v1s3 + x1y1z1u3v3s1 + x1y1z3u1v3s1
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+ x1y3z1u1v3s1 + x3y1z1u1v3s1 + x1y1z3u3v1s1

+ x1y3z1u3v1s1 + x3y1z1u3v1s1 + x1y3z3u1v1s1

+ x3y1z3u1v1s1 + x3y3z1u1v1s1
)
,

L(x, y, z,u, v, s, t) = (
0, L2(x, y, z,u, v, s, t), ω0β

1/2x1y1z1u1v1s1t1
)
, (56)

where

L2(x, y, z,u, v, s, t) = (
64ω2

0 − 63β
)
x1y1z1u1v1s1t1 − 128ω0β

(
x1y1z1u1v1s1t3

+ x1y1z1u1v1s3t1 + x1y1z1u1v3s1t1 + x1y1z1u3v1s1t1

+ x1y1z3u1v1s1t1 + x1y3z1u1v1s1t1 + x3y1z1u1v1s1t1
)

+ 32β
(
β − ω2

0

)(
x1y1z1u1v1s3t3 + x1y1z1u1v3s1t3

+ x1y1z1u3v1s1t3 + x1y1z3u1v1s1t3 + x1y3z1u1v1s1t3

+ x3y1z1u1v1s1t3 + x1y1z1u1v3s3t1 + x1y1z1u3v1s3t1

+ x1y1z3u1v1s3t1 + x1y3z1u1v1s3t1 + x3y1z1u1v1s3t1

+ x1y1z1u3v3s1t1 + x1y1z3u1v3s1t1 + x1y3z1u1v3s1t1

+ x3y1z1u1v3s1t1 + x1y1z3u3v1s1t1 + x1y3z1u3v1s1t1

+ x3y1z1u3v1s1t1 + x1y3z3u1v1s1t1 + x3y1z3u1v1s1t1

+ x3y3z1u1v1s1t1
)
.

The eigenvalues of A (equation (48)) are

λ1 = −εc = −2αβ3/2, λ2 = i ω0, λ3 = −i ω0. (57)

and from (20) one has

q =
(

−i, ω0,
εc

2β

)
and (58)

p =
(

− i

2
,

ω0 − iεc

2
(
ω2

0 + ε2
c

) , β (εc + iω0)

ω2
0 + ε2

c

)
. (59)

Theorem 4.1. Consider the three-parameter family of differential equations (3). The

first Lyapunov coefficient is given by

l1(β, α, εc) = − 1

2

(
αβ3/2(1 − β2)

(
3 + (α2 − 5)β2 + α4β6

)
(
1 − β2 + α2β4

) (
1 − β2 + 4α2β4

)
)
. (60)

If

g(β, α) = 3 + (α2 − 5)β2 + α4β6 (61)
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Figure 3 – Signs of the first Lyapunov coefficient.

is different from zero then the three-parameter family of differential equations (3) has a

transversal Hopf point at P0 for εc = ε(β, α) = 2 α β3/2.

If (β, α, εc) ∈ S ∪ U (see Fig. 3) then the three-parameter family of differential

equations (3) has a H1 point at P0. If (β, α, εc) ∈ S then the H1 point at P0 is

asymptotically stable and for each ε < εc, but close to εc, there exists a stable periodic

orbit near the unstable equilibrium point P0. If (β, α, εc) ∈ U then the H1 point at P0

is unstable and for each ε > εc, but close to εc, there exists an unstable periodic orbit

near the asymptotically stable equilibrium point P0.

This theorem summarizes Proposition 3.2 and Theorems 3.5, 3.6 and 3.7 established
in [14]. Equation (61) gives a simple expression for the sign of the first Lyapunov co-
efficient (60). Its graph is illustrated in Fig. 3, where the signs of the first Lyapunov
coefficient are also represented. The curve l1 = 0 divides the surface of critical param-
eters into two connected components denoted by S and U where l1 < 0 and l1 > 0
respectively.

We have the following theorem.

Theorem 4.2. Consider the three-parameter family of differential equations (3) re-

stricted to ε = εc. The second Lyapunov coefficient is given by

l2(β, α, εc) = α β3/2 h(β, α, εc)

36
(
1 − β2 + α2β4

)3 (9 − 9β2 + 4α2β4
) (

1 − β2 + 4α2β4
)3 , (62)
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where

h(β, α, εc) = − 162 − 54(−9 + 37α2)β2 − 9(−126 + 61α2 + 60α4)β4

− 18(405 − 3212α2 + 1128α4)β6

+ (13770 − 210843α2 + 113612α4 − 5533α6)β8

− 6(2133 − 57687α2 + 38218α4 + 5186α6)β10

+ (5994 − 301275α2 + 215340α4 + 284264α6 − 16022α8)β12

+ 2(−567 + 67878α2 − 45196α4 − 379430α6 + 9347α8)β14

+ α2(−25029 + 9540α2 + 990831α4 + 155856α6 − 21205α8)β16

+ 4α4(513 − α2(163340 + 120616α2 − 16768α4))β18

− 2α6(−86887 − 258835α2 + 30173α4 + 7208α6)β20

+ 2α8(−96867 − 8956α2 + 23208α4)β22

+ α10(33671 − 58288α2 − 4880α4)β24

+ 16α12(1603 + 718α2)β26 − 16α14(453 + 40α2)β28

+ 640α16β30.

Proof. Define the following functions

T1 = Re 〈p, E(q, q, q, q̄, q̄)〉, T2 = Re 〈p, D(q, q, q, h̄20)〉, T3 = Re 〈p, D(q, q̄, q̄, h20)〉,
T4 = Re 〈p, D(q, q, q̄, h11)〉, T5 = Re 〈p,C(q̄, q̄, h30)〉, T6 = Re 〈p,C(q, q, h̄21)〉,

T7 = Re 〈p,C(q, q̄, h21)〉, T8 = Re 〈p,C(q, h̄20, h20)〉, T9 = Re 〈p,C(q, h11, h11)〉,
T10 = Re 〈p,C(q̄, h20, h11)〉, T11 = Re 〈p, B(q̄, h31)〉, T12 = Re 〈p, B(q, h22)〉,

T13 = Re 〈p, B(h̄20, h30)〉, T14 = Re 〈p, B(h̄21, h20)〉, T15 = Re 〈p, B(h11, h21)〉.
From (39) one has

Re G32 = T1 + T2 + 3T3 + 6T4 + T5 + 3T6 + 6T7 + 3T8 + 6T9 + 6T10

+ 2T11 + 3T12 + T13 + 3T14 + 6T15.

The theorem follows by expanding the expressions in definition of the second Lya-
punov coefficient (39). It relies on extensive calculation involving the vector q (58), the
vector p (59), the functions B, C , D and E , listed equations (51), (52), (53) and (54),
respectively, the long complex vectors h11, h20, h30, h21, h31 and h22, and the above
functions T1 to T15.

The calculations in this proof, corroborated by Computer Algebra, have been posted
in [17]. Here, the complex vectors h11, h20, h30, h21, h31 and h22 have particularly
long expressions. They have listed in MATHEMATICA 5 files. �
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Theorem 4.3. For the system (3) there is unique point Q = (β, α, εc), with coordinates

β = 0.86828033997971281542..., α = 0.85050048430685017856...

and

εc = 1.37624106484659953171...

where the curves l1 = 0 and l2 = 0 on the critical surface intersect and there do it

transversally.

Computer assisted proof. The point Q is the intersection of the curves l1 = 0 and
l2 = 0 on the Hopf critical surface. It is defined and obtained by the solution of the
equations

g(β, α) = 0,

given in (61), and
h(β, α) = h(β, α, εc) = 0, (63)

where h(β, α, εc) is given by (62). The existence and uniqueness of Q with the above
coordinates has been established numerically with the software MATHEMATICA 5.

Figure 4 presents a geometric synthesis interpreting the long calculations involved
in this proof. The sign of h(β, α) gives the sign of the second Lyapunov coefficient
(62). The graph of h(β, α) = 0, where the signs of the first and second Lyapunov
coefficients are also illustrated. As follows, l2 < 0 on the open arc of the curve l1 = 0,
denoted by C1. On this arc a typical reference point R is depicted. Also l2 > 0 on the
open arc of the curve l1 = 0, denoted by C2. This arc contains the typical reference
point, denoted by T . See also Fig. 5.

The bifurcation diagrams of the system (3) at the points T and R are illustrated in
Fig. 6 and 7, as a consequence of [8] and [15].

The main steps of the calculations that provide the numerical evidence for this theorem
have been posted in [17]. �

Theorem 4.4. If (β, α, εc) ∈ C1 ∪ C2 then the three-parameter family of differential

equations (3) has a transversal Hopf point of codimension 2 at P0. If (β, α, εc) ∈ C2

then the H2 point at P0 is unstable and the bifurcation diagram is drawn in Fig. 6. If

(β, α, εc) ∈ C1 then the H2 point at P0 is asymptotically stable and the bifurcation

diagram is illustrated in Fig. 7.

This theorem is a synthesis of the discussion in the last part in the proof of Theo-
rem 4.3.
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Figure 4 – Signs of the first and second Lyapunov coefficients.

Figure 5 – Signs of l2 on the curve l1 = 0.

Theorem 4.5. For the parameter values at the point Q determined in Theorem 4.3,

the three-parameter family of differential equations (3) has a tranversal Hopf point of

codimension 3 at P0 which is asymptotically unstable since l3(Q) > 0. The bifurcation

diagram of system (3) at the point Q is illustrated in Figs. 8 and 9.

Computer assisted proof. For the point Q take five decimal round-off coordinates
β = 0.86828, α = 0.85050 and εc = 1.37624. For these values of the parameters
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Figure 6 – Bifurcation diagram of the system (3) at point T .

one has

p = (− i/2, 0.12224 − 0.31601i, 0.54878 + 0.21228i
)
,

q = (− i, 0.53237, 0.79250
)
,

h11 = (− 1.75030, 0, 0.48792
)
,

h20 = (− 2.24198 − 0.11191i, 0.11916 − 2.38715i, 0.04434 − 1.58196i
)
,

h30 = (− 2.68329 + 5.27951i,−8.43202 − 4.28554i,−4.24045 − 0.86409i
)
,

G21 = −2.90053i, (64)

h21 = (
1.20918 + 0.65492i,−3.24920 + 0.64374i, 1.26042 + 1.11353i

)
,

h40 = (
9.27690 + 25.24802i,−53.76550 + 19.75510i,−9.11345 + 11.36572i

)
,

h31 = (− 25.72175 − 5.12199i, 4.47976 − 7.87822i, 6.22842 − 15.97687i
)
,

h22 = (− 15.72589, 0, 10.92671
)
,

G32 = −34.93331i, (65)

h32 = (
27.17768 + 53.16361i,−57.53733 + 3.94677i, 52.73722 + 27.89259i

)
,

h41 = (− 35.5370 + 180.2333i,−195.9736 − 10.0589i,−125.3480 − 33.7428i
)
,

h42 = (− 778.4924 − 466.4510i, 362.1612 + 81.2385i, 390.2364 − 503.3807i
)
,

h33 = (− 536.09324, 0, 835.33555
)
,

G43 = 56.23254 − 2424.27069i. (66)
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Figure 7 – Bifurcation diagram of the system (3) at point R.

Figure 8 – Bifurcation diagram of the system (3) at point Q.
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Figure 9 – Bifurcation diagram of the system (3) at point R1.

From (28), (39), (47), (64), (65) and (66) one has

l1(Q) = 0, l2(Q) = 0, l3(Q) = 1

144
Re G43 = 0.39050.

The calculations above have also been corroborated with 20 decimals round-off precision
performed using the software MATHEMATICA 5 [18]. See [17].

The gradients of the functions l1, given in (60), and l2, given in (62), at the point Q

are, respectively

(0.80095,−0.31847), (−0.38861,−0.85118).

The transversality condition at Q is equivalent to the non-vanishing of the determi-
nant of the matrix whose columns are the above gradient vectors, which is evaluated
gives −0.80552. The transversality condition being satisfied, the bifurcation diagrams
in Figs. 8 and 9, follow from the work of Takens [15], taking into consideration the
orientation and signs established in Theorems 4.3 and 4.4. �

5 Concluding comments

The historical relevance of the Watt governor study as well as its importance for present
day theoretical and technological aspects of Automatic Control has been widely dis-
cussed by Denny [4] and others. See also [10, 14].
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This paper starts reviewing the stability analysis due to Maxwell and Vyshnegradskii,
which accounts for the characterization, in the space of parameters, of the structural
as well as Lyapunov stability of the equilibrium of the Watt Centrifugal Governor Sys-
tem, WGS. It continues with recounting the extension of the analysis to the first order,
codimension one stable points, happening on the complement of a curve in the critical
surface where the eigenvalue criterium of Lyapunov holds, as studied in [5], [1] and
by the authors [14], based on the calculation of the first Lyapunov coefficient. Here
the bifurcation analysis at the equilibrium point of the WGS is pushed forward to the
calculation of the second and third Lyapunov coefficients which make possible the de-
termination of the Lyapunov as well as higher order structural stability at the equilibrium
point. See also [8, 9], [6] and [2].

The calculations of these coefficients, being extensive, rely on Computer Algebra and
Numerical evaluations carried out with the software MATHEMATICA 5 [18]. In the
site [17] have been posted the main steps of the calculations in the form of notebooks
for MATHEMATICA 5.

With the analytic and numeric data provided in the analysis performed here, the bifur-
cation diagrams are established along the points of the curve where the first Lyapunov
coefficient vanishes. Pictures 8 and 9 provide a qualitative synthesis of the dynami-
cal conclusions achieved here at the parameter values where the WGS achieves most
complex equilibrium point. A reformulation of these conclusions follow:

There is a “ solid tongue” where two stable regimes coexist: one is an equilibrium and
the other is a small amplitude periodic orbit, i.e. an oscillation.

For parameters inside the “ tongue”, this conclusion suggests, a hysteresis explanation
for the phenomenon of “ hunting” observed in the performance of WGS in an early stage
of the research on its stability conditions. Which attractor represents the actual state of
the system will depend on the path along which the parameters evolve to reach their actual
values of the parameters under consideration. See Denny [4] for historical comments,
where he refers to the term “ hunting” to mean an oscillation around an equilibrium going
near but not reaching it.

Finally, we would like to stress that although this work ultimately focuses the specific
three dimensional, three parameter system of differential equations given by (1), the
method of analysis and calculations explained in Section 3 can be adapted to the study
of other systems with three or more phase variables and depending on three or more
parameters.
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