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Abstract. In this work, we are interested in obtaining existence, uniqueness of the solution

and an approximate numerical solution for the model of linear thermoelasticity with moving

boundary. We apply finite element method with finite difference for evolution in time to obtain

an approximate numerical solution. Some numerical experiments were presented to show the

moving boundary’s effects for problems in linear thermoelasticity.
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1 Introduction

Let Qt =
{
(x, t) ∈ R2; α(t) < x < β(t), 0 < t < T

}
be the non-cylindrical

domain with boundary

6t =
⋃

0<t<T

{α(t), β(t)} × {t}
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and consider the following problem:

(I)


















∂2u

∂t2
−

∂2u

∂x2
+ η1

∂θ

∂x
= 0, ∀ (x, t) ∈ Qt

∂θ

∂t
− k

∂2θ

∂x2
+ η2

∂2u

∂x∂t
= 0, ∀ (x, t) ∈ Qt ,

u = θ = 0, ∀ (x, t) ∈ 6t ,

u(x, 0) = u0(x),
∂u

∂t
(x, 0) = u1(x),

θ(x, 0) = θ0(x); α(0) < x < β(0).

Existence and uniqueness of linear and nonlinear elasticity in a bounded or

an unbounded cylindrical domain, has been studied by several authors, among

them, [4] and [5].

In this work, we will investigate existence, uniqueness and approximate so-

lution of the problem (I ). We will also show the influence of moving boundary

employing numerical examples. For this we consider the following hypotheses:

H1: α, β ∈ C2([0, T);R),

with 0 < γ0 = min
0≤t≤T

γ (t), where γ (t) = β(t) − α(t),

H2: ∃k1 ∈ R, such that,

0 < k1 < 1 −
(
α′(t) + γ ′(t)y

)2
, for 0 ≤ t ≤ T and 0≤ y ≤ 1.

H3: k > 0, and η1.η2 > 0.

We will now consider a change of variables to transform the domainQt into a

cylindrical domainQ. Observe that, when(x, t) varies inQt the point(y, t) of

R2, with y = (x − α(t))/γ (t) varies in the cylinderQ = (0, 1) × (0, T). Thus,

we define the application

T : Qt → Q = (0, 1) × (0, T)

(x, t) 7→ (y, t) =
(x − α(t)

γ (t)
, t

)
.

(1)

The applicationT belongs toC2 and its inverseT −1 is alsoC2. The transfor-

mation of a moving boundary domain to a domain with fixed boundary has been

employed elsewhere (see [2, 10, 11]).
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Doing the change of variablev(y, t) = u(α(t) + γ (t)y, t) andφ(y, t) =

θ(α(t) + γ (t)y, t) and applying to the problema (I ), we obtain the following

equivalent problem defined in a fixed cylindrical domain:

(II)


























∂2v

∂t2
−

∂

∂y

(
a1(y, t)

∂v

∂y

)
+ a2(t)

∂φ

∂y

+a3(y, t) ∂2v
∂y∂t + a4(y, t) ∂v

∂y = 0, in Q

∂φ

∂t
− b1(t)

∂2φ

∂y2
+ b2(t)

∂2v

∂y∂t
+ b3(y, t)

∂φ

∂y

+b4(t)
∂v
∂y + b5(y, t) ∂2v

∂y2 = 0, in Q

v = φ = 0; ∀ (y, t) ∈ 6,

v(y, 0) = v0(y),
∂v

∂t
(y, 0) = v1(y),

φ(y, 0) = φ0(y), for 0 < y < 1.

where

b1(t) = k/γ (t)2 , b2(t) = η2/γ (t) , b3(y, t) = −(α′(t) + γ ′(t)y)/γ (t) ,

b4(t) = −γ ′(t)/γ (t)2 , b5(y, t) = b3(y, t)/γ (t) , a1(y, t) = 1/γ (t)2 −
(
b3(y, t)

)2
,

a2(t) = η1/γ (t) , a3(y, t) = 2b3(y, t) , a4(y, t) = −(α′′(t) + γ ′′(t)y)/γ (t).

Let (( , )), ‖ ∙ ‖ and( , ), | ∙ |, be respectively the scalar product and the norms

in H1
0 (0, 1) andL2(0, 1). We denote bya1(t, v, w) andb1(t, v, w) the bilinear

forms, continuous, symmetric and coercive, defined inH1
0 (0, 1) by

a1(t, v, w) =
∫ 1

0
a1(y, t)

∂v

∂y

∂w

∂y
dy,

b1(t, v, w) =
∫ 1

0
b1(t)

∂v

∂y

∂w

∂y
dy.

(2)

2 Existence and uniqueness

We shall first establish the existence and uniqueness of problem (II ) in Theorem 2

as auxiliary and then prove the following Theorem 1 of the original problem (I ).
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Theorem 1. Under the hypotheses(H1), (H2) and (H3) and given the initial

data

{u0, θ0} ∈ H1
0 (�0) ∩ H2(�0), u1 ∈ H1

0 (�0),

there exist functions{u; θ} : Qt → R, solution of Problem(I) in Qt , satisfying

the following conditions:

1. u ∈ L∞(0, T; H1
0 (�t) ∩ H2(�t)), u′ ∈ L∞(0, T; H1

0 (�t)),

u′′ ∈ L∞(0, T; L2(�t)),

2. θ ∈ L2(0, T; H1
0 (�t) ∩ H2(�t)), θ ′ ∈ L2(0, T; H1

0 (�t)).

Theorem 2. Under the hypotheses(H1), (H2) and (H3) and given the initial

data

{v0, φ0} ∈ H1
0 (0, 1) ∩ H2(0, 1), v1 ∈ H1

0 (0, 1),

there exists functions{v; φ} : Q → R, solution of Problem(II) in Q, satisfying

the following conditions:

1. v ∈ L∞(0, T; H1
0 (0, 1) ∩ H2(0, 1)), v′ ∈ L∞(0, T; H1

0 (0, 1)),

v′′ ∈ L∞(0, T; L2(0, 1)),

2. φ ∈ L2(0, T; H1
0 (0, 1)) ∩ H2(0, 1), φ′ ∈ L2(0, T; H1

0 (0, 1)).

Proof of Theorem 2. To prove the theorem, we introduce the approximate so-

lutions. LetT > 0 and denote byVm the subspace spanned by{w1, w2, ..., wm},

where{wν, λν; ν = 1, ∙ ∙ ∙ m} are solutions of the spectral problem((wi , v)) =

μ(wi , v), ∀v ∈ H1
0 (0, 1). If {vm; φm} ∈ Vm then it can be represented by

vm =
m∑

ν=1

dνm(t)wν(y), φm =
m∑

ν=1

gνm(t)wν(y). (3)
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Let us consider{vm; φm} solutions of the system of ordinary differential equa-

tions,

(III )




























(v′′
m, w) + a1(t, vm, w) + a2

(
∂φm

∂y
, w

)

+
(

a3
∂v′

m

∂y
, w

)
+

(
a4

∂vm

∂y
, w

)
= 0,

(φ′
m, w) + b1(t, φm, w) + b2

(
∂v′

m

∂y
, w

)
+

(
b3

∂φm

∂y
, w

)

+
(

2b4
∂vm

∂y
, w

)
+

(
b5

∂vm

∂y
,
∂w

∂y

)
= 0,

vm(0) = v0m → v0, in H1
0 (0, 1) ∩ H2(0, 1),

v′
m(0) = v1m → v1 in H1

0 (0, 1),

φm(0) = φ0m → φ0 in H1
0 (0, 1) ∩ H2(0, 1),

wherew ∈ Vm. The system (III) has local solution in the interval(0, Tm). To

extend the local solution to the interval(0, T) independent ofm, the following

estimates are necessary:

A priori estimate

Takingw = v′
m andw = φm in the equation (III)1 and (III)2, respectively, we

get
1

2

d

dt
|v′

m|2 + a1(t, vm, v′
m) + a2

(∂φm

∂y
, v′

m

)

+
(
a3

∂v′
m

∂y
, v′

m

)
+

(
a4

∂vm

∂y
, v′

m

)
= 0,

(4)

1

2

d

dt
|φm|2 + b1(t, φm, φm) + b2

(∂v′
m

∂y
, φm

)
+

(
b3

∂φm

∂y
, φm

)

+ 2b4

(∂vm

∂y
, φm

)
+

(
b5

∂vm

∂y
,
∂φm

∂y

)
= 0.

(5)
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Note that, we have the following relations:

a1(t, vm, v′
m) =

1

2

d

dt
a1(t, vm, vm) −

1

2

(
a′

1

∂vm

∂y
,

∂w

∂y

)
,

a2

(∂φm

∂y
, v′

m

)
= −

η1

η2
b2

(∂v′
m

∂y
φm

)
,

(
a3

∂v′
m

∂y
, v′

m

)
= −

γ ′

γ
|v′

m|2,

(
b3

∂φm

∂y
, φm

)
=

γ ′

2γ
|φm|2,

∣
∣
∣

(
b5

∂vm

∂y
,
∂φm

∂y

) ∣
∣
∣ ≤ c‖vm‖2 +

1

2
b1(t, φm, φm).

(6)

Multiplying (4) by (η2/η1), adding it to (5) and using (6) we have

η2

2η1

d

dt

(
|v′

m|2 + a1(t, vm, vm) +
η1

η2
|φm|2

)
+ b1(t, φm, φm)

≤ C
(
|v′

m|2 + ‖v0m‖2 + |φm|2
)
.

(7)

Knowing that a1(t, v, w) and b1(t, v, w) are coercive forms, by integrating

(7) and applying the Gronwall’s inequality, we get

|v′
m|2 + ‖vm‖2 + |φm|2 +

∫ t

0
‖φm‖2 ≤ c1

(
|v1m|2 + ‖v0m‖2 + |φ0m|2

)
ec2T . (8)

Second estimate

Taking the derivative with respect tot , of approximate system (III)1,2, and also

w = v′′
m, w = φ′

m, respectively, we obtain

(v′′′
m, v′′

m) + a1(t, v
′
m, v′′

m) + a2

(∂φ′
m

∂y
, v′′

m

)
+

(
a3

∂v′′
m

∂y
, v′′

m

)

+
(
(a′

3 + a4)
∂v′

m

∂y
, v′′

m

)
+ a′

1(t, vm, v′′
m) +

(
a′

2

∂φm

∂y
, v′′

m

)

+
(
a′

4

∂vm

∂y
, v′′

m

)
= 0

(9)
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and

ds(φ′′
m, φ′

m) + b1(t, φ
′
m, φ′

m) + b2

(∂v′′
m

∂y
, φ′

m

)
+

(
b3

∂φ′
m

∂y
, φ′

m

)

+ (2b4 + b′
2)

(∂v′
m

∂y
, φ′

m

)
−

(
b5

∂v′
m

∂y
,
∂φ′

m

∂y

)

+ b′
1(t, φm, φ′

m) +
(
b′

3

∂φm

∂y
, φ′

m

)
+ 2b′

4

(∂vm

∂y
, φ′

m

)

+
(
b′

5

∂vm

∂y
,
∂φ′

m

∂y

)
= 0.

(10)

We also have the following relations:

a1(t, v
′
m, v′′

m) =
1

2

d

dt
a′

1(t, v
′
m, v′

m) −
1

2
a′

1(t, v
′
m, v′

m),

(
a3

∂v′′
m

∂y
, v′′

m

)
=

γ ′

γ
|v′′

m|2,

a′
1(t, vm, v′′

m) =
d

dt

(
a′

1
∂vm

∂y
,
∂v′

m

∂y

)
−

(
a′′

1
∂vm

∂y
,
∂v′

m

∂y

)
−

(
a′

1
∂v′

m

∂y
,
∂v′

m

∂y

)
,

a2

( ∂φ′
m

∂y
, v′′

m

)
= −

η1.b2

η2

(∂v′′
m

∂y
, φ′

m

)
,

(
b3

∂φ′
m

∂y
, φ′

m

)
=

1

2

γ ′

γ
|φ′

m|2

∣
∣
∣
∣

(
a′

1
∂vm

∂y
,
∂v′

m

∂y

)∣
∣
∣
∣ ≤ C‖vm‖2 +

η2

4η1
a1(t, v

′
m, v′

m).

(11)

Multiplying (9) by (η1/η2), adding it to (10) and using (11), we obtain

η2

2η1

d

dt

{
|v′′

m|2 + a1(t, v
′
m, v′

m) +
(
a′

1

∂vm

∂y
,
∂v′

m

∂y

)
+

α

β
|φ′

m|
}

+ b1(t, φ
′
m, φ′

m) ≤ C
(
‖vm‖2 + ‖v′

m‖2 + |v′′
m|2 + ‖φm‖2 + |φ′

m|2
)
.

(12)

From (III)1,5, |v′′
m(0)|2 and |φ′

m(0)|2 are bounded. Hence, by integrating (12)

with respectt and applying the Gronwall’s inequality, we get

‖v′
m‖2 + |v′′

m|2 + |φ′
m|2 +

∫ t

0
‖φ′

m‖2 ≤ C. (13)
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Third estimate

Taking w = − ∂2vm/∂y2 andw = − ∂2φm/∂y2, in the approximate system

(III) 1,2, we have

(
v′′

m, −
∂2vm

∂y2

)
+ a1

(
t, vm, −

∂2vm

∂y2

)
+ a2

(∂φm

∂y
, −

∂2vm

∂y2

)

+
(
a3

∂v′
m

∂y
, −

∂2vm

∂y2

)
+

(
a4

∂vm

∂y
, −

∂2vm

∂y2

)
= 0

(14)

and

(
φ′

m, −
∂2φm

∂y2

)
+ b1

(
t, φm, −

∂2φm

∂y2

)
+ b2

(∂v′
m

∂y
, −

∂2φm

∂y2

)

+ 2b4

(∂vm

∂y
, −

∂2φm

∂y2

)
+

(
b5

∂vm

∂y
, −

∂3φm

∂y3

)
= 0.

(15)

Note that, we have the following equalities:

a1

(
t, vm, −

∂2vm

∂y2

)
= a1

(
t,

∂vm

∂y
,
∂vm

∂y

)
+

(∂a1

∂y

∂vm

∂y
,
∂2vm

∂y2

)

b1

(
t, φm, −

∂2φm

∂y2

)
= b1

(
t,

∂φm

∂y
,
∂φm

∂y

)

(
b5

∂vm

∂y
, −

∂3φm

∂y3

)
=

(
b5

∂2vm

∂y2
,
∂2φm

∂y2

)
−

(∂b5

∂y

∂vm

∂y
,
∂2φm

∂y2

)
.

(16)

From (14), (15) and (16) and sincea1(t, v, w) andb1(t, v, w) are coercive forms,

we obtain

∣
∣
∣
∂2vm

∂y2

∣
∣
∣
2

≤ c6
(
‖φm‖2 + |v′′

m|2 + ‖v′
m‖2 + ‖vm‖2

)
, (17)

∣
∣
∣
∂2φm

∂y2

∣
∣
∣
2

≤ c7
(
|φ′

m|2 + ‖φm‖2 + |v′′
m|2 + ‖v′

m‖2 + ‖vm‖2
)
. (18)

The estimates obtained in(8), (13), (17) and(18), permit us to pass the limits

in the approximate system (III)1,2 in the Galerkin method and hence, we have

proved the existence of solutions{v, φ} in the sense defined in Theorem 2.
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Uniqueness of solution

Let {v̂, φ̂} and {̃v, φ̃} be two solutions of Problem (II). Thenv = v̂ − ṽ and

φ = φ̂ − φ̃ are also solutions of Problem (II), with null initial conditions. Then,

multiplying the equation (II)1,2, respectively by(η1/η2)v andφ, we obtain

|v′|2 + ‖v‖2 + |φ|2 ≤ c
∫ t

0

(
|v′|2 + ‖v‖2 + |φ|2

)
. (19)

From Gronwall Lemma, we have|v′|2 + ‖v‖2 + |φ|2 = 0 and therefore, we

conclude thatv = φ = 0 for all 0 < t < T . This completes the proof of

Theorem 2. �

The original problem (I)

Now let us restate the previous results for the original problem (I) in order to

prove Theorem 1.

Proof of Theorem 1. Let {v, φ} be a solution of Problem(II ), with initial data

given by

v0(y) = u0

(
α(0) + γ (0)y

)
, φ0(y) = θ0

(
α(0) + γ (0)y

)
,

v1(y) = u1

(
α(0) + γ (0)y

)
+

(
α′(0) + γ ′(0)y

)
u′

0

(
α(0) + γ (0)y

)
.

Consider the functionsu(x, t) = v(y, t) and θ(x, t) = φ(y, t), wherex =

α(t) + γ (t)y. To verify thatu(x, t) andθ(x, t), under the hypotheses of Theo-

rem 1, are a solution of problem (I), it is sufficient to observe that the mapping:

(x, t) → ((x − α)/γ , t) of the domainQt into Q = (0, 1) × (0, T) is of class

C2. Since that

1.
∂u2

∂x2
=

1

γ

∂v2

∂y2
, η1

∂θ

∂x
= a2

∂θ

∂y
,

2. u′′ = v′′ −
∂

∂y

(
a1

∂v

∂y

)
+ a3

∂2v

∂y∂t
+ a4

∂v

∂y
+

1

γ 2

∂2v

∂y2

3. k
∂2θ

∂x2
= b1

∂2φ

∂y2
,

∂θ

∂t
=

∂φ

∂t
+ b3

∂φ

∂y
,

4. η2
∂2u

∂x∂t
= b2

∂2v

∂y∂t
+ b4

∂v

∂y
,
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and from problem (II) we also have that{u, θ} satisfies the problem (I).

The regularity of{v(y, t), φ(y, t)} given by Theorem 2 implies that{u(x, t),

θ(x, t)} is a solution of problem (I) and the uniqueness of the solution of problem

(I) is a direct consequence of the uniqueness of problem (II). �

3 Approximate solution

Our goal in this section is the numerical implementation of approximate solu-

tions. To obtain the numerical approximate solutions we will use both finite

element method and finite difference method. Moreover, some numerical ex-

periments will be presented to analyze the effect of the moving boundary in the

thermoelasticity system.

For convenience, our numerical analysis using finite element method approx-

imation will be based on the equivalent problem (II) in the rectangular domain,

instead of the problem (I), for which the domain depends on time. We will con-

sider, in numerical simulations, the case in which the following change in the

boundary functions,α(t) = −K (t) andβ(t) = K (t), is assumed.

Note that, now we have

Qt =
{
(x, t) ∈ R2; x = K (t)y, y ∈ (−1, 1), t ∈ (0, T)

}
(20)

being the non-cylindrical domain with boundary

6t =
⋃

0<t<T

{−K (t), K (t)} × {t},

and consequently we have the fixed cylindrical domainQ = (−1, 1) × (0, T).

In this way we obtain the following relation between the functions:

u(x, t) = v(y, t) = v

(
x

K (t)
, t

)
and

θ(x, t) = φ(y, t) = φ

(
x

K (t)
, t

)
.

(21)
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3.1 Variational form of the problem

Let us consider the following variational form, given by(III )1,2,

(v′′
m, w) + a1(t, vm, w) + a2

(∂φm

∂y
, w

)
+

(
a3

∂v′
m

∂y
, w

)

+
(
a4

∂vm

∂y
, w

)
= 0

(22)

and

(φ′
m, w) + b1(t, φm, w) + b2

(∂v′
m

∂y
, w

)
+

(
b3

∂φm

∂y
, w

)

+ 2b4

(∂vm

∂y
, w

)
−

(
b5

∂vm

∂y
,
∂w

∂y

)
= 0, ∀w ∈ Vm,

(23)

where now, using (20), the functionsbi andai are given by

b1 = k/K 2(t), b2 = η2/K (t), b3 = −K ′(t)y/K (t),

b4 = −K ′(t)/K 2(t), b5 = −b3/K (t), a1 = 1/K 2(t) − b2
3,

a2 = η1/K (t), a3 = 2b3, a4 = −K ′′(t)y/K (t).

(24)

Galerkin method and approximation

Consider the functions{vm; φm} ∈ Vm defined in (3). Takingw = ϕ j (y) and

substituting in (22) and (23), we obtain the system of ordinary equations, given

by






A d′′(t) +
(

B(t) + E(t)
)
d(t) + (a2C)g(t) + D(t) d′(t) = 0,

A g′(t) +
(
b1F + G(t)

)
g(t) + (b2C)d′(t) +

(
2b4C + R(t)

)
d(t) = 0,

(25)
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where

A =
∫ 1

−1
ϕi (y) ϕ j (y) dy, B(t) =

∫ 1

−1
a1

∂ϕi (y)

∂y

∂ϕ j (y)

∂y
dy,

C =
∫ 1

−1

∂ϕi (y)

∂y
ϕ j (y) dy, D(t) =

∫ 1

−1
a3

∂ϕi (y)

∂y
ϕ j (y) dy,

E(t) =
∫ 1

−1
a4

∂ϕi (y)

∂y
ϕ j (y) dy, F =

∫ 1

−1

∂ϕi (y)

∂y

∂ϕ j (y)

∂y
dy,

G(t) =
∫ 1

−1
b3

∂ϕi (y)

∂y
ϕ j (y) dy, R(t) =

∫ 1

−1
−b5

∂ϕi (y)

∂y

∂ϕ j (y)

∂y
dy.

(26)

In (25) we have introduced

d(t) = (d1(t), ∙ ∙ ∙ dm(t))t and g(t) = (g1(t), ∙ ∙ ∙ gm(t))t .

For numerical reasons, we can rewrite matrixB(t) in the formB = B1 + B2

by using (24), where

B1(t) =
1

K (t)2

∫ 1

−1

∂ϕi (y)

∂y

∂ϕ j (y)

∂y
dy,

B2(t) = −
( K ′(t)

K (t)

)2
∫ 1

−1
(y)2 ∂ϕi (y)

∂y

∂ϕ j (y)

∂y
dy

3.2 Finite element approximation

We now present a semi-discrete formulation for problem (25) using the Galerkin

finite element method to discretize the spatial variable. We first applied the

method to find the approximate solution of the exact solutionv(y, t) of the Prob-

lem (II) and later, using the transformation (21) we can obtain the approximate

solution ofu(x, t) for the Problem(I) in the domainQt .

First, we divide the domain� = (0, 1) in local domain�i = (yi , yi +1). Then,

� = int
(
∪m

i =1 �̄i

)
and�i ∩ � j = ∅, if i 6= j . In finite element method, the

ϕi are piecewise polynomials of some degree in� and vanish on∂�. More
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specifically, in this work, we have used the basis function

ϕi (y) =






y − yi −1

h
, ∀ y ∈ [yi −1, yi ]

yi +1 − y

h
, ∀ y ∈ [yi , yi +1]

0, ∀ y /∈ [yi −1, yi +1]

(27)

where we are considering the uniform mesh,h = hi = yi +1−yi , i = 1, 2, . . . , m

in the discretization inm-parts, with−1 = y1 < y2 < ∙ ∙ ∙ < ym+1 = 1. Note

that, if |i − j | > 2, then(ϕi , ϕ j ) = 0, and(∂ϕi /∂y, ∂ϕ j /∂y) = 0. Hence all the

matrices of system are tridiagonal.

Matrix calculation

For each�i , we have to calculate each integral defined in (26), using the functions

(24), (27) and its derivatives. Doing the calculus, we obtain, respectively the

following elements, for each tridiagonal matrixA, B1, B2, C, D, E, F , G and

R:

aii =
4

3m
, ai, i +1 = a i +1, i =

1

3m
,

b1
i i =

m

K 2
, b1

i, i +1 = b1
i +1, i = −

m

2K 2
,

b2
i i = −

m(K ′)2

3K 2

(
3y2

i +
4

m2

)
,

b2
i, i +1 = b2

i +1, i =
m (K ′)2

6K 2

(
3y2

i +
6yi

m
+

4

m2

)

cii = 0, ci, i +1 = −
1

2
, c i +1, i =

1

2

dii =
4K ′

3mK
, d i, i +1 =

K ′

3K

( 4

m
+ 3yi

)
, d i +1, i = −

K ′

3K

( 2

m
+ 3yi

)
,

eii =
2K ′′

3mK
, ei, i +1 =

K ′′

6K

( 4

m
+ 3yi

)
, ei +1,i = −

K ′′

6K

( 2

m
+ 3yi

)
,

fi i = m, fi, i +1 = f i +1,i = −
m

2

gii =
2K ′

3m K
, gi, i +1 =

K ′

6K

( 4

m
+ 3yi

)
, gi +1,i = −

K ′

6K

( 2

m
+ 3yi

)
,

ri, i = −
mK′yi

K 2
, ri, i +1 = ri +1, i =

K ′

2K 2

(
1 + myi

)
,

(28)
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3.3 Finite difference method

The equation (25) represent a system of ordinary differential equations of second

order and due to matrices characteristics (dependent on the variablesy and t)

of system, obtaining the solution is not always possible. So, we will apply a

numerical method to obtain the approximated solution for the system (25), using

the approximate Newmark’s Method (see, for instance, Hugles [7], pp 493).

Letdn = d(tn)andgn = g(tn)be the approximate solution of the exact solution

d(t) andg(t) of (25)1,2, respectively, where we denote the discrete times in the

interval[0, T] by tn = n1t , n = 0, 1 ∙ ∙ ∙ N.

For δ ≥ 1/4, with δ ∈ R, consider the following approximation

d∗n = δ dn+1 + (1 − 2δ)dn + δ dn−1

g∗n = δ gn+1 + (1 − 2δ)gn + δgn−1,

(29)

and for the first and second derivative, we take the difference operator in the

following form

τdn =
dn+1 − dn−1

21t
,

τgn =
gn+1 − gn−1

21t
,

δ2dn =
dn+1 − 2dn + dn−1

1t2

(30)

which, for this approximation the discrete error can be showed to be of order

O(1t2).

Coupled system

For the system(25)1,2 at the discrete mesh pointstn = n1t , using (29) and (30),

we obtain the following coupled system:






Ân dn+1 + B̂n gn+1 = Ĉdn − D̂dn−1 − Êgn − F̂gn−1

Ãn dn+1 + B̃n gn+1 = −C̃dn + D̃dn−1 − Ẽgn + F̃gn−1
(31)
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where,

Ân = A + δ1t2(B1)n +
1t

2
Dn, B̂n = an

2 δ1t2 C

Ĉn = 2A − 1t2
(
(1 − 2δ) (B1)n + (B2)n + En

)

D̂n = A + δ1t2(B1)n −
1t

2
Dn, Ên = an

2 (1 − 2δ)1t2C

F̂n = an
2 δ1t2C , Ãn =

bn
2

2
C, B̃n =

A

2
+ bn

1 δ1t F

C̃n = 1t
(
2bn

4 C + Rn
)
, D̃n =

bn
2

2
C

Ẽn = 1t
(
bn

1(1 − 2δ) F + Gn
)
, F̃n =

A

2
− bn

1 δ1t F

(32)

To determine the solution{dn, gn}, the coupled system of algebraic equations

(31) may be solved by iteration, as follows: To start the iteration, we first take

n = 0 in (31) and rewrite the system as






Â0 d1 + B̂0 g1 = Ĉ0 d0 − D̂0 d−1 − Ê0 g0 − F̂0 g−1

Ã0 d1 + B̃0 g1 = −C̃0 d0 − D̃0 d−1 − Ẽ0 g0 + F̃0 g−1

where the right-hand side is determined by the (starting) values, since the exact

solutions{v(y, t); φ(y, t)} are known at timet = 0 and{v0; φ0} are just the

initial values, i.e,d0 = v0(.) = v(., 0), g0 = φ0(.) = φ(., 0), where we have

used (3) and (27).

We can calculate an approximation for{d−1; g−1} by the second order Taylor

extrapolation of{v(., t); φ(., t)} from t0 = 0, vi z,

d−1 = d0 − 1t d′(0) +
1t2

2
d′′(0), g−1 = g0 − 1t g′(0), (33)

in which the values ofd′(0), d′′0) andg′(0) are given by

d′(0) =
∂v

∂t
(yi , 0) = v1(yi ), d′′(0) =

∂2v

∂t2
(yi , 0), g′(0) =

∂φ

∂t
(yi , 0),
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calculated from the equation(II )1 and (II )2, at t0 = 0 and the initial values

v0(.) = v(., 0) andφ0(.) = φ(., 0).

The system may be solved uniquely for{d1, g1}, since its coefficient matrix is

non singular. Having determined the values{d1, g1}, then forn = 1, 2, ∙ ∙ ∙ N, we

obtain the approximate solution{dn+1, gn+1} for the coupled system of algebraic

equations (31), which can be rewritten in the form of block matrix,






Ân B̂n

Ãn B̃n











dn+1

gn+1




 =






Sn

Tn




 (34)

where,

Sn = Ĉdn − D̂dn−1 − Êgn − F̂gn−1 and

Tn = −C̃dn + D̃dn−1 − Ẽgn + F̃gn−1.

The system (34) may be solved uniquely, since the matrix is non-singular. In

order to solve the system we can use de Gauss Elimination, LU factorization,

(see [6, 9]) or Uzwa Method (see [6]).

Note that each square matrix of linear system is of(m−1)th order, since every

matrix defined by (32) is of order(m − 1). So the linear system is of order

2(m − 1) × 2(m − 1), with the coefficient block matrix and the right-hand side

known from the previous iteration.

Uncoupled system

Since{dn, gn} must be solved simultaneously at each time step, the preceding

numerical scheme is computationally coupled. From the numerical standpoint

the coupled system is larger and hence harder to solve than an uncoupled system

involving only dn+1 or only gn at each time steptn. In order to get uncoupled

system, (see [1] and [12]), we replace the central difference by the backward

extrapolation for the first derivative,

d′(tn) =
1

21t

(
3dn − 4dn−1 + dn−2

)
(35)

Comp. Appl. Math., Vol. 24, N. 3, 2005



“main” — 2006/3/9 — 16:59 — page 455 — #17

M.A. RINCON, B.S. SANTOS and J. LÍMACO 455

then by substituting it in the system(25)1,2 together with (29) and (30), we obtain,

after some simple calculation,

Ân dn+1 = B̂n dn − Ĉn dn−1 − D̂n gn+1 − Ên gn − F̂n gn−1

Ãn gn+1 = −B̃n dn + C̃n dn−1 − D̃n dn−2 − Ẽn gn + F̃n gn−1
(36)

where

Ân = A + δ1t2Bn
1 +

1t

2
Dn, B̂n = 2A − 1t2

(
(1 − 2δ)Bn

1 + Bn
2 + En

)
,

Ĉn = A + δ1t2Bn
1 −

1t

2
Dn, D̂n = δan

21t2C,

Ên = (1 − 2δ)an
21t2 C, F̂n = δan

21t2C,

Ãn =
1

2
A + δbn

11t F, B̃n =
1

2

(
3bn

2 + 4bn
41t

)
C + 1t Rn,

C̃n = 2bn
2 C, D̃n =

1

4
C̃n,

Ẽn = 1t
(
(1 − 2δ) bn

1 F + Gn
)
, F̃n =

1

2
A − δbn

11t F.

(37)

We start the iteration by takingn = 0 in (36)2 and then takingn = 0 in (36)1,

to obtain

Ã0g1 = −B̃0d0 + C̃0d−1 − D̃0d−2 − Ẽ0g0 + F̃0g−1

Â0d1 = B̂0d0 − Ĉ0d−1 − D̂0g1 − Ê0g0 − F̂0g−1
(38)

The terms on the right-hand side of(38)1, now involve the values{d0, d−1,

d−2, g0, g−1} which are known by (33) and the termd−2 calculated by taking

n = 0 in (35),

d−2 = −3d0 + 4d−1 + 21t d′(0) (39)

Therefore, the value ofg1 is calculated in(38)1 and the value ofd1 can be

determined from(38)2. Now we can go to iteration stepsn = 1, 2 ∙ ∙ ∙ , N

similarly, by first solving(36)2 then (36)1 alternatively in each step. In this

manner the numerical system is uncoupled in this computational scheme and we

obtain the values{gn, dn} for n = 1, 2, ∙ ∙ ∙ N. These values together with the

starting values, constitute the finite element approximate solutions to the initial

boundary value problem of Problem(II) .
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4 Numerical simulation

A numerical example will be given to illustrate some features of the present

model, using the method developed for the uncoupled system that is more effi-

cient. In the example, we need the constantsη1, η2 andk, which give rise to the

coupling of the parabolic and hyperbolic equation in the thermoelastic system(I) .

The constants are given by the following formulas

η1 =
α(3λ + 2μ)

√
θ0√

(λ + 2μ)ρ c l2
, η2 = lη1, k =

k

c l
√

ρ(λ + 2μ)
.

wherec is the specificheat;α is the coefficient of thermal expansion;k is the

thermal conductivity;l = 2K (0) is the length of the string;ρ is the density of

the string;θ0 is the initial temperature;λ andμ are the coefficients of Lamé,

μ =
Eν

(1 + ν)(1 − 2ν)
, λ =

E

2(1 + ν)
,

whereν is the coefficient of Poisson and E is the Young’s modulus.

For the numerical example, these values will be calculated from the physical

properties ofaluminum. In this case, we haveμ = 26.24 × 109 and λ =

58.41 × 109. Using the thermal and mechanical properties of aluminum, we

obtain the approximate valuesη1 = 0.164, η2 = 0.161 andk = 0.177.

Let us consider in (29) the weightδ = 0.5 and let � = (−K (t), K (t)) be

divided intom subintervals, i.e,h = 2/m and1t = T/N, for different values

of N andT for the discrete time. To calculate the coefficients defined in (24) in

each step, the functionK (t) that defines the time dependence of the boundary

for the non-cylindrical domainQt in (20) must be given. In this example it is

given byK (t) = 1 − 1/ exp(t+1). Note that in this case,Qt tends toQ rapidly

ast increases. This particular function is taken in order to satisfy the hypothesis

H2, i.e, K ′(t) ≈ 1. From the physical point of view, we require that the speed

of the end points be less than the “characteristic” speed of the system.

Note that when only wave equations for small vibrations of elastic string or

beam equation, both with moving boundaries, the monotonicity of those func-

tions is not required (see [3], [8], [13]).

We consider the initial temperature, the initial position and velocity given by

φ0(y) = 0.033(1 − y2), v0(y) = 0.057(y2 − 1) and v1(y) = 0. (40)
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In all the figures the space variable is the axis-x, by the change of variable

y = (x − α(t))/γ (t)).

For Fig. 1–Fig. 4 we have used1t = 0.03 andh = 0.02, with N = m = 100

andT = 3. Fig. 1 and Fig. 2, respectively, shows the temperatureθ(x, t) and

the displacementu(x, t) in the midpointx = 0.

20151050

0.04

0.03

0.02

0.01

0

-0.01

Figure 1 – Temperature at midpointθ(0, t).

20151050

0.06

0.04

0.02

0

-0.02

-0.04

-0.06

Figure 2 – Displacement at midpointu(0, t).

Fig. 3 and Fig. 4, show the approximate solutionsθ(x, t∗)andu(x, t∗), in the in-

terval[0, T] = [0, 3] for different values oft∗, t∗ = 0, 0.25, 0.75, 1.5, 2.25, 3.0.

Note that the interval of the boundary has varied from[−0.63, 0.63] to

[−0.98, 0.98].

To obtain Fig. 5–Fig. 8, we have used1t = 0.1 andh = 0.04. In Fig. 5 and

Fig. 6 the evolution of the displacement functionu(x, t) is plotted, showing the

profile of the displacement, where time varies from 0 to 5 and 0 to 10, at 0.1

interval respectively.
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10.80.60.40.20-0.2-0.4-0.6-0.8-1

0.04

0.02

0

-0.02

Figure 3 –θ(x, t∗) at t∗ = 0, 0.25, 0.75, 1.5, 2.25, 3.0.

10.80.60.40.20-0.2-0.4-0.6-0.8-1

0.06

0.04

0.02

0

-0.02

-0.04

-0.06

Figure 4 –u(x, t∗) at t∗ = 0, 0.25, 0.75, 1.5, 2.25, 3.0.

u(x, t)
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0.01
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4
3

2
1

0

Figure 5 – Displacement with 50 time steps.

In Fig. 7 and Fig. 8 the evolution of the temperature functionθ(x, t) are plotted,

showing the profile of the temperature, where time varies from 0 to 5 and 0 to

10, at 0.1 interval respectively.
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u(x, t)
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Figure 6 – Displacement with 100 time steps.
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Figure 7 – Temperature with 50 time steps.
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Figure 8 – Temperature with 100 time steps.
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