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Abstract. In this paper, a new special class of splitting iterations for solving linear least squares

problems in finite dimensions is defined and their main properties of strong global convergence

to any problem solution are derived. The investigation results prove the new splitting iterations

to be a generalization of the approximating splitting iterations for solving linear least squares

problems in finite dimensions, suggesting their suitability for the robust approximate solution of

such problems.
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1 Introduction

Linear stationary splitting iterations [4, 7, 13] for solving linear least squares

problems in finite dimensions [3, 6] are commonly used as a sort of sequential

calculation engine for approximating solutions of linear equation systems [2, 7,

12, 13] long since. For that reason, they are, maybe, the most emblematic special

class of the well-known successive approximations iterations for solving linear

equation systems [2, 13] today.
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Consider the general linear least squares problem in finite dimensions

min
x∈Rn

‖Ax − b‖2
2, (1)

wherem ∈ N, n ∈ N, A ∈ Rm×n, andb ∈ Rm.

Thus, the splitting iterations for solving the problem (1) are properly those for

solving the associate normal equation system [3, 6],

A′ Ax = A′b; (2)

whose formula looks, after being derived in the usual way from (2), through

Q ∈ Rn×n with rank(Q) = n [4, 7, 13],

x[k+1] = Q−1(Q − A′ A)x[k] + Q−1A′b ,

k = 0, 1, . . . .
(3)

In accordance with [4], important strong1 global2 convergence properties are

guaranteed for those splitting iterations (3), whose splitting matrixQ makes the

matrix Q + Q′ − A′ A to be positive definite; that is to say,∀1x ∈ Rn, 1x 6= 0,

1x′(Q + Q′ − A′ A)1x > 0 . (4)

In this concern, an interesting special sub-class of splitting iterations for solving

the problem (1) was recently investigated. Those splitting iterations, named

approximating splitting iterations[9, 10], were formulated with a splitting matrix

Q =
V + A′ A

2
, (5)

where the matrixV , V ∈ Rn×n, is positive definite, what obviously makes (4) to

hold, providing various remarkable convergence properties for such iterations.

In efect, in accordance with [9, 10], every approximating splitting iteration

sequence{x[k]}k=0,1,2,... ⊂ Rn satisfies

∀x[k] /∈ Arg min
x∈Rn

‖Ax − b‖2
2 ,

1The iteration converges for any matrixA (with arbitrary rank, dimensions, etc.) and any

vectorb.
2The iteration converges from any initial valuex[0]
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‖Ax[k+1] − b‖2
2 < ‖Ax[k] − b‖2

2 ,

k = 0, 1, 2, . . . ;
(6)

lim
k→+∞

x[k] = arg min
x∈Arg min

x∈Rn
‖Ax−b‖2

2

(
x − x[0]

)
V

(
x − x[0]

)
= x∗ (7)

and
∃P ∈ Rn×n with rank(P) = n, such thatx[k] 6= x∗ ,

∥
∥P

(
x[k+1] − x∗

)∥∥2
2 <

∥
∥P

(
x[k] − x∗

)∥∥2
2 ,

k = 0, 1, 2, . . . ;

(8)

∀A ∈ Rm×n, ∀b ∈ Rm and∀x[0] ∈ Rn.

So, the approximating splitting iteration convergence to a solution is not merely

strong, but even global and guarantees the objective function descent along the

generated sequence and the monotonous sequential approximation to its limit.

Besides, every approximating splitting iterate continuously depends on the

singular values of the problem matrix at each finite step, as a function of that

matrix [10].

Now, it must be clear enough why approximating splitting iterations were

effectively introduced in the context of the investigation of robust approximations

of linear least squares solutions in finite dimensions3 and which peculiar role the

positive definiteness of the matrixV plays there, concerning the robustness of

those approximate solutions [8, 10-12].

In consequence, the attention here is mainly focused on the positiveness of the

matrix V and on the structure of the splitting iteration formulas [4, 7, 9, 13] to

strengthen further the abovementioned convergence results, already achieved for

the approximating splitting iterations.

2 Convergence properties of certain approximating-like splitting iterati-
ons for solving linear least squares problems in finite dimensions

Let V be now a positive semi-definite matrix [6],V 6= 0, such thatV + A′ A is

positive definite; that is to say,∀1x ∈ Rn, 1x 6= 0,

1x′V1x ≥ 0 (9)

3The finite-dimension least squares approximation continuously depends on the singular values

of the problem matrix.
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and

1x′(V + A′ A)1x > 0 . (10)

Obviously, one may properly re-write the main approximating splitting iteration

formulas [9, 10] with such a matrixV (9)-(10) instead, because, in accordance

with [6],

rank(V + A′ A) = n (11)

So, one has the fixed-point formula

x = (V + A′ A)−1(V − A′ A)x + 2(V + A′ A)−1A′b (12)

of a broader class of splitting iterations (3) for solving the problem (1) with the

new splitting matrixQ (5) and, consequently, the one-step and the(k + 1)-step

calculation formulas respectively

x[k+1] = (V + A′ A)−1(V − A′ A)x[k] + 2(V + A′ A)−1A′b ,

k = 0, 1, 2, . . . ;
(13)

and
x[k+1] =

(
(V + A′ A)−1(V − A′ A)

)k+1
x[0]

+
(

I −
(
(V + A′ A)−1(V − A′ A)

)k+1
)

A+b ,

k = 0, 1, 2, . . . ;

(14)

whereA+ denotes the Moore-Penrose pseudo-inverse matrix ofA [7, 3, 6].

2.1 Sequential descent of the objective function

It is not too hard to prove that the approximating-like splitting iterations (12)-(14)

for solving the problem (1) make the objective function to descend along their

generated sequence, as the approximating splitting iterations do.

Indeed, expand the objective function‖Ax− b‖2
2 in a Taylor series around the

k-th iterate

x[k] /∈ Arg min
x∈R

‖Ax − b‖2
2, k ∈ Z+, k < +∞;

evaluate that expansion atx[k+1] 6= x[k], replacing therex[k+1] with the right-hand

side of (13).
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Hence, making some equivalent transformations, one has that

∥
∥Ax[k+1] − b

∥
∥2

2 =
∥
∥Ax[k] − b

∥
∥2

2

−4
(
(V + A′ A)−1A′

(
Ax[k] − b

))′
V

(
(V + A′ A)−1A′

(
Ax[k] − b

))
,

k = 0, 1, 2, . . . .

(15)

Therefore, whereasV is a positive semi-definite matrix (9), one has that

∥
∥Ax[k+1] − b

∥
∥2

2 ≤
∥
∥Ax[k] − b

∥
∥2

2 ,

k = 0, 1, 2, . . . .
(16)

2.2 Strong global convergence to a solution

At this point, consider, before anything else, the following theorem and its proof.

Theorem [Theorem of the invariance]. Let m ∈ N, n ∈ N, A ∈ Rm×n,

b ∈ Rm and x̃ ∈ Rn. If V is a matrixV ∈ Rn×n, such that and∀1x ∈ Rn,

1x 6= 0,

1x′V1x ≥ 0

and

1x′(V + A′ A)1x > 0 ,

then,∀α ∈ R,

arg min
x∈Arg min

x∈Rn
‖Ax−b‖2

2

(x − x̃)′(V + α2A′ A)(x − x̃)

= arg min
x∈Arg min

x∈Rn
‖Ax−b‖2

2

(x − x̃)′(V(x − x̃) .

Proof. Recall that [3, 6],∀A ∈ Rm×n and∀b ∈ Rm,

x ∈ Arg min
x∈Rn

∥
∥Ax − b

∥
∥2

2 6= φ

if and only if

A′ Ax = A′b ,

Comp. Appl. Math., Vol. 24, N. 2, 2005
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due to the convexity of the problem

min
x∈Rn

‖Ax − b‖2
2

and to the analytical properties of the class of functions involved there.

So,∀α ∈ R, the respective feasible solution set of the goal-attainment bi-level

linear least squares problem [1, 14]

min
x∈Arg min

x∈Rn
‖Ax−b‖2

2

(x − x̃)′
(
V + α2A′ A

)
(x − x̃)

and of the corresponding constrained convex goal-attainment linear-quadratic

programming problem [6]

min
x∈Arg{A′ Ax=A′b}

(x − x̃)
(
V + α2A′ A

)
(x − x̃)

coincide; that is to say,

Arg min
x∈Arg min

x∈Rn
‖Ax−b‖2

2

(x − x̃)′(V + α2A′ A)(x − x̃)

= Arg min
x∈Arg{A′ Ax=A′b}

(x − x̃)′(V + α2A′ A)(x − x̃) .

If V is a matrixV ∈ Rn×n, such that∀α ∈ R and∀1x ∈ Rn, 1x 6= 0,

1x′V1x ≥ 0 and 1x′(V + A′ A)1x > 0,

then, on the one hand,∀α ∈ R and∀1x ∈ Rn, 1x 6= 0,

1x′(V + α2A′ A)1x ≥ 0 ;

and, on the other hand,∀1x ∈ Rn, 1x 6= 0, such thatA′ A1x = 0,

1x′V1x > 0 .

Hence∀α ∈ R and∀1x ∈ Rn, 1x 6= 0, such thatA′ A1x = 0,

1x′(V + α2A′ A)1x ≥ 1x′V1x > 0 .

Therefore, the sufficient condition for a minimum of the convex problem [5]

min
x∈Arg{A′ Ax=A′b}

(x − x̃)′(V + α2A′ A)(x − x̃)

Comp. Appl. Math., Vol. 24, N. 2, 2005
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holds for anyα; that is to say,∀α ∈ R,

arg min
x∈Arg min

x∈Rn
‖Ax−b‖2

2

(x − x̃)′(V + α2A′ A)(x − x̃)

= arg min
x∈Arg{A′ Ax=A′b}

(x − x̃)′(V + α2A′ A)(x − x̃) .

So, one can determine

arg min
x∈Arg min

x∈Rn
‖Ax−b‖2

2

(x − x̃)′(V + α2A′ A)(x − x̃)

for anyα just by finding the saddle point of the associate Lagrange functional [5]

L(x, λ) = (x − x̃)′(V + α2A′ A)(x − x̃) + λ′ A′(Ax − b) .

Hence,

∇xL(x, λ) = 2(V + α2A′ A)(x − x̃) + A′ Aλ = 0

and

1λL(x, λ) = A′ Ax − A′b = 0 .

Whereas the matrixV + A′ A is positive definite, after some equivalent trans-

formations of the two latter equations,∀α ∈ R, one has the following linear

equation system

(
I W ′W

W′W 0

) (
(
√

V + A′ A)(x − x̃)

(
√

V + A′ A)
(

1
2λ − (1 − α2)(x − x̃)

)

)

=
(

0
−W′(Ax̃ − b)

)
,

where

W = A(
√

V + A′ A)−1;

whose minimal-norm solution [7, 3, 6] leads to the one to be found for anyα;

that is to say,

x∗ = (
√

V + A′ A)−1(I − W+W)(
√

V + A′ A)x̃ + (
√

V + A′ A)−1W+b .

and

λ∗ = −2(
√

V + A′ A)−1
(
(1 − α2)I − (W′W)+

)
W+(Ax̃ − b) .
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Therefore,∀α ∈ R,

arg min
x∈Arg min

x∈Rn
‖Ax−b‖2

2

(x − x̃)′(V + α2A′ A)(x − x̃)

= arg min
x∈Arg min

x∈Rn
‖Ax−b‖2

2

(x − x̃)′V(x − x̃) .
�

Now, assume the Singular Value Decomposition (SVD) [3, 6] of the matrix

A(
√

V + A′ A)−1 to yield the factorization

A(
√

V + A′ A)−1 = L

(
S 0

0 0

)

R′ . (17)

Recall that, sinceV satisfies (9)-(10),

0 < ‖S‖2 < 1 , (18)

here because, in accordance with [6],
∥
∥A(

√
V + A′ A)−1

∥
∥

2< 1.

So, one has that

A = L

(
S 0

0 0

)

R′(
√

V + A′ A) (19)

and, as a consequence,

A′ A = (
√

V + A′ A)′ R

(
S2 0

0 0

)

R′(
√

V + A′ A) (20)

and

V = (
√

V + A′ A)′ R

(
I − S2 0

0 I

)

R′(
√

V + A′ A) (21)

After the replacement of the right-hand sides of equalities (19)-(21) whom it

corresponds in both the approximating-like splitting iteration formulas (13) and

(14) and after making some equivalent transformations there, one has that

x[k+1] = (
√

V + A′ A)−1R

(
I − 2S2 0

0 I

)

R′(
√

V + A′ A)x[k]

+2(
√

V + A′ A)−1R

(
S′ 0

0 0

)

L ′b ,

k = 0, 1, 2, . . . ;

(22)

Comp. Appl. Math., Vol. 24, N. 2, 2005
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and

x[k+1] = (
√

V + A′ A)−1R

(
(I − 2S2)k+1 0

0 I

)

R′(
√

V + A′ A)x[0]

+(
√

V + A′ A)−1R

(
I − (I − 2S2)k+1 0

0 0

) (
S−1 0

0 0

)

L ′b ,

k = 0, 1, 2, . . . .

(23)

Here, notice that, since (18) holds, one has that

lim
k→+∞

(I − 2S2)k = 0 . (24)

So,

lim
k→+∞

x[k] = (
√

V + A′ A)−1R

(
0 0

0 I

)

R′(
√

V + A′ A)x[0]

+ (
√

V + A′ A)−1R

(
S−1 0

0 0

)

L ′b .

(25)

Hence, after making some equivalent transformations of the right-hand side of

(25) and introducingW,

W = L

(
S 0

0 0

)

R′ = A(
√

V + A′ A)−1 , (26)

where it corresponds there, one has that

lim
k→+∞

x[k] = (
√

V + A′ A)−1(I − W+W)(
√

V + A′ A)x[0]

+ (
√

V + A′ A)−1W+b .

(27)

Therefore, in accordance with the theorem of the invariance,

lim
k→+∞

x[k] = arg min
x∈Arg min

x∈R
‖Ax−b‖2

2

(x − x[0])V(x − x[0]) = x∗ , (28)

what proves the extension of the homologous strong global convergence property

(7) of the approximating splitting iterations to a broader class of approximating-

like splitting iterations (12)-(14), whose formulas are with positive semi-definite

matricesV , such that (9)-(10) hold.
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2.3 Monotonous successive approximation of any solution

Notice that, the approximating-like splitting iterations (12)-(14) withV (9)-

(10) also monotonously approximate any solution of the problem (1) along their

generated sequence, as the approximating splitting iterations do.

Indeed, whereas (12) holds for every solutionx∗,

x∗ = (V + A′ A)−1(V − A′ A)x∗ + 2(V + A′ A)−1A′b . (29)

So, after subtracting (29) from (13),

x[k+1] − x∗ = (V + A′ A)−1(V − A′ A)(x[k] − x∗)

k = 0, 1, 2, . . .
(30)

and replacing in (30) whom it corresponds with the right-hand sides of equalities

(20)-(21), one has that

x[k+1] − x∗ =
(√

V + A′ A
)−1R

(
I − 2S2 0

0 I

)

R′(
√

V + A′ A
) (

x[k] − x∗
)

,

k = 0, 1, 2, . . . .

(31)

Hence,

R′(
√

V + A′ A
) (

x[k+1] − x∗
)

=

(
I − 2S2 0

0 I

)

R′(
√

V + A′ A
)
(x[k] − x∗) ,

k = 0, 1, 2, . . . .

(32)

Therefore, since (11) and (18) hold,∃P =
(
R′

(√
V + A′ A

))
∈ Rn×n with

rank(P) = n, such thatx[k] 6= x∗,

∥
∥P

(
x[k+1] − x∗

)∥∥
2 <

∥
∥P

(
x[k] − x∗

)∥∥
2 ,

k = 0, 1, 2, . . . .
(33)

2.3.1 Continuous dependence of every finite-step iterate on the singular values

It is not difficult to prove that every approximating-like splitting iterate (22)-(23)

continuously depends on the singular values of the problem matrix at each finite

step.
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Indeed,∀τ ∈ Z+, τ < +∞,

(I − (I − 2S2)τ )S−1 = 2
τ−1∑

p=0

(2S)p (34)

Hence, from (23), one has that

x[τ ] = (
√

V + A′ A)−1R

(
(I − 2S2)τ 0

0 I

)

R′(
√

V + A′ A)x[0]

+ (
√

V + A′ A)−1R






2
τ−1∑

p=0
(2S)p 0

0 0




 L ′b .

(35)

Therefore,

lim
[diag(S)]p,...,rank(A)→+0

x[τ ]

(

L ,

(
S 0

0 0

)

, R

)

= x[τ ]



L ,




[S]i = 1, p − 1

j =1,p−1
0

0 0



 , R



 ,

(36)

wherep ∈ N|p ≤ rank(A).

3 Convergence properties of further approximating-like
splitting iterations

Let γ ∈ R andθ ∈ R be such that

γ 2 + θ2 6= 0 (37)

and

γ 2 ≥ θ2 . (38)

Besides, letV be a matrix, that satisfies (9)-(10). Hence, in accordance with

[6], V + γ 2A′ A is a positive definite matrix and, consequently,

rank(V + γ 2A′ A) = n (39)

for anyγ , that satisfies (37)-(38).
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So, the problem matrixA′ A can be properly split [4, 7, 13] this way:

A′ A =
(

V + γ 2A′ A

γ 2 + θ2

)
−

(
V − θ2A′ A

γ 2 + θ2

)

and one may thus write the fixed-point formula

x = (V + γ 2A′ A)−1(V − θ2A′ A)x + (γ 2 + θ2)(V + γ 2A′ A)−1A′b (40)

of a yet broader class of splitting iterations (3) for solving the problem (1), with

the splitting matrix

Q =
V + γ 2A′ A

γ 2 + θ2
(41)

Of course, the one- and the(k + 1)-step calculation formulas of such approxi-

mating-like splitting iterations are respectively

x[k+1] = (V + γ 2A′ A)−1(V − θ2A′ A)x[k] + (γ 2 + θ2)(V + γ 2A′ A)−1A′b ,

k = 0, 1, 2, . . . ;
(42)

and

x[k+1] =
(
(V + γ 2A′ A)−1(V − θ2A′ A)

)k+1
x[0]

+
(

I −
(
(V + γ 2A′ A)−1(V − θ2A′ A)

)k+1
)

A+b ,

k = 0, 1, 2, . . . .

(43)

Since identities

γ 2 =
γ 2 − θ2

2
+

γ 2 + θ2

2
(44)

and

θ2 = −
γ 2 − θ2

2
+

γ 2 + θ2

2
, (45)

hold, then after replacing the right-hand sides of equalities (44) and (45) in both

the formulas (42) and (43), and after making there the equivalent transformations

Ã =

√
γ 2 + θ2

2
A , (46)

b̃ =

√
γ 2 + θ2

2
b (47)

Comp. Appl. Math., Vol. 24, N. 2, 2005
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and

Ṽ = V +
γ 2 − θ2

2
A′ A , (48)

the approximating-like splitting iterations (42) and (43) look now as follows

x[k+1] = (Ṽ + Ã′ Ã)−1(Ṽ − Ã′ Ã)x[k] + 2(Ṽ + Ã′ Ã)−1 Ã′b̃ ,

k = 0, 1, 2, . . . ;
(49)

and

x]k+1] =
(
(Ṽ + Ã′ Ã)−1(Ṽ − Ã′ Ã)

)k+1
x[0]

+
(

I −
(
(Ṽ + Ã′ Ã)−1(Ṽ − Ã′ Ã)

)k+1
)

A+b ,

k = 0, 1, 2, . . . ;

(50)

where, since the matrixV satisfies (9) and (10), the matrix̃V (48) also satisfies

them for anyγ andθ , that satisfy (37)-(38).

Hence, the generated sequence
{
x[k]

}
k=0,1,2,...

⊂ Rn of any approximating-

like splitting iteration (42)-(43) satisfies the convergence properties (16), (28)

and (33); specially the one of the global convergence limit; that is to say,

lim
k→+∞

x[k] =

= arg min
x∈Arg min

x∈Rn
‖Ax−b‖2

2

(
x − x[0]

)
(

V +
γ 2 − θ2

2
A′ A

)
(
x − x[0]

)
.

(51)

Therefore, following the theorem of the invariance, one has that

lim
k→+∞

x[k] = arg min
x∈Arg min

x∈Rn
‖Ax−b‖2

2

(
x − x[0]

)
V

(
x − x[0]

)
. (52)

Now, the definition ofgeneralized approximating splitting iterations for solving

linear least squares problems in finite dimensionsmay be properly stated, as

follows.

Definition. Let m ∈ N andn ∈ N; and letA ∈ Rm×n andb ∈ Rm. Besides, let

γ ∈ R andθ ∈ R be such that

γ 2 + θ2 6= 0 and γ 2 ≥ θ2 .
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A generalized approximating splitting iteration for solving the linear least

squares problem in finite dimensions is a linear stationary splitting iteration

x[k+1] = Q−1(Q − A′ A)x[k] + Q−1A′b ,

k = 0, 1, . . . ;

for solving the problem

min
x∈Rn

‖Ax − b‖2
2 ;

whose splitting matrix is

Q =
V + γ 2A′ A

γ 2 + θ2
,

whereV is a matrixV ∈ Rn×n, such that∀1x ∈ Rn, 1x 6= 0,

1x′V1x ≥ 0

and

1x′(V + A′ A)1x > 0 . �

4 Conclusions

Here, a new special class of splitting iterations for solving linear least squares

problems in finite dimensions, named generalized approximating splitting itera-

tions, has been defined and their main properties of strong global convergence

to any problem solution has been properly derived.

The investigation results proved:

1. The objective function descends along the generated iteration sequence.

2. Every iteration sequence strongly and globally converges to a solution.

3. Every iteration sequence monotonously approximates its convergence li-

mit.

4. Each finite-step iterate continuously depends on the singular values of the

problem matrix.
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The generalized approximating splitting iterations are certainly a generaliza-

tion of the approximating splitting iterations [9], [10], not merely because the

latter ones are a special case of the former ones (when both the coefficientsγ

andθ are equal to the unit and the matrixV is positive definite), but specially

because the investigation results proved the generalized approximating splitting

iterations to extend the favorable convergence features of those to a quite broa-

der variety of approximating-like splitting iteration formulas (like, for example,

the one of the iterated Tikhonov regularization with a non-necessarily full-rank

smoothing matrix [7], [12], [9], [10]), what substantiates their suitability for the

robust approximation of linear least squares solutions in finite dimensions [10]

and hints their possible use in solving multi-level problems [1], [14].

Finally, it should be noticed that the requirements to be fulfilled by the matrix

V of generalized approximating splitting iterations are just equivalent to the

well-known sufficient conditions for a minimum of any constrained convex goal-

attainment linear-quadratic programming problem [5].
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