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Abstract. Recently, Yu and Guan proposed a modified PRP method (called DPRP method)

which can generate sufficient descent directions for the objective function. They established the

global convergence of the DPRP method based on the assumption that stepsize is bounded away

from zero. In this paper, without the requirement of the positive lower bound of the stepsize,

we prove that the DPRP method is globally convergent with a modified strong Wolfe line search.

Moreover, we establish the global convergence of the DPRP method with a Armijo-type line

search. The numerical results show that the proposed algorithms are efficient.
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1 Introduction

In this paper, we consider the unconstrained problem

min f (x), x ∈ Rn, (1.1)
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where f : Rn → R is continuously differentiable. Nonlinear conjugate gradi-

ent methods are efficient for problem (1.1). The nonlinear conjugate gradient

methods generate iterates by letting

xk+1 = xk + αkdk, k = 0, 1, ∙ ∙ ∙ , (1.2)

with

dk =

{
−g0, if k = 0,

−gk + βkdk−1, if k ≥ 1,
(1.3)

where αk is the steplength, gk = g(xk) denote the gradient of f at xk , and βk is

a suitable scalar.

Well-known nonlinear conjugate method include Fletcher-Reeves (FR),

Polak-Ribière-Polyak (PRP), Hestenes-Stiefel (HS), Conjugate-Descent (CD),

Liu-Story (LS) and Dai-Yuan (DY) [1–7]. We are particularly interested in the

PRP method in which the parameter βk is defined by

βPRP
k =

gT
k yk−1

‖gk−1‖2
.

Here and throughout, ‖ ∙ ‖ stands the Euclidean norm of vector and yk−1 =

gk − gk−1. The PRP method has been regarded as one of the most efficient

conjugate gradient methods in practical computation and studied extensively.

Now let us simply introduce some results on the PRP method. The global con-

vergence of the PRP method with exact line search has been proved by Polak

and Ribière [3] under strong convexity assumption of f . However, Powell con-

structed an example which showed that the PRP method with exact line searches

can cycle infinitely without approaching a solution point [8]. Powell also gave

a suggestion to restrict βk = max{βPRP
k , 0} to ensure the convergence. Based

on Powell’s work, Gilbert and Nocedal [9] conducted an elegant analysis and

showed the PRP method is globally convergent if βPRP
k is restricted to be non-

negative and the steplength satisfies the sufficient descent condition gT
k dk ≤

−c‖gk‖2 in each iteration. In [10], Zhang, Zhou and Li proposed a three term

PRP method. They calculate dk by

dk =

{
−g0, if k = 0,

−gk + βPRP
k dk−1 − θk yk−1, if k ≥ 1,

(1.4)
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where θk =
gT

k dk−1

‖gk−1‖2 . It is easy to see from (1.4) that dT
k gk = −‖gk‖2. Zhang,

Zhou and Li proved that this three term PRP method convergent globally with a

Armijo-type line search.

In [11], Yu and Guan proposed a modified PRP conjugate gradient formula:

βDPRP
k =

gT
k yk−1

‖gk−1‖2
− t

‖yk−1‖2gT
k dk−1

‖gk−1‖4
, (1.5)

where t > 1/4 is a constant. In this paper we simply call it DPRP method. This

modified formula is similar to the well-known CG_DESCENT method which

was proposed by Hager and Zhang in [13]. Yu and Guan has proved that the

directions dk generated by the DPRP method can always satisfied the following

sufficient descent condition

gT
k dk ≤

(
1

4t
− 1

)
‖gk‖

2. (1.6)

In order to obtain the global convergence of the algorithm, Yu and Guan [11]

considered the following assumption: there exists a positive constant α∗ such that

αk > α∗ holds for all indices k. In fact, under this assumption, if the sufficient

descent condition gT
k dk ≤ −c‖g‖2 is satisfied, the conjugate gradient methods

with Wolfe line search will be globally convergent.

In this paper, we focus on the global convergence of the DPRP method. In

Section 2, we describe the algorithm. The convergence properties of the algo-

rithm are analyzed in Section 3 and 4. In Section 5, we report some numerical

results to test the proposed algorithms by using the test problems in the CUTEr

[23] library.

2 Algorithm

From the Theorem 1 in [11] we can obtain the following useful lemma directly.

Lemma 2.1. Let {dk} be generated by

dk = −gk + τdk−1, d0 = −g0. (2.1)

If gT
k−1dk−1 6= 0, then (1.6) holds for all τ ∈ [βDPRP

k , max{0, βDPRP
k }].
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Proof. The inequality (1.6) holds for τ = βDPRP
k from the Theorem 1 in [11].

For any τ ∈ (βDPRP
k , max{0, βDPRP

k }], it is clear that βDPRP
k ≤ τ ≤ 0. If gT

k dk−1 ≥

0, then (1.6) follows from (2.1). If gT
k dk−1 < 0, then we get from (2.1) that

gT
k dk = −‖gk‖

2 + τgT
k dk−1 ≤ −‖gk‖

2 + βDPDP
k gT

k dk−1 ≤
(

1

4t
− 1

)
‖gk‖

2.

The proof is completed. �

Lemma 2.1 shows that the directions generated by (2.1) are sufficient descent

directions and this feature is independent of the line search used. Especially,

if set

dk = −gk + β
DPRP
k dk−1, d0 = −g0, (2.2)

β
DPRP
k = max

{
βDPRP

k , ηk
}
, ηk =

−1

‖dk−1‖ min{η, ‖gk−1‖}
, (2.3)

where η > 0 is a constant, it follows from ηk < 0 that

β
DPRP
k = max

{
βDPRP

k , ηk
}

∈
[
βDPRP

k , max
{
0, βDPRP

k

}]
.

So, the directions generated by (2.2) and (2.3) are descent directions due to

Lemma 2.1. The update rule (2.3) to adjust the the lower bound on βDPRP
k was

originated in [13].

Now we present concrete algorithm as follows.

Algorithm 2.2. (The DPRP method) [11]

Step 0. Given constant ε > 0 and x0 ∈ Rn. Set k := 0;

Step 1. Stop if ‖gk‖∞ ≤ ε;

Step 2. Compute dk by (2.2);

Step 3. Determine the steplength αk by a line search;

Step 4. Let xk+1 = xk + αkdk, if ‖gk+1‖∞ ≤ ε, then stop;

Step 5. Set k := k + 1 and go to Step 2.
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It is easy to see that Algorithm 2.1 is well-defined. We analyse the conver-

gence in the next sections. We do not specify the line search to determine the

steplength αk . It can be exact or inexact line search. In the next two sections,

we devote to the convergence of the Algorithm 2.1 with modified strong Wolfe

line search and Armijo-type line search.

3 Convergence of Algorithm 2.1 under modified strong Wolfe line search

In this section, we prove the global convergence of the Algorithm 2.1. We first

make the following assumptions.

Assumption 3.1.

(I) The level set

� = {x ∈ Rn : f (x) ≤ f (x0)}

is bounded.

(II) In some neighborhood N of �, function f is continuously differentiable

and its gradient is Lipschitz continuous, namely, there exists a constant

L > 0 such that

‖g(x) − g(y)‖ ≤ L‖x − y‖, ∀x, y ∈ N . (3.1)

From now on, throughout this paper, we always suppose this assumption

holds. It follows directly from the Assumption 3.1 that there exist two pos-

itive constants B and γ1 such that

‖x‖ ≤ B and ‖g(x)‖ ≤ γ1, ∀x ∈ �. (3.2)

In the later part of this section, we will devote to the global convergence of

the Algorithm 2.1 under a modified strong Wolfe line search which determine

the steplength αk satisfying the following conditions






f (xk + αkdk) ≤ f (xk) + δαk gT
k dk,

|g(xk + αkdk)
T dk | ≤ min

{
M, σ |gT

k dk |
}
,

(3.3)
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where 0 < δ ≤ σ < 1 and M > 0 are constants. The purpose of this modi-

fication is to make |gT
k dk−1| ≤ M always hold with the given M . Moreover,

we can set M to be large enough such that min{M, σ |gT
k dk |} = σ |gT

k dk | hold

for almost all indices k. At first, we give the following useful lemma which

was essentially proved by Zoutendijik [19] and Wolfe [20, 21].

Lemma 3.2. Let the conditions in Assumption 3.1 hold, {xk} and {dk} be gener-

ated by Algorithm 2.1 with the above line search, then

∞∑

k=0

(gT
k dk)

2

‖dk‖2
< +∞. (3.4)

Proof. We get from the second inequality in (3.3)

σgT
k dk ≤ gT

k+1dk ≤ −σgT
k dk, (3.5)

From the Lipschtiz condition (3.1), we have

(σ − 1)gT
k dk ≤ (gk+1 − gk)

T dk ≤ Lαk‖dk‖
2.

Then

αk ≥
(σ − 1)

L

gT
k dk

‖dk‖2
=

(1 − σ)

L

|gT
k dk |

‖dk‖2
. (3.6)

Since f is bounded below and the gradient g(x) is Lipschitz continuous, from

the first inequality in (3.3) we have

−
∞∑

k=0

αk gT
k dk ≤ +∞. (3.7)

Then the Zoutendijik condition (3.4) holds from (3.6) and (3.7). �

The following lemma is similar to the Lemma 4.1 in [9] and the Lemma 3.1

in [13], which is very useful to prove that the gradients cannot be bounded away

from zero.

Lemma 3.3. Let the conditions in Assumption 3.1 hold, {xk} and {dk} be gener-

ated by Algorithm 2.1 with the modified strong Wolfe line search. If there exists

a constant γ > 0 such that

‖gk‖ ≥ γ, ∀k ≥ 0, (3.8)
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then

dk 6= 0, ∀k ≥ 0, and
∞∑

k=0

‖uk − uk−1‖
2 < ∞, (3.9)

where uk = dk/‖dk‖.

Proof. Since ‖gk‖ > γ > 0, it follows from (1.6) that dk 6= 0 for each k.

We get from (3.4) and (1.6)
∞∑

k=0

γ 4

‖dk‖2
≤

∞∑

k=0

‖gk‖4

‖dk‖2
≤

(
4t

4t − 1

)2 ∞∑

k=0

(gT
k dk)

2

‖dk‖2
< ∞, (3.10)

where t > 1
4 is a constant. Here, we define:

β+
k = max{β

DPRP
k , 0}, β−

k = min{β
DPRP
k , 0}, (3.11)

rk =
−gk + β−

k dk−1

‖dk‖
, δk = β+

k

dk−1

‖dk‖
. (3.12)

By (2.2), (3.11) and (3.12), we have

uk =
dk

‖dk‖
=

−gk + (β+
k + β−

k )dk−1

‖dk‖
= rk + δkuk−1.

Since the uk are unit vectors,

‖rk‖ = ‖uk − δkuk−1‖ = ‖δkuk − uk−1‖.

Since δk > 0, we have

‖uk − uk−1‖ ≤ ‖(1 + δk)(uk − uk−1)‖

≤ ‖uk − δkuk−1‖ + ‖δkuk − uk−1‖

= 2‖rk‖.

(3.13)

We get from the definition of β
DPRP
k

‖rk‖‖dk‖ = ‖ − gk + β−
k dk−1‖

≤ ‖gk‖ − min
{
β

DPRP
k , 0

}
‖dk−1‖

≤ ‖gk‖ − ηk‖dk−1‖

≤ ‖gk‖ +
1

‖dk−1‖ min{η, γ }
‖dk−1‖

≤ γ1 +
1

min{η, γ }
.

(3.14)
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Setting c = γ1 + 1
min{η,γ } and combing (3.13) with (3.14), we have

‖uk − uk−1‖
2 ≤ (2‖rk‖)

2 ≤
4c2

‖dk‖2
. (3.15)

Summing (3.15) over k and combing with the relation (3.10), we have

∞∑

k=0

‖uk − uk−1‖
2 ≤

∞∑

k=0

4c2

‖dk‖2
< ∞.

The proof is completed. �

Now we state a property for β
DPRP
k in (2.2), which is called Property(*)

proposed by Gilbert and Nocedal in [9].

Property(*). Suppose that Assumption 3.1 and inequality (3.8) hold. We say

that the method has Property(*) if there exist constant b > 1 and λ > 0 such

that 




|βk | ≤ b,

‖sk−1‖ ≤ λ ⇒ |βk | ≤ 1
2b ,

(3.16)

where sk−1 = xk − xk−1 = αk−1dk−1.

Lemma 3.4. If the modified strong Wolfe line search is used in Algorithm 2.1,

then the scalar β
DPRP
k satisfies the Property(*).

Proof. By the definition of β
DPRP
k in (2.2), we have

|β
DPRP
k | ≤ |βDPRP

k |, ∀k ≥ 0.

Under the Assumption 3.1, if (3.8) holds, we get from (3.3) and (1.6)

|β
DPRP
k | ≤ |βDPRP

k |

≤
|gT

k yk−1|

‖gk−1‖2
+ t

‖yk−1‖2|gT
k dk−1|

‖gk−1‖4

≤
‖gk‖‖yk−1‖

‖gk−1‖2
+ t

‖yk−1‖2 M

‖gk−1‖4

≤
2γ 2

1

γ 2
+ t

4γ 2
1 M

γ 4
.

(3.17)
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If sk−1 < λ, then

|β
DPRP
k | ≤ |βDPRP

k |

≤
‖gk‖‖yk−1‖

‖gk−1‖2
+ t

‖yk−1‖2 M

‖gk−1‖4

≤
(

γ1

γ 2
+ t

2γ1 M

γ 4

)
‖yk−1‖

≤
(

γ1

γ 2
+ t

2γ1 M

γ 4

)
L‖sk−1‖.

(3.18)

(3.17) together with (3.18) implies the conditions in Property(*) hold by setting

b =
2γ 2

1

γ 2
+ t

4γ 2
1 M

γ 4
and λ =

γ1

Lb2
. (3.19)

The proof is completed. �

Let N ∗ denote the set of positive integer set. For λ > 0 and a positive integer

4, we define the index set:

K λ
k,4 :=

{
i ∈ N ∗ : k ≤ i ≤ k + 4 − 1, ‖si−1‖ > λ

}
. (3.20)

Let |K λ
k,4| denote the number of elements in K λ

k,4. We have the following Lemma

which was essentially proved by Gilbert and Nocedal in [9].

Lemma 3.5. Let xk and dk be generated by Algorithm 2.1 with the modified

strong Wolfe line search. If (3.8) holds, then there exists a constant λ > 0 such

that for any 4 ∈ N ∗ and any index k0, there is an index k > 0 such that

|K λ
k,4| >

4

2
. (3.21)

The proof of Lemma 3.5 is similar to that of the Lemma 4.2 in [9], so we omit

here. The next theorem, which is modification of Theorem 4.3 in [9], shows that

the proposed Algorithm 2.1 is globally convergent.

Theorem 3.6. Let the conditions in Assumption 3.1 hold, and {xk} be generated

by Algorithm 2.1 with the modified strong Wolfe line search (3.3), then either

‖gk‖ = 0 for some k or

lim inf
k→∞

‖gk‖ = 0. (3.22)
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Proof. We suppose for contradiction that both

‖gk‖ 6= 0 and lim inf
k→∞

‖gk‖ 6= 0.

Denote γ = inf{‖gk‖ : k ≥ 0}. It is clear that

‖gk‖ ≥ γ > 0, ∀k ≥ 0. (3.23)

Therefore the conditions of Lemma 3.3 and 3.5 hold. Make use of Lemma 3.4,

we can complete the proof in the same way as Theorem 4.3 in [9], so we omit

here too. �

4 Convergence of the Algorithm 2.1 with a Armijo-type line search

In this section, we will prove the global convergence of the Algorithm 2.1 under

an Armijo-type line search which determine

αk = max
{
ρ j , j = 1, 2, ∙ ∙ ∙

}

satisfying

f (xk + αkdk) − f (xk) < −δ1α
2
k ‖dk‖

4, (4.1)

where δ1 > 0 and ρ ∈ (0, 1).

We get from the definition of Algorithm 2.1 that the function value sequence

{ f (xk)} is decreasing. And what’s more, if f is bounded from below, from (4.1)

we have
∞∑

k=0

α2
k ‖dk‖

4 < ∞ or
∞∑

k=0

αk‖dk‖
2 < ∞. (4.2)

Under Assumption 3.1, we have the following useful lemma.

Lemma 4.1. Let the conditions in Assumption 3.1 hold, {xk} and {dk} be gener-

ated by Algorithm 2.1 with the above Armijo-type line search. If there exists a

constant γ > 0 such that

‖gk‖ > γ, ∀ k ≥ 0, (4.3)

then there exists a constant T > 0 such that

‖dk‖ ≤ T, ∀ k ≥ 0. (4.4)
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Proof. By the definition of dk and the inequalities (3.1) and (3.2), we have

‖dk‖ ≤ ‖gk‖ + |βDPRP
k |‖dk−1‖

≤ ‖gk‖ +
‖gk‖‖yk−1‖‖dk−1‖

‖gk−1‖2
+ t

‖yk−1‖2‖gk‖‖dk−1‖

‖gk−1‖4
‖dk−1‖

≤ γ1 +
γ1Lαk−1‖dk−1‖2

γ 2
+ t

2γ 2
1 Lαk−1‖dk−1‖2

γ 4
‖dk−1‖.

(4.2) implies that αk‖dk‖2 → 0 as k → ∞. Then for any constant b ∈ (0, 1),

there exist a index k0 such that

2tγ 2
1 Lαk−1‖dk−1‖2

γ 4
< b, ∀k > k0.

Then

‖dk‖ ≤ γ1 +
γ 2b

2tγ1
+ b‖dk−1‖ = c + b‖dk−1‖, ∀k > k0,

where c = γ1 + γ 2b
2tγ1

is a constant. For any k > k0 we have

‖dk‖ ≤ c(1 + b + b2 + ∙ ∙ ∙ + bk−k0+1) + bk−k0‖dk0‖ ≤
c

1 − b
+ ‖dk0‖.

We can get (4.4) by setting

T = max{‖d1‖, ‖d2‖, ∙ ∙ ∙ , ‖dk0‖,
c

1 − b
+ ‖dk0‖}. �

Based on Lemma 4.6 we give the next global convergent theorem for Algo-

rithm 2.1 under the above Armijo-type line search.

Theorem 4.2. Let the conditions in Assumption 3.1 hold, {xk} be generated

by Algorithm 2.1 with the above Armijo-type line search, then either ‖gk‖ = 0

for some k or

lim inf
k→∞

‖gk‖ = 0. (4.5)

Proof. We suppose for the sake of contradiction that ‖gk‖ 6= 0 for all k ≥ 0

and lim infk→∞ ‖gk‖ 6= 0. Denote γ = inf{‖gk‖ : k ≥ 0}. It is clear that

‖gk‖ ≥ γ > 0, ∀k ≥ 0. (4.6)
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At first, we consider the case that lim inf k→∞ αk > 0. From (4.2) we have

lim infk→∞ ‖dk‖ = 0. This together with (1.6) gives lim inf k→∞ ‖gk‖ = 0,

which contradicts (4.6).

On the other hand, if lim infk→∞ αk = 0, then there exists a infinite index

set K such that

lim inf
k∈K ,k→∞

αk = 0 (4.7)

The Step 3 of the Algorithm 2.1 implies that ρ−1αk does not satisfy (4.1). Namely

f (xk + ρ−1αkdk) − f (xk) > −δ1ρ
−2α2

k ‖dk‖
4. (4.8)

By the Lipschitz condition (3.1) and the mean value theorem, there is a

ξk ∈ [0, 1], such that

f (xk + ρ−1αkdk) − f (xk)

= ρ−1αk g(xk + ξkρ
−1αkdk)

T dk

= ρ−1αk gT
k dk + ρ−1αk(g(xk + ξkρ

−1αkdk) − gk)
T dk

≤ ρ−1αk gT
k dk + Lρ−2α2

k ‖dk‖
2.

This together with (4.8), (4.4) and (1.6) gives

4t − 1

4t
‖gk‖

2 ≤ −gT
k dk ≤ αkρ

−1(δ1‖dk‖
4 + L‖dk‖

2)

≤ αkρ
−1(δ1T 4 + LT 2).

(4.9)

(4.7) and (4.9) imply that lim inf k∈K ,k→∞ ‖gk‖ = 0. This also yields contra-

diction, then the proof is completed. �

5 Numerical results

In this section, we do some numerical experiments to test Algorithm 2.1 with

the modified strong Wolfe line search, and compare the performance with some

existing conjugate gradient methods including the PRP+ method developed by

Gilbert and Nocedal [9], the CG_DESCENT method proposed by Hager and

Zhang [13], and the MPRP method proposed by Zhang et al., in [10].
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The PRP+ code was obtained from Nocedal’s web page at

http://www.ece.northwestern.edu.nocedalsoftware.html

and the CG_DESCENT code from Hager’s web page at

http://www.math.ufl.edu/∼hager/papers/CG. All codes were written in

Fortran77 and ran on a PC with 2.8 GHZ CPU processor and 2GB RAM mem-

ory and Linux (Fedora 10 with GCC 4.3.2) operation system. We stop the iter-

ation if ‖gk‖∞ ≤ 10−6 or the total number of iterations is larger than 10000.

We tested all the unconstrained problems in CUTEr library [23] with their

default dimensions. By the end of 2010, there were 164 unconstrained optim-

ization problems in the CUTEr library. Moreover, five of them failed to install

on our system for the limit storage space.

In order to get relatively better t value in Algorithm 2.1, we tested the prob-

lems with t = 0.3, 0.5, 0.7, 0.9, 1.1, 1.3, 1.5. We obtained from the data that

Algorithm 2.1 with t = 1.3 performed slightly better than others. So in this sec-

tion, we only compare the numerical results for Algorithm 2.1 with t = 1.3 with

CG_DESCENT, MPRP and PRP+ method. The problems and their dimensions

are listed in Table 1. Table 2 list all the numerical results, which include the

total number of iterations (Iter), the total number of function evaluations (Nf),

the total number of gradient evaluations (Ng), the CPU time (Time) in seconds,

respectively. In Table 2, “−” means the method failed and “NaN” means that

the cost function generated a “NaN” for the function value.

N Problem Dim N Problem Dim N Problem Dim

1 3PK 30 54 EIGENALS 110 107 OSBORNEA 5
2 AKIVA 2 55 EIGENBLS 110 108 OSBORNEB 11
3 ALLINITU 4 56 EIGENCLS 462 109 OSCIPATH 15
4 ARGLINA 200 57 ENGVAL1 5000 110 PALMER1C 8
5 ARGLINB 200 58 ENGVAL2 3 111 PALMER1D 7
6 ARGLINC 200 59 ERRINROS 50 112 PALMER2C 8
7 ARWHEAD 5000 60 EXPFIT 2 113 PALMER3C 8
8 BARD 3 61 EXTROSNB 1000 114 PALMER4C 8
9 BDQRTIC 5000 62 FLETCBV2 5000 115 PALMER5C 6
10 BEALE 2 63 FLETCBV3 100 116 PALMER6C 8
11 BIGGS6 6 64 FLETCHBV 100 117 PALMER7C 8
12 BOX 1000 65 FLETCHCR 1000 118 PALMER8C 8
13 BOX3 3 66 FMINSRF2 5625 119 PENALTY1 1000
14 BRKMCC 2 67 FMINSURF 5625 120 PENALTY2 200
15 BROWNAL 200 68 FREUROTH 5000 121 PENALTY3 100

Table 1 (continuation) – The problems and their dimensions.
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N Problem Dim N Problem Dim N Problem Dim

16 BROWNBS 2 69 GENHUMPS 5000 122 PFIT1LS 3
17 BROWNDEN 4 70 GENROSE 500 123 PFIT2LS 3
18 BROYDN7D 5000 71 GROWTHLS 3 124 PFIT3LS 3
19 BRYBND 5000 72 GULF 3 125 PFIT4LS 3
20 CHAINWOO 4000 73 HAIRY 2 126 POWELLSG 5000
21 CHNROSNB 50 74 HATFLDD 3 127 POWER 10000
22 CLIFF 2 75 HATFLDE 3 128 QUARTC 5000
23 COSINE 10000 76 HATFLDFL 3 129 ROSENBR 2
24 CRAGGLVY 5000 77 HEART6LS 6 130 S308 2
25 CUBE 2 78 HEART8LS 8 131 SBRYBND 100
26 CURLY10 1000 79 HELIX 3 132 SCHMVETT 5000
27 CURLY20 1000 80 HIELOW 3 133 SCOSINE 100
28 CURLY30 1000 81 HILBERTA 2 134 SCURLY10 100
29 DECONVU 61 82 HILBERTB 10 135 SCURLY20 100
30 DENSCHNA 2 83 HIMMELBB 2 136 SCURLY30 100
31 DENSCHNB 2 84 HIMMELBF 4 137 SENSORS 100
32 DENSCHNC 2 85 HIMMELBG 2 138 SINEVAL 2
33 DENSCHND 3 86 HIMMELBH 2 139 SINQUAD 5000
34 DENSCHNE 3 87 HUMPS 2 140 SISSER 2
35 DENSCHNF 2 88 HYDC20LS 99 141 SNAIL 2
36 DIXMAANA 3000 89 INDEF 5000 142 SPARSINE 1000
37 DIXMAANB 3000 90 JENSMP 2 143 SPARSQUR 10000
38 DIXMAANC 3000 91 KOWOSB 4 144 SPMSRTLS 4999
39 DIXMAAND 3000 92 LIARWHD 5000 145 SROSENBR 5000
40 DIXMAANE 3000 93 LOGHAIRY 2 146 TESTQUAD 5000
41 DIXMAANF 3000 94 MANCINO 100 147 TOINTGOR 50
42 DIXMAANG 3000 95 MARATOSB 2 148 TOINTGSS 5000
43 DIXMAANH 3000 96 MEXHAT 2 149 TOINTPSP 50
44 DIXMAANI 3000 97 MEYER3 3 150 TOINTQOR 50
45 DIXMAANJ 3000 98 MODBEALE 2000 151 TQUARTIC 5000
46 DIXMAANK 15 99 MOREBV 5000 152 TRIDIA 5000
47 DIXMAANL 3000 100 MSQRTALS 1024 153 VARDIM 200
48 DIXON3DQ 10000 101 MSQRTBLS 1024 154 VAREIGVL 50
49 DJTL 2 102 NONCVXU2 5000 155 VIBRBEAM 8
50 DQDRTIC 5000 103 NONCVXUN 100 156 WATSON 12
51 DQRTIC 5000 104 NONDIA 5000 157 WOODS 4000
52 EDENSCH 2000 105 NONDQUAR 5000 158 YFITU 3
53 EG2 1000 106 NONMSQRT 9 159 ZANGWIL2 2

We used the profiles by Dolan and Moré [24] to compare the performance

of those methods. We discarded the data of the problems for which different

methods converged to different local minimizers. We consider that two

methods converged to the same solution if the optimal costs f1 and f2 satisfy
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the following conditions

| f1 − f2|

1 + | fi |
≤ 10−6, i = 1, 2.

CG_DESCENT Algorithm 2.1 MPRP PRP+
N

Iter/Nf/Ng/Time Iter/Nf/Ng/Time Iter/Nf/Ng/Time Iter/Nf(Ng)/Time

1 −/−/−/− −/−/−/− −/−/−/− −/−/−

2 17/40/28/0.002 13/30/22/0.001 11/24/15/0.002 8/26/0.001

3 14/33/19/0 15/33/21/0.001 11/26/15/0 10/28/0

4 1/3/2/0.006 1/3/2/0.005 1/3/2/0.006 1/5/0.008

5 8/16/19/0.028 7/14/16/0.025 8/15/18/0.026 −/−/−

6 8/15/18/0.026 9/19/23/0.032 4/10/9/0.016 −/−/−

7 10/23/16/0.033 12/26/18/0.041 9/24/19/0.045 −/−/−

8 27/59/38/0.001 26/56/34/0.002 23/50/31/0 22/58/0.001

9 3763/6992/8726/18.3 3240/5933/7665/15.9 1950/4049/4468/10.1 −/−/−

10 22/45/25/0.001 22/47/29/0 21/43/26/0 11/30/0

11 123/260/165/0.004 202/436/285/0.008 142/315/204/0.005 167/373/0.006

12 16/40/31/0.017 15/38/29/0.015 36/60/77/0.038 6/17/0.007

13 18/37/22/0.001 17/35/20/0 20/41/26/0.002 20/51/0

14 6/13/8/0.001 6/13/8/0.001 6/13/8/0 6/13/0

15 4/9/6/0.007 6/18/14/0.011 15/31/21/0.018 7/47/0.026

16 −/−/−/− 17/178/173/0 15/181/176/0 −/−/−

17 36/73/57/0.001 32/62/48/0 31/61/47/0.001 −/−/−

18 1502/2988/1524/14.1 1420/2842/1446/13.4 1435/2858/1454/13.9 6007/12369/83.2

19 36/74/39/0.141 38/82/46/0.16 32/67/37/0.137 26/66/0.16

20 312/588/394/0.792 519/958/642/1.305 410/765/579/1.194 412/872/1.319

21 272/545/273/0.006 282/566/284/0.005 236/473/237/0.005 314/636/0.008

22 34/93/61/0.001 33/89/59/0 −/−/−/− 14/101/0.001

23 12/32/28/0.119 10/25/21/0.092 11/27/25/0.111 9/28/0.107

24 116/208/150/0.641 124/245/171/0.736 124/241/175/0.792 −/−/−

25 62/166/122/0 61/186/140/0 75/198/143/0.001 15/45/0

26 9431/14475/14406/4.2 8841/13371/13854/3.9 9624/14677/14981/4.7 −/−/−

27 9757/15481/15084/7.07 9765/16590/17351/7.92 9672/15210/15052/7.3 −/−/−

28 9765/15713/15122/9.46 9703/16847/17210/10.7 9971/15941/15722/10.3 −/−/−

29 457/916/462/0.03 397/797/401/0.027 394/790/398/0.026 696/1398/0.062

30 10/21/11/0 10/21/11/0.001 10/21/11/0 7/21/0.001

31 5/11/6/0 7/15/8/0 6/13/7/0 7/19/0

32 17/39/25/0 14/33/20/0.001 16/37/22/0 7/24/0

33 170/346/207/0.001 120/251/153/0.001 162/331/203/0.001 22/65/0

34 19/62/47/0.001 13/59/48/0.001 14/44/32/0.001 13/53/0

35 10/21/11/0 10/21/11/0 10/21/11/0 10/37/0

36 9/19/10/0.012 8/17/9/0.012 7/15/8/0.011 7/20/0.014

37 9/19/10/0.012 8/17/9/0.012 8/17/9/0.011 6/23/0.017

38 10/21/11/0.013 9/19/10/0.013 9/19/10/0.014 8/26/0.019

39 12/25/13/0.017 11/23/12/0.016 11/23/12/0.015 7/25/0.018

40 225/451/226/0.269 226/453/227/0.268 227/455/228/0.288 228/462/0.334

Table 2 (continuation) – The numerical results of the methods.
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CG_DESCENT Algorithm 2.1 MPRP PRP+
N

Iter/Nf/Ng/Time Iter/Nf/Ng/Time Iter/Nf/Ng/Time Iter/Nf(Ng)/Time

41 174/349/175/0.21 164/329/165/0.196 169/339/170/0.22 167/342/0.245

42 170/341/171/0.206 163/327/164/0.191 167/335/168/0.218 159/327/0.243

43 167/335/168/0.197 163/327/164/0.196 169/339/170/0.211 257/523/0.389

44 2552/5105/2553/3.00 3094/6189/3095/3.63 2632/5265/2633/3.35 2399/4804/3.457

45 297/595/298/0.356 313/627/314/0.372 313/627/314/0.396 360/728/0.542

46 63/127/64/0.001 47/95/49/0.001 55/111/57/0 48/102/0

47 231/463/232/0.272 234/469/235/0.277 281/563/282/0.357 283/575/0.419

48 10000/20001/10002/21 10000/20001/10002/21 10000/20001/10002/23 10000/20006/25

49 179/872/743/0.003 107/550/481/0.003 125/698/602/0.003 −/−/−

50 7/15/8/0.019 7/15/8/0.018 7/15/8/0.018 5/15/0.019

51 33/67/34/0.033 33/67/34/0.033 33/67/34/0.036 17/66/0.035

52 33/61/43/0.041 28/54/36/0.036 32/60/45/0.042 −/−/−

53 4/9/6/0.004 3/7/4/0.003 4/9/6/0.004 −/−/−

54 376/757/389/0.067 394/794/408/0.071 449/903/463/0.08 1502/3009/0.376

55 342/687/345/0.059 326/656/330/0.056 393/790/397/0.068 397/800/0.104

56 1776/3575/1802/2.75 1757/3524/1769/2.71 1634/3279/1647/2.52 1867/3746/4.23

57 26/46/37/0.07 24/45/33/0.065 25/44/34/0.07 −/−/−

58 173/361/249/0.001 100/231/163/0 88/188/128/0.001 112/335/0

59 1013/2023/1444/0.024 993/1965/1437/0.025 1306/2590/1809/0.032 −/−/−

60 17/40/27/0 19/44/31/0.001 13/37/28/0 12/35/0.001

61 6423/13272/6951/1.89 8030/16297/8318/2.28 8009/16217/8268/2.42 50/117/0.021

62 0/1/1/0.004 0/1/1/0.005 0/1/1/0.004 4101/8203/17.33

63 1854/4600/3078/0.201 −/−/−/− 9510/22981/14091/0.96 2446/8908/0.372

64 −/−/−/− −/−/−/− −/−/−/− −/−/−

65 6828/14236/7479/2.88 5048/10287/5248/2.06 4306/8642/4344/1.82 4371/8767/2.2

66 363/729/366/1.043 359/725/367/1.086 305/611/306/0.916 350/707/1.443

67 492/985/493/1.485 442/886/445/1.393 410/821/411/1.304 471/949/2.027

68 65/126/95/0.248 40/80/68/0.171 54/108/81/0.217 −/−/−

69 9412/18948/9575/54.4 6600/13290/6711/38.3 6078/12900/6945/38.5 7442/15241/47.1

70 1259/2559/1309/0.26 1116/2277/1171/0.23 1089/2219/1146/0.23 1121/2269/0.28

71 −/−/−/−(NaN) −/−/−/−(NaN) −/−/−/−(NaN) −/−/−

72 −/−/−/−(NaN) −/−/−/−(NaN) −/−/−/−(NaN) 120/322/0.053

73 59/189/147/0.002 38/129/100/0.001 20/67/56/0.001 16/62/0

74 51/125/89/0.002 57/140/104/0.002 66/158/110/0.002 100/237/0.002

75 108/236/158/0.005 68/145/95/0.002 67/148/100/0.002 25/72/0.001

76 531/1228/882/0.002 915/2091/1517/0.003 447/996/711/0.001 46/140/0

77 6850/24080/20394/0.09 9502/31328/26301/0.12 4974/16343/13645/0.07 −/−/−

78 301/719/487/0.003 322/778/530/0.004 283/694/482/0.003 1172/2442/0.01

79 48/103/59/0.001 57/121/73/0 51/107/66/0.001 157/324/0

80 67/152/128/0.442 65/157/121/0.438 57/135/112/0.395 −/−/−

81 2/5/3/0 2/5/3/0 2/5/3/0.001 2/5/0

82 4/9/5/0.001 4/9/5/0 4/9/5/0 4/10/0

83 21/43/22/0 21/43/22/0 21/43/22/0 −/−/−

84 8972/21280/17580/0.05 6599/17322/15980/0.05 3891/9501/7701/0.02 −/−/−

85 9/25/18/0.001 8/24/17/0 8/22/15/0.001 8/22/0

86 10/24/14/0 8/20/12/0.001 8/20/12/0.002 5/13/0

Table 2 (continuation) – The numerical results of the methods.
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CG_DESCENT Algorithm 2.1 MPRP PRP+
N

Iter/Nf/Ng/Time Iter/Nf/Ng/Time Iter/Nf/Ng/Time Iter/Nf(Ng)/Time

87 100/336/264/0.002 70/256/212/0.001 45/139/109/0 20/136/0

88 −/−/−/− −/−/−/− −/−/−/− −/−/−

89 −/−/−/− −/−/−/− −/−/−/− −/−/−

90 16/32/23/0 15/33/24/0 21/46/34/0 −/−/−

91 59/131/86/0.001 104/222/146/0 104/219/140/0.001 488/990/0.004

92 21/48/32/0.061 30/66/42/0.082 22/47/30/0.062 16/46/0.063

93 92/362/306/0.001 98/428/361/0.001 104/369/304/0.001 53/333/0.001

94 11/23/12/0.137 11/23/12/0.137 10/21/11/0.126 11/27/0.17

95 2333/9160/7879/0.01 2586/11296/9870/0.01 2695/10016/8557/0.01 577/2164/0.01

96 28/60/38/0.001 27/56/35/0 31/64/38/0 15/59/0.001

97 −/−/−/− −/−/−/− −/−/−/− −/−/−

98 779/1465/949/1.93 214/431/365/0.63 −/−/−/− 203/482/0.634

99 147/295/149/0.27 165/331/167/0.299 164/329/166/0.31 161/323/0.369

100 3393/6793/3402/16.7 3621/7252/3633/17.8 3708/7423/3717/18.29 2934/5873/20.95

101 2318/4642/2325/11.54 2078/4162/2085/10.25 2210/4427/2219/11.01 2396/4797/17.21

102 9118/17827/9529/32.7 9044/17701/9433/32 7494/13246/9238/28.9 7224/14458/29

103 168/329/179/0.012 168/324/186/0.013 150/298/154/0.01 228/466/0.019

104 8/27/22/0.034 10/22/13/0.025 10/37/32/0.049 5/26/0.034

105 5014/10053/5154/5.638 5234/10483/5636/5.995 3397/6800/3504/4.11 −/−/−

106 −/−/−/− −/−/−/− −/−/−/− −/−/−

107 −/−/−/−(NaN) −/−/−/−(NaN) −/−/−/−(NaN) 1130/2756/0.072

108 399/803/432/0.088 675/1359/724/0.141 693/1395/745/0.143 291/598/0.067

109 12/25/13/0.001 12/25/13/0 12/25/13/0 12/25/0

110 −/−/−/− −/−/−/− −/−/−/− −/−/−

111 −/−/−/− −/−/−/− −/−/−/− −/−/−

112 −/−/−/− −/−/−/− −/−/−/− −/−/−

113 −/−/−/− −/−/−/− −/−/−/− −/−/−

114 −/−/−/− −/−/−/− −/−/−/− −/−/−

115 7/15/8/0 7/15/8/0 7/15/8/0 6/15/0

116 −/−/−/− −/−/−/− −/−/−/− 1910/4935/0.013

117 −/−/−/− −/−/−/− −/−/−/− −/−/−

118 −/−/−/− −/−/−/− −/−/−/− −/−/−

119 50/121/77/0.018 61/171/120/0.026 47/124/83/0.019 42/173/0.026

120 199/234/365/0.126 189/221/348/0.123 210/245/392/0.139 −/−/−

121 83/195/137/0.374 −/−/−/− 76/184/136/0.369 −/−/−

122 −/−/−/−(NaN) −/−/−/−(NaN) −/−/−/−(NaN) 3559/10403/0.037

123 −/−/−/−(NaN) −/−/−/−(NaN) −/−/−/−(NaN) −/−/−

124 −/−/−/−(NaN) −/−/−/−(NaN) −/−/−/−(NaN) −/−/−

125 −/−/−/−(NaN) −/−/−/−(NaN) −/−/−/−(NaN) −/−/−

126 162/332/187/0.178 256/517/302/0.281 113/228/122/0.13 148/346/0.207

127 369/739/370/0.56 368/737/369/0.56 1116/2233/1117/1.89 355/719/0.67

128 33/67/34/0.032 33/67/34/0.033 33/67/34/0.035 17/66/0.034

129 50/123/86/0.001 46/148/117/0 58/153/114/0.001 23/72/0

130 10/21/11/0.001 10/21/11/0 10/21/11/0 8/25/0

131 −/−/−/− −/−/−/− −/−/−/− −/−/−

132 39/66/53/0.383 41/68/57/0.408 39/68/51/0.377 41/91/0.44

Table 2 (continuation) – The numerical results of the methods.
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CG_DESCENT Algorithm 2.1 MPRP PRP+
N

Iter/Nf/Ng/Time Iter/Nf/Ng/Time Iter/Nf/Ng/Time Iter/Nf(Ng)/Time

133 −/−/−/− −/−/−/− −/−/−/− −/−/−

134 −/−/−/− −/−/−/− −/−/−/− −/−/−

135 −/−/−/− −/−/−/− −/−/−/− −/−/−

136 −/−/−/− −/−/−/− −/−/−/− −/−/−

137 25/57/44/0.507 29/67/49/0.578 31/73/57/0.661 27/66/0.495

138 138/465/380/0.001 147/480/391/0.001 165/530/431/0.001 43/137/0

139 46/111/108/0.313 66/120/147/0.407 339/531/804/2.16 −/−/−

140 13/27/14/0 13/27/14/0.001 13/27/14/0.001 4/21/0

141 25/70/54/0 25/84/67/0 30/97/78/0 60/218/0.001

142 4515/9031/4516/3.69 4348/8697/4349/3.72 5282/10565/5283/4.41 4072/8149/4.38

143 22/45/23/0.168 22/45/23/0.17 22/45/23/0.177 41/131/0.783

144 218/443/227/0.72 196/402/208/0.633 206/419/215/0.682 212/430/0.898

145 12/26/16/0.018 14/31/21/0.022 10/22/13/0.016 10/29/0.021

146 1715/3431/1716/1.31 1682/3365/1683/1.28 1664/3329/1665/1.42 1590/3183/1.45

147 122/224/154/0.006 119/217/148/0.005 120/222/150/0.005 −/−/−

148 4/9/5/0.023 4/9/5/0.024 4/9/5/0.023 1/7/0.019

149 155/327/211/0.005 139/304/215/0.004 128/267/188/0.003 −/−/−

150 32/61/41/0.001 31/58/39/0.002 32/60/40/0 29/60/0

151 21/52/38/0.049 20/65/51/0.066 18/71/61/0.071 9/32/0.031

152 782/1565/783/0.80 784/1569/785/0.83 784/1569/785/0.87 781/1565/0.96

153 28/57/29/0.002 25/53/28/0.002 28/57/29/0.002 8/44/0.001

154 60/164/104/0.003 60/164/104/0.003 86/233/147/0.005 25/57/0.002

155 −/−/−/− −/−/−/− −/−/−/− −/−/−

156 1071/2148/1352/0.03 1230/2468/1548/0.03 1401/2824/1811/0.04 2602/5223/0.08

157 148/342/214/0.235 205/446/260/0.321 271/562/303/0.383 190/393/0.311

158 960/2662/1999/0.026 1529/4203/3153/0.044 555/1517/1133/0.015 −/−/−

159 1/3/2/0 1/3/2/0 1/3/2/0.001 1/3/0

The problems which were discarded by this process were BROYDN7D, CHAIN-

WOO, NONCVXUN and SENSORS.

Figures 1-4 show the performance of the above four methods relative to the

CPU time (in second), the total number of iterations, the total number of func-

tion evaluations, the total number of gradient evaluations, respectively. For

example, the performance of the four algorithms relative to CPU time means

that, for each method, we plot the fraction P of problems for which the method

is within a factor τ of the best time. The left side of the figure gives the per-

centage of the test problems for which a method is the fastest; the right side

gives the percentage of the test problems that were successfully solved by each

of the methods. The top curve is the method that solved the most problems in

a time that was within a factor τ of the best time. For convenience, we give the

meanings of these methods in the figures.
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• “CG_DESCENT” stands for the CG_DESCENT method with the

approximate Wolfe line search [13]. Here we use the Fortran77 (version

1.4) code obtained from Hager’s web site and use the default parameters

there.

• “PRP+” shows the PRP+ method with Wolfe line search proposed

in [22].

• “MPRP” means the three term PRP method proposed in [10] with the

same line search as “CG_DESCENT” method.

• “Algorithm 2.1” means Algorithm 2.1 with the modified strong Wolfe

line search (3.3). We determine the steplength αk which satisfies the con-

ditions in (3.3) or the following approximate conditions:
{

− min{M, A} ≤ φ′(αk) ≤ min{M, A, (2δ − 1)φ′(0)},

φ(αk) ≤ φ(0) + ε|φ(0)|,
(5.1)

where A = σ |φ′(0)|, φ(α) = f (xk + αdk), the constant ε is the estimate

to the error of φ(0) at iteration xk . The first inequality in (5.1) is obtained

by replacing φ(α) with its approximation function

q(α) = φ(0) + αφ′(0) + α2 φ′(αk) − φ′(0)

2αk

in the modified strong Wolfe conditions (3.3). The approximate condi-

tions in (5.1) are modifications to the approximate Wolfe conditions pro-

posed by Hager and Zhang in [13]. We refer to [13] for more details. The

Algorithm 2.1 code is a modification of the CG_DESCENT subroutine

proposed by Hager and Zhang [13]. We use the default parameter there.

Moreover, we set M = 1030 for (3.3) to ensure that M ≥ σ |gT
k dk | hold for

most indices k. If σ |gT
k dk | ≥ M , we determine the steplength αk which

satisfies the first inequality in (3.3). The code of Algorithm 2.1 was posted

on the web page at: http://blog.sina.com.cn/liminmath.

We can see from Figures 1-4 that the curves “Algorithm 2.1”, “CG_DES-

CENT” and “MPRP” are very close. This means that the performances of

Algorithm 2.1, CG_DESCENT and MPRP methods are similar. That is to say,
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Figure 1 – Performance profiles relative to the CPU time.

Algorithm 2.1 is efficient for solving unconstrained optimal problems since

CG_DESCENT has been regarded as one of the most efficient nonlinear conju-

gate gradients. We also note that the performances of Algorithm 2.1, CG_DES-

CENT and MPRP methods are much better than that of the PRP+ method.

6 Conclusion

We have established the convergence of a sufficient descent PRP conjugate gra-

dient method with a modified strong Wolfe line search method and an Armijo-

type line search. It was shown from the numerical results that Algorithm 2.1
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Figure 2 – Performance profiles relative to the number of iterations.

was efficient for solving the unconstrained problems in CUTEr library, and the

numerical performance was similar to that of the wellknown CG_DESCENT

and MPRP methods.
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Figure 3 – Performance profiles relative to the number of function evaluated.
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