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 ■ INTRODUCTION

Vascular endothelial growth factor (VEGF) and its receptors 
play fundamental roles in complex physiological processes, 
such as angiogenesis by which new blood vessels develop from 
existing vessels (1).

Melatonin (N-acetyl-5-methoxytryptamine) is a lipophilic 
hormone with various physiological roles in mammals; it is 
synthesized from the amino acid tryptophan and is released from 
pinealocytes in the pineal gland during periods of darkness (2). 
Melatonin, a powerful antioxidant and free radical scavenger, 
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for 30 days. The effects of melatonin on the expression of VEGF, VEGFR1 and VEGFR2 were established by 
immunohistochemistry analysis. The effects of melatonin on antioxidant enzyme activities were demonstrated 
by spectrophotometric analysis.
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supports the maturation and ovulation of follicles and protects 
follicles from oxidative stress, thus exerting a positive effect on 
reproductive functions (3,4). Melatonin is closely related to sex 
steroids, especially in the reproductive system (5,6). Melatonin 
alters sex hormone synthesis by inhibiting steroidogenesis via 
direct changes in the cAMP levels of theca cells (7). Importantly, 
melatonin, which exists in the ovary, impacts reproductive 
functions (8,9). Many studies have emphasized that melatonin 
has multiple protective effects on pathological and physiological 
conditions (10). Endothelial cell migration is an essential step 
in the process of angiogenesis, and the migration of endothelial 
cells is initiated by luteinizing hormone secretion in the ovarian 
follicle (11). In mammals, the angiogenesis of luteinized follicles is 
increased by luteinizing hormone secretion (12). In one study, the 
administration of exogenous melatonin was effective at increasing 
the concentrations of gonadotropins, such as follicle stimulating 
hormone and luteinizing hormone (13). Notably, follicle stimulating 
hormone and luteinizing hormone are related to the synthesis of 
growth factors. VEGF, one of these growth factors, is closely 
related to angiogenesis in the follicular phase. VEGF is important 
in the nutritional support and development of the corpus luteum and 
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stroma (14). Some studies have focused on the immunoreactivity of 
VEGF in the ovary (15,16). However, there is minimal information 
available on the role of melatonin in VEGF, VEGFR1, and VEGFR2 
expression in vital biological functions such as angiogenesis and 
reproduction. This study focuses on a similar paradigm, including 
melatonin treatment, VEGF expression, and antioxidant enzyme 
activity. Therefore, the present research examines the effects of 
melatonin on VEGFA and its receptors (VEGFR1 and VEGFR2), 
as well as the activity of antioxidant enzyme levels and lipid 
peroxidation in adult female rat ovaries.

 ■ MATERIALS AND METHODS

Animals
This study was conducted on 45 female Wistar rats aged 

between 8 and 10 weeks and weighing 350–450 g. In this study, 
which was planned in accordance with the standards determined 
by the Institutional Animal Care and Use Committee at Akdeniz 
University Medical School (Animal Committee Review and 
Approval No: 2018.01.014), animals were divided into the following 
groups: Group 1, control (C, n=15); Group 2, vehicle (V, n=15); and 
Group 3, melatonin (M, n=15) (Table 1). The melatonin dose and 
administration protocol were based on our previous studies (17,19). 
Melatonin was administered by intraperitoneal (i.p.) injection at 50 
mg/kg/day for 30 days in the M group; the same volume of 10% 
ethanol (used as a solvent for melatonin) was administered to the 
V group.

Histologic analysis
Dissected ovaries were placed in formaldehyde for 12h for 

histological analysis. Ovaries were cryosectioned at 5 μm using a 
cryostat. The sections were stained with haematoxylin-eosin and 
analysed under a light microscope.

Immunohistochemical staining
Immunohistochemical analysis was performed according to a 

well-established method (20). Frozen ovarian tissue sections were 
air-dried for 30 min at room temperature. These sections were 
washed with PBS twice for 5 min each. The sections were treated 
with 3% hydrogen peroxidase in methanol to quench endogenous 
peroxidase activity and subsequently washed with PBS. Ovarian 
tissue sections were incubated with a blocking solution for 7 min 
at room temperature in a humidified chamber. These sections were 
incubated with VEGF (Abcam, ab46154, dilution; 1/50), VEGFR1 
(Abcam, ab2350, dilution; 1/25) and VEGFR2 (Abcam, ab39256, 
dilution; 1/50) antibodies at +4°C overnight. The following day, 
the sections were incubated with SignalStain Boost IHC Detection 
Reagent (Cell Signaling, 8114). The reaction products were 
visualized using Dab (Cell Signaling, #8059). These sections were 
counterstained with Mayer’s haematoxylin and mounted with 
Entellan. Then, images were taken with a light microscope.

Immunofluorescence staining
As previously described, immunofluorescence analyses were 

performed (19). Frozen ovarian tissue sections were air-dried for 
30 min at room temperature. These sections were washed with PBS 
twice for 5 min each and incubated with 2.5% normal goat serum 
(Vector, S-1012) for 1h at room temperature in a humidified chamber. 
Subsequently, these sections were incubated overnight at +4°C 
with VEGF (Abcam, ab46154, dilution; 1/100), VEGFR1 (Abcam, 
ab2350, dilution; 1/100) and VEGFR2 (Abcam, ab39256, dilution; 
1/500) antibodies. The next day, the sections were incubated with 
secondary antibodies for 45 min in darkness.

Fluorescence microscopy
Immunoreactive staining measurements were performed 

as described in our previous study (21). A Zeiss Stemi SV11 
stereomicroscope was used to measure fluorescence intensity. 
Fluorescent images acquired via a rhodamine filter were compared 
utilizing the 8 BPP greyscale format whereby each pixel contains 8 
bits of information codifying brightness, with a range of 0 to 250. 
The scale for pixel brightness or the pixel grey value was constructed 
such that higher numbers indicate greater pixel brightness. Digital 
images were captured with a slow scan CCD camera (Spot RT, 
Diagnostic Instruments, Scientific Instrument Company, Inc., 
Campbell, CA, USA). For the quantification of pixel brightness, 
images were captured using a ×25 objective and Image-Pro Plus 
Software Version 6.2 (Media Cybernetics Rockville, MD, USA). 
The exposure time was optimized to ensure that only a few pixels 
were saturated at 250 grey values. However, all images representing 
the same labelling were taken under the same exposure conditions. 
An interactive threshold was used to detect the pixel brightness of 
minimum fluorescence. Threshold values ensured the inclusion of 
the entire signal range in the sample. This value was further used to 
extract and compare the pixel number between animals of the same 
group and between experimental groups.

Biochemical analyses
Ovary samples were sonicated (BandelinSonopuls, HD 2070, 

Bandelin Electronic GmbH & Co. KG, Berlin, Germany) in 500 μl 
ice-cold buffer (50 mM potassium phosphate pH 7.0, 1 mM EDTA) 
and centrifuged (thiobarbituric acid reactive substance (TBARS); 
15,000 g for 10 min at 4°C, glutathione peroxidase (GPx); catalase 
(CAT); 10,000 g for 15 min at 4°C, superoxide dismutase (SOD); 
1,500 g for 5 min at 4°C). The supernatants were collected 
and stored at -80°C for later biochemical analysis according to 
well-established biochemical analysis methods (18).

Measurement of superoxide dismutase (SOD) activity
SOD activity was assessed using an SOD activity assay kit (Cayman 

Chemical, Ann Arbor, USA) in accordance with the previously methods 
described by Misra and Fridovich, Kaya et al. (18,22). For the evaluation 
of SOD activity, the xanthine oxidase-hypoxanthine system, which 
continuously forms the superoxide anion, was used.

Table 1 - Animal groups.

Groups Melatonin-treated Injected n

Group l: Control (C) - 15

Group 2: Vehicle (V) 10% Ethanol 15

Group 3: Melatonin (M) 50 mg/kg/day Melatonin 15
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Measurement of catalase (CAT) activity
An assay kit (Cayman-707002) and spectrophotometric analysis 

were used to measure CAT enzymatic activity in ovary tissues in 
accordance with the methods previously described by Aebi, Kaya et al. 
(18,23) and were expressed in units per milligram of protein at 25°C.

Measurement of glutathione peroxidase (GPx) activity
Glutathione peroxidase activity was determined indirectly by the 

coupled reaction with glutathione reductase using a GPx assay kit 
(Sigma–Aldrich Chemie, Steinheim, Germany) in accordance with 
the methods previously described by Paglia and Valentine, Kaya et al. 
(18,24). Oxidized glutathione was converted to the reduced state by 
glutathione reductase, which was accompanied by the oxidation of 
NADPH to NADP with a decrease in absorbance of 340 nm. One unit 
of the enzyme that causes the oxidation of NADPH per min at 25°C 
is defined as an enzyme activity unit, as we previously described (18).

Thiobarbituric acid reactive substance (TBARS) assay
As described in earlier studies (18,25), using a fluorometric method, 

we determined ovary TBARS levels (MDA; malondialdehyde) using 
1,1,3,3-tetraethoxypropane as a standard. The protein concentrations 
were analysed spectrophotometrically according to a modified Bradford 

method using bovine serine albumin as the standard (Shimadzu RF-
5500, Kyoto, Japan), as we previously described (18).

Statistical analysis
One-way ANOVA with post hoc Tukey’s test was applied for 

statistical analyses, and significance levels were determined as 0.05 
(Statistica 6.0 software; Stat Soft, Tulsa, OK, USA).

 ■ RESULTS

Antioxidant enzyme activities and lipid peroxida-
tion in ovarian tissues

MDA, SOD, CAT, and GPx enzyme activities established 
for the studied groups are summarized in Figure 1. A beneficial 
effect of melatonin treatment was found by comparing SOD, CAT, 
GPx activities and MDA levels in ovarian tissues. Compared to 
vehicle treatment, melatonin treatment significantly increased all 
antioxidant enzyme activities; however, melatonin administration 
significantly attenuated MDA levels in the melatonin group 
(p<0.05). There was no significant difference between the control 
and vehicle groups (Figure 1).

Diagram showing the antioxidant enzymes and MDA levels of the animal groups. Note that MDA levels were significantly reduced, while antioxidant enzymes 
were significantly increased after melatonin administration in both experimental paradigms. Data are shown as the mean ± S.E.M.; n = 15 rat/group. *, p<0.05 
indicates the significance compared to the respective control values, #, p<0.05 indicates the significance compared to the respective vehicle values.

Figure 1 - Antioxidant enzymes and MDA levels.
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Effect of melatonin treatment on healthy and 
degenerated follicles

We analysed the association between the number of follicles 
(healthy and degenerated) and melatonin treatment, which showed 
that melatonin treatment may affect the number of follicles in the 
rat ovary. Compared with non-melatonin treatment, melatonin 
treatment significantly increased the number of healthy follicles. 
In contrast, melatonin treatment was associated with a marked 
decrease in the number of degenerated follicles (Figure 2).

Immunohistochemistry and immunofluorescence 
analyses

The immunohistochemistry and immunofluorescence results 
showed that VEGF (Figure 3), VEGFR1 (Figure 4), and VEGFR2 
(Figure 5) were expressed in stromal cells and endothelial cells. 
In particular, VEGFR2 was expressed in theca cells where 
vascularity is greater in active follicles. There was a significant 
difference in the immunoreactivity of VEGF and VEGFR1 
between the control and melatonin groups. Conversely, VEGF, 
VEGFR1, and VEGFR2 were not expressed in the granulosa cells 
of primordial follicles. In our experiments, although high levels 
of VEGF and VEGFR1 proteins were detected in the melatonin 
group, there was no significant difference between the control and 
vehicle groups. Immunofluorescence revealed positive staining 
for both VEGF and its receptors (VEGFR1 and VEGFR2) in 
blood vessels and the active follicle. The immunoreactivity of 
VEGF and VEGFR1 was higher in the melatonin group than in 
the control group. Our preliminary results have the potential to 
inform future research in this field.

 ■ DISCUSSION

The cell biochemical pathways underlying the angiogenesis of 
the ovary are not fully understood. Understanding these mechanisms 
is critical because the fate of follicles in terms of whether they 
undergo ovulation or atresia is determined during this process (26). 
According to different studies, VEGF is a factor in angiogenesis 
as it promotes angiogenesis by activating endothelial cell 
proliferation and migration (27,28).  Moreover, VEGF secretion is 
increased by melatonin treatment in various tissues (29). Melatonin 
administration may affect steroidogenesis in the ovary (30,31). 
There is supporting evidence for the mechanism of melatonin’s 
effect on ovarian tissue, even in ovarian tumour cells, indicating 
that melatonin regulates the secretion of VEGF. Melatonin can 
bind MT1 receptors to reduce VEGFR2 and hypoxia-inducible 
factor (HIF)-1α in ovarian tumour cells; this finding is in contrast 
to the results observed in this study with normal cells (32-34). 
Melatonin is a potent antioxidant and free radical scavenger that 
promotes ovarian cell survival, decreases atresia and develops in 
vitro fertilization rates and oocyte quality (9,35,36). Many reports 
have suggested that the ovary is capable of producing melatonin 
at different seasonal levels, while others have emphasized the link 
between melatonin and follicle quality as well as ovarian function 
(19,37,38). Melatonin also increases VEGF, a protein that controls 
angiogenesis, and VEGF receptors are expressed in the pituitary 
gland and are under the control of melatonin secretion (39). The 
data from the present study are supported by the literature, showing 
that melatonin treatment significantly increases the elevated 
immunoreactivity of VEGF and VEGFR1, particularly in areas 
where vasculogenesis is high.

Melatonin is a crucial antioxidant that increases the oxidative 
stress allowance by activating antioxidant enzymes such as SOD, 

Histomorphometric as sessment of healthy and degenerated follicles in the rat ovary. Scale bars represent 50 μm. Comparison of the number of healthy 
and degenerated follicles among the three groups. Data are shown as the mean ± S.E.M.; n = 15 rat/group. *, p<0.05 indicates significance compared to 
the respective vehicle values. #, p<0.05 indicates significance compared to the respective control values.

Figure 2 - Histomorphometric analysis.
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A: Immunohistochemical staining, B: Immunofluorescence staining
Immunoreactivity of VEGF proteins in Group 1 (control), Group 2 (vehicle), and Group 3 (melatonin). An increase in VEGF in the endothelial cells of the 
blood vessel (as indicated by yellow arrows) can be seen in the melatonin treatment group. Data are displayed as the mean ± S.E.M.; n=15 rats/group. **, 
p<0.05 indicates significance compared to the respective control values. *, p<0.05 indicates significance compared to the respective vehicle values. 

Figure 3 - Immunoreactivity of VEGF proteins.
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B
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A

B

A: Immunohistochemical staining, B: Immunofluorescence staining.
Immunoreactivity of VEGFR1 proteins in Group 1 (control), Group 2 (vehicle), and Group 3 (melatonin). An increase in the immunoreactivity of VEGFR1 in 
theca cells (as indicated by yellow arrows) can be seen in the melatonin treatment group. Data are displayed as the mean ± S.E.M.; n=15 rats/group.**, 
p<0.05 indicates significance compared to the respective control values. *, p<0.05 indicates significance compared to the respective vehicle values. 

Figure 4 - Immunoreactivity of VEGFR1 proteins.
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B

A: Immunohistochemical staining, B: Immunofluorescence staining.
Immunoreactivity of VEGFR2 proteins in Group 1 (control), Group 2 (vehicle), and Group 3 (melatonin). Immunoreactivity of VEGFR2 in granulosa cells as 
indicated by yellow arrows can be seen in all of the groups. Data are displayed as the mean ± S.E.M.; n=15 rats/group.

Figure 5 - Immunoreactivity of VEGFR2 proteins.
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CAT, and GPx while simultaneously scavenging ROS (40). 
Oxidative stress occurs when free radicals formed in the body 
exceed the number of free radicals released from the body. The 
indicator of this disturbed balance is the MDA level, resulting from 
lipid peroxidation. Our findings are in line with the literature in 
that melatonin treatment significantly decreased MDA levels in 
rat ovaries (p<0.05) (41,42). Moreover, there was no significant 
difference between the control and vehicle groups in terms of 
MDA levels (p>0.05). There is an antioxidant enzyme (SOD, CAT, 
and GPx) defence against this oxidative stress in the ovary. SOD, 
CAT, and GPx are antioxidant enzymes that play critical roles in 
converting radicals into nonradical products in the antioxidant 
defence mechanism (43). Melatonin increases the levels of 
antioxidant enzymes in different animal tissues (44,45). Mondal 
et al. (2017) reported that melatonin administration caused a 
significant decrease in MDA and an increase in SOD, CAT, GPx, 
GST, and GSH levels in the ovary in each reproductive phase. 
Consequently, these authors emphasized that the level of melatonin 
in the ovary was negatively correlated with MDA and positively 
correlated with SOD, CAT, and GPx levels (46). In another study, 
melatonin treatment led to a reduction in MDA levels in the ovary 
(47). Our results are also in line with those of previous studies. 
Melatonin is hypothesized to actively decrease oxidative stress and 
may also protect the ovaries against oxidative damage by elevating 
antioxidant enzyme activities.

The effect of melatonin on the ovary provides some benefits to 
the follicles through various mechanisms (14,48). The results of our 
study established that melatonin treatment induces an approximate 
two-fold increase in the number of healthy follicles. In contrast, 
the number of degenerated follicles significantly decreased with 
the application of melatonin treatment. These results indicate that 
melatonin treatment has a protective effect on follicles in the ovary 
in accordance with the literature.

In the current study, in response to melatonin treatment, the 
immunoreactivity of VEGF and VEGFR1 in rat ovaries paralleled 
the activity of antioxidant enzymes and lipid peroxidation.

We highlighted the effect of melatonin on the immunoreactivity 
of VEGF and its receptors in the ovary and critical regulatory roles 
in angiogenesis in physiological conditions. Further exploring 
the underlying mechanisms is necessary because the effects of 
melatonin on the VEGF, VEGFR1, and VEGFR2 pathways, which 
are intimately related to ovarian angiogenesis, have not completely 
been clarified.
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