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Abstract. Today, the focus of physical scientists is shifting more to biology than ever before.

A biological tissue is typically an ionised porous medium saturated with a solution of ions and

neutral solutes. Because classical porous media theories do not account for ionisation, the present

paper addresses this issue. The characteristic pore size in most biological applications is close to

the molecular level and hence below the Debye-Hueckel scale. Not only pressure gradients and

concentration gradients, but electrical gradients as well are intimately linked to fluid flow, ion flow

and deformation.
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1 Introduction

Since antiquity, the phenomenon of swelling of tissues has been closely related

to health and disease. Biological, synthetic and mineral porous media often ex-

hibit swelling or shrinking when in contact with changing salt concentrations.

This phenomenon, observed in clays, shales, cartilage and gels, is caused by a

combination of electrostatic forces and hydration forces [11]. In case of biolog-

ical tissue, electrostatic forces are often dominant. Classical concepts, such as

the transmembrane potential of cells are directly associated with these electro-

static forces. Already years ago, Biot understood that his theories were closely

associated with transmembrane phenomena in living cells [4]. At least four
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236 THE SIMPLICITY OF LAGRANGIAN MIXTURE THEORY

components are involved in the swelling mechanics: a solid, a fluid, anions and

cations. Lai et al. [11] developed a triphasic theory for soft hydrated tissue and

applied the theory to cartilage while neglecting geometric non-linearities. They

verified the theory for one-dimensional equilibrium results. As soft tissues and

cells are commonly subject to large deformations, our group developed a finite

deformation theory of ionised media [9]. In order to simplify the mathemetics as

much as possible a Lagrangian form of the entropy inequality has been derived

which leads to equations consistent with Biot’s porous media theories in a more

straightforward way than the more familiar Eulerian approach of Bowen [6].

The incompressibility and electroneutrality conditions are introduced by means

of two Lagrange multipliers; the latter is physically interpreted as an electrical

potential, the former as a pressure.

2 Fluid-solid mixtures

We shall derive equations applicable to the behaviour of elastic incompressible

fluid saturated porous media from mixture theory.

2.1 Assumptions

We consider the porous medium as a two-component mixture, composed of a

solid (superscript s) and a fluid component (superscript f ). Saturation requires:

ϕs + ϕf = 1. (1)

We assume that no mass-exchange occurs between the components. Each com-

ponent is assumed incompressible:

ραi = ρα

ϕα
= constant, α = s, f. (2)

The apparent densities ρα however do change as a function of time. We con-

sider processes which are sufficiently slow so as to ensure that inertia forces are

negligible. Volume forces are neglected as well. We assume that all components

have the same temperature and no gradients in temperature are present either in

time or space.
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2.2 Conservation laws

2.2.1 Conservation of mass

In the absence of mass exchange the local law of conservation of mass of com-

ponent α reduces to:

∂ρα

∂t
+ ∇∇∇ · (ραvα) = 0, α = s, f. (3)

We can rewrite (3):

∂ϕα

∂t
+ ∇∇∇ · (ϕαvα) = 0, α = s, f. (4)

Summation of the equations (4) yields the local mass balance of the mixture:

∇∇∇ · (ϕsvs)+ ∇∇∇ · (ϕf vf ) = 0, (5)

or:

∇∇∇ · vs + ∇∇∇ · (ϕf (vf − vs)
) = 0. (6)

The first term of (6) represents the rate of volume increase of a unit volume of

mixture. The second term represents the fluid flux from this unit volume. Eq. (6)

states that every volume-increase or decrease of the mixture is associated with

an equal amount of in- or outflux of liquid. At this point it is useful to refer

current descriptors of the mixture with respect to an initial state of the porous

solid. As is usual in continuum mechanics, we define the deformation gradient

tensor F mapping an infinitesimal material line segment in the initial state onto

the corresponding infinitesimal line segment in the current state. The relative

volume change from the initial to the current state is the determinant of the

deformation gradient tensor J = detF . If we introduce volume fractions

�α = Jϕα (7)

per unit initial volume, we can rewrite the mass balance equation (4) as follows:

Ds�α

Dt
+ J∇∇∇ · [ϕα(vα − vs)] = 0 (8)

when using the identity:

Ds

Dt
J = J∇∇∇ · vs (9)
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2.2.2 Conservation of momentum

Considering the assumptions stated earlier, momentum balance reduces to:

∇∇∇ · (σ α)c + p̂
α = 0, α = s, f. (10)

The momentum interaction p̂
α arises e.g., as a consequence of friction between

the fluid and the solid. We assume no moment of momentum interaction between

fluid and solid. Therefore we tacitly assumed the symmetry of the partial Cauchy

stress tensor in (10). Summation of the equations (10) yields the local momentum

balance for the mixture as a whole:

∇∇∇ · σ s + ∇∇∇ · σ f = ∇∇∇ · σ = 0, (11)

if we use:

p̂
s + p̂

f = 0. (12)

2.2.3 The entropy inequality

The local form of the entropy inequality applied to the mixture as a whole,

reduces to:

∑
α=s,f

(
−ραD

αF̃ α

Dt
F̃ α + σ α : Dα − p̂

α · uα

)
≥ 0. (13)

We introduce the strain energy function

W = J
∑
α=s,f

ραF̃ α = J
∑
α=s,f

ψα (14)

as the Helmholtz free energy of a mixture volume which in the initial state of

the solid equals unity. ψα is the Helmholz free energy of constituent α per unit

mixture volume. Rewriting the inequality (13) for the entropy production per

initial mixture volume – i.e. we multiply inequality (13) by the relative volume

change J – we find:

−D
s

Dt
W + Jσ : ∇∇∇vs + J∇∇∇ · [(vf − vs) · σ f − (vf − vs)ψf

] ≥ 0. (15)
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2.3 Constitutive restrictions

We use the entropy inequality to derive constitutive restrictions for the mixture.

The entropy inequality should hold for an arbitrary state of the mixture, com-

plying with the balance laws and with incompressibility. There are two ways to

comply with these restrictions. One is substitution of the restriction into the in-

equality, resulting in elimination of a field variable. The other is by introduction

of a Lagrange multiplier. The mass balance of the mixture (6) is accounted for

by means of a Lagrange multiplier. Other balance laws and the incompressibility

conditions (2) are accounted for by means of substitution. From the inequality

15 we see that the apparent density and the momentum interaction p̂
α is already

eliminated from the inequality. In other words the conditions of incompressibil-

ity and the momentum balance of the constituents have already been substituted

into the second law. The divergence of the partial stress tensor of the solid ∇∇∇ · σ s

and the heat supplies rα also are absent from 15. Thus the momentum balance

of the mixture and the energy balance have already been substituted in the sec-

ond law. Therefore, restrictions still to be fulfilled are the mass balances of the

constituents (3) and mass balance of the mixture (6). The latter is substituted by

means of a Lagrange multiplier p:

−D
s

Dt
W + Jσ e : ∇∇∇vs + J [σ f + (pϕf − ψf )I ] : ∇∇∇(vf − vs)

+ J (vf − vs) · (−∇∇∇ψf + p∇∇∇ϕf + ∇∇∇ · σ f ) ≥ 0.
(16)

in which the effective stress σ e is defined as

σ e = σ + pI (17)

2.3.1 Choice of independent and dependent variables

We choose as dependent variables the dynamic variables appearing in inequality

16: W , ψf , σ e, σ f + pϕf I , ∇∇∇ · σ f + p∇∇∇ϕf . Their number should equate

the number unknown variables appearing in the balance equations minus the

number of balance equations. The number of dependent variables should be

as small as possible to describe the state of the tissue well. Their choice is a

key assumption of the continuum theory and is based on insight in the physical
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phenomena involved in the behaviour of the material. We choose as independent

variables the kinematic variables: the Green strain of the solid Es , the fluid

volume fraction �f and the fluid velocity relative to the solid vf − vs . For

reasons of objectivity we need to transform all the vectors and tensors among

the dependent and independent variables back to the initial state. This yields for

the constitutive relationships:

W = W(Es, �f , vf s),

ψf = ψf (Es, �f , vf s),

σ e = F · Se(E
s, �f , vf s) · F c,

σ f − ϕf pI = F · Sf (Es, �f , vf s) · F c

p̂
f − p∇∇∇ϕf = F · P̂

f
(Es, �f , vf s)

(18)

with

vf s = F−1 · (vf − vs) (19)

The principle of equipresence requires that all dependent variables appear in

each of the constitutive relationships. The choice of the independent variables

is paramount for the form of the constitutive relationships that are derived. E.g.,

including for the solid Green strain only and no measure of strain rate, implies

elasticity of the solid. In mixture mechanics it is also important to realise that

each of the variables is an averaged value of a physical quantity over an averaging

volume. It may seem surprising that the shear rate of the fluid is not included in

the list of independent variables, although the viscosity of the fluid is absolutely

essential for the behaviour of the mixture. The reason for this is that in a porous

medium the shear rate at one side of the pore has a sign opposite to the shear

rate at the other side of the pore. The expectation value of the shear rate in

a representative elementary volume is therefore the shear rate of the solid, i.e.

a generally very low value, not representative for the dissipation in the fluid.

It is therefore more obvious to use the fluid velocity relative to the solid as a

macroscopic measure of the microvalues of the shear rate. The fluid volume

fraction�f is not independent of the Green strain because of incompressibility:

�f = det F − 1 + ϕ
f

0 =
√

det(2Es + I )− 1 + ϕ
f

0 (20)
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Because of the strong non-linearity of equation (20), elimination of one of the

variables is tedious. In fact, the way we deal with the interdependence of these

two variables is by means of the Lagrange multiplier p. The condition (6) is in

fact a differentated form of equation (20). This legitimises the use of Es and�f

as independent variables.

2.3.2 Constitutive relationships

Applying the chain rule for time differentiation of W:

DsW

Dt
= ∂W

∂Es : D
sEs

Dt
+ ∂W

∂�f

Ds�f

Dt
+ ∂W

∂vf s
(21)

and substituting the mass balance of the constituents (8) for the elimination of
Ds�f

Dt
from the inequality 16:(

Jσ e − F · ∂W
∂E

· F c

)
: ∇∇∇vs + ∂W

∂vf s
· D

s

Dt
vf s

+ J [σ f + (µf ϕf − ψf )I ] : ∇∇∇(vf − vs)

+ J (vf − vs) · (−∇∇∇ψf + µf∇∇∇ϕf + ∇∇∇ · σ f ) ≥ 0.

(22)

in which µf is the chemical potential of the fluid:

µf = ∂W

∂�f
+ p (23)

Eq. (22) should be true for any value of the state variables. Close inspection of

the choice of independent variables and the inequality (22), reveals that the first

term of (22) is linear in the solid velocity gradient ∇∇∇vs , the second term linear

in Ds

Dt
vf s and the third term linear in the relative velocity gradients ∇∇∇(vf − vs).

Therefore, by a standard argument, we find:

σ e = 1

J
F · ∂W

∂E
· F c (24)

∂W

∂vf s
= 0 (25)

σ f = (ψf − µfϕf )I (26)
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leaving as inequality:

J (vf − vs) · (−∇∇∇ψf + µf∇∇∇ϕf + ∇∇∇ · σ f ) ≥ 0. (27)

Eq. (24) indicates that the effective stress of the mixture can be derived from a

strain energy function W which represents the free energy of the mixture. Eq.

(25) shows that the strain energy function cannot depend on the relative velocity

of fluid versus solid. This result – only obtained in a Lagrangian formulation

– simplifies the constitutive laws to a large extent, because a vectorial variable

disappears among the independent variables of the free energyW , and its deriva-

tives, the effective stress and the chemical potential. The partial free energies,

ψs and ψf cannot be shown independent from the relative velocity. Thus, the

effective stress of a biphasic medium can be derived from a regular strain energy

function, which physically has the same meaning as in single phase media. Ac-

cording to equation (26) the partial stress of the fluid is a scalar. Transforming

the relative velocities to their Lagrangian equivalents, we find in stead of (27):

vf s · [− ∇∇∇0ψ
f + µf∇∇∇0ϕ

f + ∇∇∇0 · σ f
] ≥ 0. (28)

in which∇∇∇0 = F c · ∇∇∇ is the gradient operator with respect to the initial configura-

tion. Note that asµf∇∇∇0ϕ
f +∇∇∇0 · σ f depends on vf s according to the constituive

relationships (18), the lefthandside of inequality (28) is not a linear function of

vf s and therefore it is incorrect to equate the factor −∇∇∇0ψ
f +µf∇∇∇0ϕ

f +∇∇∇0 · σ f

to zero. From a physical point of view it is obvious that unlike the elastic de-

formation of the solid the flow of fluid relative the solid results in an entropy

production. If we assume that the system is not too far from equilibrium, we can

express the dissipation (28) associated with relative flow of fluid and ions as a

quadratic function of the relative velocities:

−∇∇∇0ψ
f + µf∇∇∇0ϕ

f + ∇∇∇0 · σ f = B · vf s (29)

B is a semi-positive definite matrix of frictional coefficients. Substituting equa-

tion (26) into equation (29) yields the Lagrangian form of Darcy’s law:

−ϕf∇∇∇0µ
f = B · vf s (30)

The constitutive behaviour of the fluid-solid mixture is thus described by a strain

energy function W and frictional tensor B. From the strain energy function we

derive both the effective stress and the chemical potential of the fluid.
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2.4 Physical interpretation of the constitutive variables

The Lagrange multiplier p should be interpreted as the hydrostatic pressure in

the fluid.

∇∇∇ · σ e − ∇∇∇p = 0. (31)

If we define the permeability tensor K as:

K = (ϕf )2B−1 (32)

equation (30) becomes:

ϕf (vf − vs) = −K · ∇∇∇
(
p + ∂W

∂�f

)
. (33)

Eq. (33) is the threedimensional form of Darcy’s law. The difference between

the chemical potential µf and the pressure p is the matric potential. The matric

potential accounts for adsorption and capillary forces. It can be quantified ex-

perimentally using capillary rising heights. In Terzaghi’s consolidation theory

the matric potentisal is neglected, not because it is negligible in absolute terms

but because its gradient is negligible in an homogenous medium with limited

variation of fluid volume fraction and coarse pore structure.

2.5 Resulting equations

The resulting equations are:

Momentum balance of the mixture:

∇∇∇ · σ e − ∇∇∇p = 0 (34)

Mass balance of the mixture:

∇∇∇ · vs − ∇∇∇ · (ϕf (vf − vs)) = 0 (35)

Darcy’s law:

vf − vs = ϕfB−1 · ∇∇∇µf (36)
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Stress-strain relationship:

σ e = (det F )−1F · ∂W
∂Es · F c, (37)

Constitutive law for the chemical potential of the fluid:

µf = p + ∂W

∂�f
(38)

The total stress in the mixture is composed of an effective stress and a hydro-

dynamic pressure: σ = σ e − pI . The effective stress σ e is derived from the

strain energy function of the mixture W . In equation (38) F is the deformation

gradient tensor of the solid and Es the Green strain tensor of the solid. The strain

energy W in a function of the solid strain E.

Dynamic boundary conditions are:

[(σ e − pI ) · n] = 0 (39)

with n the outer normal along the boundary and the square brackets represent

the difference between the value at either side of the boundary.

[
V
f
µf
] = 0, (40)

with as a special case the evaporation boundary condition:

V
f
µf = RT ln

pd

pds
(41)

Equation (40) and (41) enforces continuity of molar chemical potential. Dis-

continuity of chemical potential would lead to an infinite fluid flux which is

physically impossible. For this reason we can claim that even if the material

properties are sharply discontinuous the chemical potential should be continu-

ous. This is not true for the pressure p. E.g. at the interface between a sand

layer and a clay layer the pressure is not continuous, at least if capillary effects

are not neglected. Similarly interstititial pressure along the surface of the skin is

not equal to atmospheric pressure. We use the molar chemical potential in stead

of the volumetric chemical potential because the volumetric chemical potential

can be used only for incompressible media. Although the medium we consider
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is incompressible, the medium outside the boundary need not be incompressible

as is the case for evaporation. Kinematic boundary conditions are:

[u] = 0 (42)

[(vf − vs) · n] = 0 (43)

3 Donnan Osmosis

When an ionised medium is in contact with a monovalent salt solution, diffusion

of salt ions and flow of fluid take place between the medium and the salt solution

until equilibrium is reached:

µ+ = µ+ (44)

µ− = µ− (45)

µf = µf (46)

µ+ is the electrochemical potential of the cations, µ− is the electrochemical

potential of the anions and µf the chemical potential of the fluid in the medium.

The corresponding overlined symbols refer to chemical potentials in the outer

solution. Standard expressions for (electro)chemical potentials are found in the

literature [15]. If we assume incompressibility for each constituent, i.e. same

partial molar volumes in either solution, we find:

µ+ = µ+
0 + 1

V
+ (RT lna

+ + Fξ) (47)

µ− = µ−
0 + 1

V
− (RT lna

− − Fξ) (48)

µf = µ
f

0 + p + RT

V
f
lnaf (49)

in which µβ0 are reference values, V
β

partial molar volumes, aβ activities, p the

fluid pressure, T absolute temperature, R universal gas constant, F Faraday’s

constant and ξ the electrical potential. All of these (electro)chemical potentials

are measured here per unit volume constituent. Combination of equation (44)
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and (45) leads to:

a−a+ = a+a− (50)

ξ − ξ = RT

2F
ln
a−a+

a+a− (51)

where ξ − ξ is the Donnan potential between the inner and outer solution. If we

define cf c as the fixed charge density per unit fluid volume of the inner solution,

taken positive for positive charges and negative for negative charges, we can

write the electroneutrality conditions as:

c− = c+ + cf c (52)

c− = c+ = c (53)

c+ and c− are the cationic and anionic concentrations per unit fluid volume

in the inner solution, while the corresponding overlined symbols pertain to the

outer solution. In terms of the volume fractions introduced in equation (7), the

concentrations are

cβ = �β

�f V̄ β
(54)

From the previous equations we derive the Donnan equilibrium concentration of

the ions:

2c+ = − cf c +
√
(cf c)2 + 4f 2c2 (55)

2c− = cf c +
√
(cf c)2 + 4f 2c2 (56)

with

f 2 = f
+
f

−

f +f − (57)

and f β = aβ

cβ
, β = +,− the activity coefficient of component β. Equations

(55-56) show that the cationic concentration jumps to a higher and the anionic

concentration to a lower value when entering the porous medium. These concen-

tration jumps are responsible for the attraction of water into the porous medium
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during swelling and for the associated osmotic pressure π . Using equation (49)

one can derive Van’t Hoff relation from (46):

π = p − p = RT
[

f (c+ + c−)− 2


f
c
]

(58)

provided that the molar fractions of the ions are small compared to the molar

fraction of the fluid. 
f and 

f

are the osmotic coefficients.

4 Quadriphasic theory

It may be clear from the above considerations that physical phenomena occuring

in the porous medium are a combination of mechanical, chemical and electrical

effects. The interrelationship between these effects are well known for membrane

processes [16]. The purpose of this paper is to generalise these relationships for

porous media subjected to threedimensional finite deformation. The four phases

that we consider in the medium are: solid (superscript s), fluid (superscript f),

monovalent anions (superscript –) and monovalent cations (superscript +). As-

suming all components intrinsically incompressible and excluding mass transfer

between phases, the mass balance of each phase is given by (4), where α takes

the values s,f,+ or – . We assume saturation

ϕs + ϕf + ϕ+ + ϕ− = 1. (59)

Summation of the equation (4) yields the mass balance of the mixture:

�∇ · �vs +
∑
f,+,−

�∇ · (ϕα(�vα − �vs)) = 0 (60)

The electrostatic interactions are accounted for by means of an electroneutrality

condition:

Ds

Dt

∑
β=f,+,−

zβ�β

V̄ β
= 0 (61)

We introduce the strain energy function as the Helmholtz free energy of a

mixture volume which in the initial state of the solid equals unity. ψα is the

Comp. Appl. Math., Vol. 23, N. 2-3, 2004
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Figure 1 – Electrochemical potential of anions and cations as a function of time during

swelling of a one dimensional ionised medium. The solution from a 3D finite element

code [17] is compared to the analytical solution [18].

Helmholz free energy of constituent α per unit mixture volume. The inequality

for the entropy production per initial mixture volume reads:

−D
s

Dt
W + Jσ : �∇�vs

+J �∇ ·
∑

β=f,+,−

[
(�vβ − �vs) · σ β − (�vβ − �vs)ψβ

] ≥ 0.
(62)

We assume the existence of a Lagrange multiplier p for the saturation condition

and λ for the electroneutrality condition. The entropy inequality transforms into:

−D
s

Dt
W + Jσ eff : �∇�vs

+J
∑

β=f,+,−

[
σ β +

((
p + zβλ

V
β

)
ϕβ − ψβ

)
I

]
: �∇(�vβ − �vs)

+J
∑

β=f,+,−
(�vβ − �vs) ·

[
− �∇ψβ +

(
p + zβλ

V
β

)
�∇ϕβ + �∇ · σ β

]
≥ 0.

(63)
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in which zβ is the valence of constituent β, σ eff is the effective stress of the

medium. We choose as independent variables the Green strain E, the Lagrangian

form of the volume fractions of the fluid and the ions �β , and of the relative

velocities �vβs = F−1 · (�vβ − �vs), β = f,+,−. We apply the principle of

equipresence asd the chain rule for time differentiation of W :(
Jσ eff − F · ∂W

∂E
· F c

)
: �∇�vs

+
∑

β=f,+,−

{
∂W

∂ �vβs · D
s

Dt
�vβs + J

[
σ β + (µβϕβ − ψβ)I

] : �∇(�vβ − �vs)

+J (�vβ − �vs) · (−�∇ψβ + µβ �∇ϕβ + �∇ · σ β)

}
≥ 0.

(64)

in which µβ are the electrochemical potentials of fluid and ions:

µf = ∂W

∂�f
+ p

µ+ = ∂W

∂�+ + λ

V
+ + p (65)

µ− = ∂W

∂�− − λ

V
− + p

By a standard argument [7], we find:

σ eff = 1

J
F · ∂W

∂E
· F c (66)

∂W

∂ �vβs = 0 (67)

σ β = (ψβ − µβϕβ)I (68)

leaving as inequality:∑
β=f,+,−

J (�vβ − �vs) · (− �∇ψβ + µβ �∇ϕβ + �∇ · σ β
) ≥ 0. (69)

Equation (66) indicates that the effective stress of the mixture can be derived

from a strain energy function W which represents the free energy of the mixture.
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Equation (67) shows that, again, the strain energy function cannot depend on

the relative velocities. In fact this result can easily be generalised to mixtures

of arbitrary number of components. Thus, the effective stress of a quadriphasic

medium can be derived from a regular strain energy function, which physically

has the same meaning as in single phase or biphasic media, but which can depend

on both strain and ion concentrations in the medium. According to equation (68)

the partial stress of the fluid and the ions are scalars. Transforming the relative

velocities to their Lagrangian equivalents, we find in stead of (69):∑
β=f,+,−

�vβs · [− �∇0ψ
β + µβ �∇0ϕ

β + �∇0 · σ β
] ≥ 0. (70)

in which �∇0 = F c · �∇ is the gradient operator with respect to the initial con-

figuration. If we assume that the system is not too far from equilibrium, we can

express the dissipation (70) associated with relative flow of fluid and ions as a

quadratic function of the relative velocities:

−�∇0ψ
β + µβ �∇0ϕ

β + �∇0 · σ β =
∑

γ=f,+,−
Bβγ · �vγ s (71)

Bβγ is a positive definite matrix of frictional tensors. Substituting equation

(68) into equation (71) yields Lagrangian forms of the classical equations of

irreversible thermodynamics:

−ϕβ �∇0µ
β =

∑
γ=f,+,−

Bβγ · �vγ s (72)

The momentum balance equation (11), the mass balance equation (60), the fric-

tional equations (72), the constitutive relationships for the electrochemical po-

tentials (65) and of the effective stress (66) form a set of partial differential

equations. The boundary conditions are given by a no-jump condition of the

electrochemical potential of the ions and the fluid across the boundary and the

momentum balance of the boundary. In our application we choose the mixing
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part of the energy function as

W(�f ,�+,�−) = µ
f

0�
f + µ+

0 �
+ + µ−

0 �
−

−RT 

(
�+

V̄ + + �−

V̄ −

)
ln (�f )+ RT

�+

V̄ +

(
ln

(
�+

V̄ +

)
− 1

)

+RT �
−

V̄ −

(
ln

(
�−

V̄ −

)
− 1

)
(73)

Hence the expressions 65, take the form:

µf = −RT 

(

�+

�f V̄ + + �−

�f V̄ −

)
+ p

µ+ = RT ln
�+

(�f )
V̄ + + λ

V
+ + p (74)

µ− = RT ln
�−

(�f )
V̄ − − λ

V
− + p

which is consistent with the classical expressions for electrochemical potentials

(47-49), provided that we identify the activity of ion β as

aβ = f βcβ = �β

(�f )
V̄ β
(75)

the activity coefficient as

f β = (�β)1−
 (76)

and the Lagrange multiplier λ as the product of the electrical potential and Fara-

day constant:

λ = Fξ (77)

Equations (74-76) justifies the form of the mixing energy (73) as the mixing

energy belonging to the Donnan osmosis model. Rearranging equation (65)

yields,

µα − p − zα

V̄ α
λ =

∑
β=f,+,−

C−1
αβ�

β (78)
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in which,

Cαβ =
[
∂2W(�f ,�+,�−)

∂�α∂�β

]−1

=

⎡
⎢⎢⎢⎣
RT 


(
�+

V̄+(�f )2 + �−
V̄−(�f )2

)
− RT 


V̄+�f − RT 


V̄−�f

− RT 


V̄+�f
RT

V̄+�+ 0

− RT 


V̄−�f 0 RT

V̄−�−

⎤
⎥⎥⎥⎦

−1
(79)

is the inverse of the Hessian of the mixing energy. To obtain the weak formulation

the equations are multiplied by arbitrary, time independent weighing functions

and integrated over the volume of the mixture (
). The momentum equation is

multiplied by a weighing function �wx . The saturation condition, mass equation

and equation for electroneutrality are multiplied by the weighing functions wp,

wαµ and wξ , respectively. After partial integration and applying the divergence

theorem, we find,⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

∫



( �∇ �wx
)c : σ d
 =

∫



�wx · (σ · �n) d
 ,
∫




wp

( �∇ · �vs
)
d
−

∫



wp
1

J

∑
β

Ds�β

Dt
d
 = 0 ,

∫



wαµ
1

J

Ds�β

Dt
d
+

∫



(∑
α

Kαβ
�∇µα

)
· �∇wαµ d


=
∫




wαµ

(∑
α

Kαβ
�∇µα

)
· �n d
 ,

∫



wξ

⎛
⎝ 1

J

∑
β

zβF

V̄ β

Ds�β

Dt

⎞
⎠ d
 = 0 .

(80)

in which 
 is the outer surface of the medium and Kαβ = ϕαϕβ(Bαβ)−1 a

generalised diffusion-permeability tensor. We choose to use an updated Lagrange

formulation. The total deformation tensor F may be divided into,

F = F� · F n (81)
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where F n describes the deformation from the initial configuration 
0 to the

reference configuration
n, and F� denotes the deformation from the reference

configuration to the current state
. When transforming the balance equations to

a known domain, the reference configuration 
n is used. The gradient operator

is transformed according to,

�∇ = F−c
� · �∇n (82)

As the total deformation is divided, the volume ratio is divided in a similar way.

From the definition of J it follows that,

J = J�Jn (83)

Time discretization of the material time derivatives for J� and �β yields,

J�

( �∇ · �vs
)

= J̇� = J� − 1

�t
(84)

Ds�β

Dt
= �β −�

β
n

�t
(85)

For the mass balance a time discretization scheme is applied,

�χ = θ �χ(tn +�t)+ (1 − θ) �χn (86)

The time discretization scheme can be varied easily from implicit Euler (θ = 1)

to explicit Euler (θ = 0). The Newton-Raphson iteration procedure is used

to determine a sequence of approximate solutions of the non-linear equations.

Quadratic interpolation functions (�∼ ) are used for the position field and weighing

function �ww. Linear interpolation functions (�∼ ) are taken for the discretization

of the pressure, electro-chemical potentials, electric potential, volume fractions

and their corresponding weighing functions. The predictor is a set of linearized

equations,
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S −L 0 0 δu∼ −R∼

−LT −
∑
β

Cαβ Cαβ −
∑
β

Cαβ
zαF

V̄ α
δp
∼

U∼ −
∑
β

Q∼β
=

0 Cαβ −Kαβ − Cαβ Cαβ
zαF

V̄ α
δµ
∼
α Q∼β

+
∑
α

(T∼1
+ T∼2

)

0 −
∑
β

Cαβ
zαF

V̄ α
Cαβ

zαF

V̄ α
−
∑
β

zβF

V̄ β
Cαβ

zαF

V̄ α
δξ
∼

−
∑
α

zαF

V̄ α
Q∼α

S =
∫



BT
[
DF +Dτ +DJ

]
B d


L =
∫



B∼w
�∼
T d


Cαβ =
∑
α

∫



�∼
1

JnJ�
Cαβ�∼

T d


Kαβ = θ
∑
α

∫



BTµKαβBµ�t d


R∼ =
∫



BT σ∼ d


U∼ =
∫



�∼

(
J� − 1

J�

)
d


T∼1
= θ

∫



BTµKαβBµ�t d
µ∼
α

T∼2
= (1 − θ)

∫



1

J�
BTµF KαβF

T Bµ�t d
µ∼
α

ϕ

Q
∼ β

=
∫



�∼
1

JnJ�
�∼
T (N∼

β −N∼
β

n
) d


(87)
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The matrices DF , Dτ and DJ result from the linearisation of F�, σ eff and J�
respectively. The matrices B and Bµ contain the derivatives of the quadratic

and linear interpolation functions respectively. The column Bw∼
also contains of

derivatives of the quadratic interpolation functions. For calculation a 27-node

brick element is chosen with 3 displacements in every node. In each corner of the

brick one pressure, 3 chemical potentials and an electric potential is calculated,

resulting in a total of 121 degrees of freedom per element. The code is verified

using analytical solutions of the linearised equations for a 1D medium subject to

stepwise change in external salt concentration [18]. The comparison is shown in

fig. 1 for the electrochemical potentials of the cations and anions. The analytical

solution is obtained by reducing the linearised equations to 3 diffusion equations.

Both the numerical solution as the analytical solution solution clearly show two

time constants, one for the diffusion of the ions and the other for the pressure

diffusion.

5 Discussion

The present approach to porous media mechanics integrates, on the one hand,

the rigourous mathematical framework of mixture theory and constitutive theory

including equipresence, and on the other hand, the choice of Lagrangian indepen-

dent and dependent variables as designed by Biot’s physical intuitive insight into

the correct variables that describe finite deformation of complex porous media.

The result of this integration is an elegant and simple mathematical derivation of

yet very generally applicable equations for finite deformation of ionised media.

As a comparison,the reader should take time to compare the present formulation

with those of [6, 14, 5, 11], and many others. The traditional Eulerian approach to

the mechanics of mixtures leads to tedious mathematical derivations that results

in many terms that are hard to interpret physically. Omong other complications,

it leads to separate functions for the free energy of each constituent. Hence, the

effort involved in evaluating these free energies is reduced by a factor n for a

mixture of n components, if a Lagrangian approach is used. The eq. (25) is a key

result which justifies the choice of [3] to express the free energy W as indepen-

dent from the velocities (eq. 2.5 in his paper). Because, to our best knowledge,

this independence from relative velocities cannot be shown for partial energies,
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the same assumption formulated for the partial free energies in [2] is far less obvi-

ous. So the experimental quantification of only one partial free energy is on itself

more complicated than the quantification of the total energy W . The quadratic

form of the total free energy (yielding linear constitutive relationships) for a 3D

Lagrangian quadriphasic model has
∑

n=1,9 n = 45 parameters (6 strains, 3 vol-

ume fractions = 9), whereas the corresponding form of the 4 Eulerian partial free

energies has 4
∑

n=1,18 n = 4 · 171 = 684 parameters (6 strains, 3 volume frac-

tions, 3 times 3 velocity components = 18 for each free energy). Lai et al. [11]

have tried hard to introduce the electroneutrality restriction in an Eulerian form

of the entropy inequality, and gave up because of the complexity of the resulting

expressions (personal communication). [20] uses a partially Lagrangian formu-

lation, which unfortunately is not sufficiently consistent to yield the advantage

of a single energy function. Numerous authors, using an Eulerian formulation of

mixture theory, gave up on the principle of equipresence because their equations

became intractable [6, 1]. These limitations disappear as a Lagrangian formula-

tion is used. Finally, the transition to a Lagrangian description is rewarding for

finding analytical and numerical solutions as well.

The specific choice of the form of the free energy (73) is the simplest of

its kind that produces Donnan swelling. It is probably a rough approximation

of the reality. It assumes that the mixing energy can be separated from the

elastic energy. This separation is known in polymer science as the Flory-Rehner

assumption, and has been disputed both for gels [19] as for biological tissue

[10]. A more detailed description of the free energy of the mixture can be

obtained along two tracks. One is the experimental route [12], the other is through

micromechanics [19, 8, 13]. The micromechanics route can take advantage of the

detailed knowledge available on electrostatic interactions. The best procedure is

probably an integration of the experimental and micromechanical approach.
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