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OBJECTIVES: Obstructive sleep apnea (OSA) is a common but largely underdiagnosed condition. This study
aimed to test the hypothesis that the oxygen desaturation index (ODI) obtained using a wireless high-resolution
oximeter with a built-in accelerometer linked to a smartphone with automated cloud analysis, Overnight Digital
Monitoring (ODM), is a reliable method for the diagnosis of OSA.

METHODS: Consecutive patients referred to the sleep laboratory with suspected OSA underwent in-laboratory
polysomnography (PSG) and simultaneous ODM. The PSG apnea-hypopnea index (AHI) was analyzed using the cri-
teria recommended and accepted by the American Academy of Sleep Medicine (AASM) for the definition of hypop-
nea: arousal or X3% O2 desaturation (PSG-AHI3%) and X4% O2 desaturation (PSG-AHI4%), respectively. The results
of PSG and ODMwere compared by drawing parallels between the PSG-AHI3% and PSG-AHI4% with ODM-ODI3% and
ODM-ODI4%, respectively. Bland-Altman plots, intraclass correlation, receiver operating characteristics (ROC) and area
under the curve (AUC) analyses were conducted for statistical evaluation. ClinicalTrial.gov: NCT03526133.

RESULTS: This study included 304 participants (men: 55%; age: 55±14 years; body mass index: 30.9±5.7 kg/m2;
PSG-AHI3%: 35.3±30.1/h, ODM-ODI3%: 30.3±25.9/h). The variability in the AASM scoring bias (PSG-AHI3% vs
PSG-AHI4%) was significantly higher than that for PSG-AHI3% vsODM-ODI3% (3%) and PSG-AHI4% vsODM-ODI4%
(4%) (9.7, 5.0, and 2.9/h, respectively; po0.001). The limits of agreement (2±SD, derived from the Bland-Altman
plot) of AASM scoring variability were also within the same range for (PSG vs ODM) 3% and 4% variability: 18.9,
21.6, and 16.5/h, respectively. The intraclass correlation/AUC for AASM scoring variability and PSG vs ODM 3% or
4% variability were also within the same range (0.944/0.977 and 0.953/0.955 or 0.971/0.964, respectively).

CONCLUSION: Our results showed that ODM is a simple and accurate method for the diagnosis of OSA.
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’ INTRODUCTION

Obstructive Sleep Apnea (OSA) is characterized by
repetitive episodes of complete (apnea) or partial (hypopnea)
upper airway obstruction, resulting in intermittent oxygen
desaturation and fragmented sleep (1). OSA is associated
with various symptoms such as habitual snoring, poor,
and non-restorative sleep, excessive daytime sleepiness, and

fatigue that ultimately have a negative impact on the quality
of life (1). Untreated OSA is independently associated with
cardiovascular diseases, such as hypertension, arrhythmias,
progression of atherosclerosis, coronary artery disease, stroke,
and cardiovascular death (2). OSA is extremely common in
the general population, with a prevalence ranging from 9.6%
in women to 49.7% in men, depending on the population
characteristics (3–6). Polysomnography (PSG) is considered to
be the gold standard for the diagnosis of OSA. However, PSG
has limitations, because it is expensive, presents an incon-
venience to patients, and may not be readily available in
certain locations (7,8). Long waiting list also affect access to
OSA diagnosis. The difficulties associated with diagnosis
certainly contribute to the observation that the vast majority of
patients with OSA in the general population are not
diagnosed and therefore remain untreated (9). The estimated
cost of the lack of recognition and treatment of OSA is
approximately 150 billion dollars per year in the USA, due toDOI: 10.6061/clinics/2020/e2414
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the increased number of accidents, decreased productivity, and
associated co-morbid diseases (10).
The awareness of the high prevalence of OSA has led to

the popularization of the home sleep test (HST). The HST
records a limited number of respiratory signals and provides
patients with a more comfortable and cost-effective testing
option. The performance of the HST is comparable to that of
PSG among patients with suspected OSA (11). The level of
under diagnosed cases of OSA remains unacceptable, despite
the increased implementation of HST for the diagnosis of
OSA, intended to enhance accessibility. The oxygen desa-
turation index (ODI), developed in line with the diagnostic
simplifications for OSA, which is determined by the isolation
of the oximetry channel from the full PSG, has been reported
to possess a high sensitivity and specificity for the detection
of OSA in children and adults (12,13). However, a recent
systematic review showed a large discrepancy in the sensi-
tivities and specificities of the ODI obtained from pulse
oximeters compared to the reference apnea-hypopnea index
(AHI) (14). These observations explain why pulse oximetry is
largely viewed as a screening tool (15). On the other hand, it
is also clear that the performance of oximeters is variable.
Therefore, new technology may enable better diagnostic
performance for OSA.
This study was designed to validate a new device consis-

ting of a high-resolution wireless oximeter with a built-in
accelerometer linked to a smartphone application and
automated cloud algorithm for the detection of oxygen
desaturation, described herein as Overnight Digital Monitor-
ing (ODM) (BiologixTM). Thus, consecutive patients referred
to the sleep laboratory with suspected OSA and no signi-
ficant comorbidities underwent PSG and ODM on the same
night. We reasoned that the variability in the AHI derived
from the recommended versus (vs) accepted American
Academy of Sleep Medicine (AASM) criteria for hypopnea
sets the metric of permissible clinical variability, to validate
ODM as a diagnostic tool for OSA. Hypopnea is defined as a
30% fall in airflow for at least 10 s. The recommended AASM
criteria stipulate that airflow reduction should be associated
with arousal or oxygen desaturation of at least 3%. Alter-
natively, AASM also accepts that hypopnea can be defined
by airflow reduction associated with an oxygen desaturation
of at least 4% (16). Therefore, we hypothesized that ODM
was an accurate diagnostic modality for moderate-to-severe
OSA and that the variability between the recommended
and accepted AASM PSG-AHI criteria for hypopnea would
not differ from the variability between the PSG-AHI and
ODM-ODI.

’ MATERIAL AND METHODS

Patients
We assessed consecutive adult patients with suspected

OSA, who were referred for full PSG at the sleep laboratory
of the Heart Institute between July 2017 and July 2018 for
eligibility for inclusion in this study. We excluded patients
with diagnoses of heart failure, unstable clinical condition,
decompensated chronic obstructive pulmonary disease, renal
failure, hepatic disease, those on supplemental oxygen, those
on continuous positive airway pressure (CPAP) titration, or
patients participating in other studies. We also excluded
patients who had less than 4 h of sleep. The local ethics
committee approved the study protocol (SDC 4515/17/015)
and informed consent was obtained from each participant.

Sleep Studies
All patients underwent overnight in-laboratory PSG using

the standard montage that included recording of the electro-
encephalogram (EEG) central (C) and occipital (O) channels
referred to the auricular channel (A) (C3/A2, C4/A1, O1/
A2, O2/A1), electrooculogram (EOG), submental electromyo-
gram (EMG), left and right anterior tibialis EMG, electro-
cardiogram, thoraco-abdominal effort, oronasal airflow (ther-
mistor and nasal pressure based airflow measurement),
oxygen saturation (SpO2) with pulse oximetry, and body
position (EMBLA S7000, Embla Systems, USA and Alice 5,
Respironics Inc., USA). Participants wore a wireless oximeter
(Oxistart, Biologix Sistemas Ltd., Brazil) with a built-in
accelerometer on another finger of the same hand as the PSG
oximeter. The Oxistart firmware acquires 100 samples per
second generating beat-to-beat raw data of SpO2 with a
resolution of 0.1%. A moving time average of 4 cardiac beats
were used. The data obtained from Oxistart were trans-
ferred via the smartphone application to the cloud, where the
data were automatically analyzed using a proprietary algo-
rithm. The results were expressed as the number of oxygen
desaturations per recording hour. All PSG studies were
scored by two independent certified technicians who were
blinded to the ODM results. Hypopnea was defined as the
peak signal excursion drop X30% of the pre-event baseline
nasal pressure signal lasting X10 s. Respiratory events were
scored independently by two technicians according to the
recommended (X3% reduction in SpO2 from the pre-event
baseline or an event associated with arousal) and the
acceptable AASM criteria for hypopnea (X4% reduction in
SpO2). The PSG-AHI criteria recommended and accepted by
the AASM are described herein as PSG-AHI3% and PSG-
AHI4%, respectively (17). Mild, moderate, and severe OSA
were defined according to the current standards (5pAHI
o15; 15pAHIo30; and AHIX30 events/h, respectively) (18).
The ODI obtained from ODM was expressed as the number of
desaturations per valid recording time and automatically
analyzed within the cloud. The results of the automated
ODM analysis were matched using the 3% and 4% desatura-
tion criteria (ODM-ODI3% and ODM-ODI4%, respectively) to
facilitate comparison with the PSG-AHI3% and PSG-AHI4%.

Statistical analysis
The sample size was calculated using the nomogram

proposed by Malhotra et al. (19), which yielded a required
sample size of 290 patients for the anticipated sensitivity and
specificity of 0.9, absolute precision of 0.05 with a 95%
confidence level, and estimated prevalence of moderate-to-
severe OSA of 50%. Data were expressed as the mean±
standard deviation or median (25–75% interquartile), wher-
ever appropriate. Intraclass correlation coefficient (ICC) and
Bland-Altman plot analyses were used to assess the
agreement between PSG-AHI variability and ODM-ODI,
using the 3% and 4% criteria. The bias (mean difference)
between the recommended and acceptable AASM hypopnea
criteria (PSG-AHI3% vs PSG-AHI4%) was compared with the
bias between PSG-AHI3% vs ODM-ODI3% and PSG-AHI4% vs
ODM-ODI4% using the Wilcoxon test. Receiver operating
characteristic (ROC) and area under the curve (AUC)
analyses were conducted to determine and compare the
overall agreement between the three pairs of comparisons
(PSG-AHI3% vs PSG-AHI-4%, PSG-AHI3% vs ODM-ODI3%,
and PSG-AHI4% vsODM-ODI4%). This method was also used
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to determine the best ODM cutoff for the diagnosis of
moderate-to-severe OSA (AHI 415/h) by determining the
sensitivity, specificity, positive predictive value (PPV), nega-
tive predictive value (NPV), positive likelihood ratio (LR+),
negative likelihood ratio (LR-), and accuracy. Frequencies
were compared using McNemar’s test. All statistical analy-
ses were performed using the SPSS Statistics 24 software
(IBM Corp., USA).

’ RESULTS

We screened 408 patients, and 104 were excluded for
various reasons (Figure 1). The final sample consisted of
304 middle-aged patients (of both sexes) with obesity and
frequent comorbidities (Table 1). The frequency of moderate-
to-severe OSA determined by PSG reduced from 66.8% to
49.7% for the AASM recommended and accepted criteria
(PSG-AHI3% vs PSG-AHI4%) (po0.0001). The bias (mean
difference) between PSG-AHI3% vs PSG-AHI4% was signifi-
cantly higher than that between PSG-AHI3% vs ODM-ODI3%
and the bias between PSG-AHI4% vs ODM-ODI4% (9.7, 5.0
and 2.9, respectively; po0.001). The limits of agreement (2
±SD) created by the Bland-Altman plot for the comparison
of PSG-AHI3% and PSG-AHI4% were within the same range
as the limits of agreement between PSG-AHI3% vs ODM-
ODI3% and PSG-AHI4% vs ODM-ODI4% (18.9, 21.6, and 16.5;

Figure 2A, 2B, and 2C, respectively). The AUC for the diag-
nosis of moderate-to-severe OSA determined by PSG-AHI3%
vs PSG-AHI4%, PSG-AHI3% vs ODM-ODI3%, and PSG-AHI4%
vs ODM-ODI4% was 0.977, 0.955 and 0.964, respectively;
Figure 3). The best cutoff for the detection of moderate-to-
severe OSA using PSG-AHI3% and PSG-AHI4% (i.e., the gold
standard) was 12 and 14 events/h for ODM-ODI3% and
ODM-ODI4%, respectively. The frequency of the diagnosis of
moderate-to-severe OSA using ODM-ODI3% and ODM-
ODI4% was 62.2% and 51.3%, respectively, based on the best
cutoff values. Tables 2A, 2B, and 2C present the four-class
confusion matrix comparing the classification derived from
the three pairs of parameters: PSG-AHI3% vs PSG-AHI4%,
PSG-AHI3% vsODM-ODI3%, and PSG-AHI4% vsODM-OD4%,
respectively. The statistical metrics for the diagnosis of
moderate-to-severe OSA demonstrated good performance
for ODM-ODI3% and ODM-ODI4% (Table 3). The ICC for
PSG-AHI3% vs PSG-AHI4%, PSG-AHI3% vs ODM-ODI3%, and
PSG-AHI4% vs ODM-ODI4% was 0.944, 0.953, and 0.971,
respectively.

’ DISCUSSION

Our study showed that a high-resolution wireless oxi-
meter, linked to a smartphone and automated cloud
algorithm for detection of desaturations, is a reliable method

Figure 1 - Flow diagram of the participant recruitment process. ODM=overnight digital monitoring.
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for OSA diagnosis and determination of OSA severity in
patients with suspected OSA and determination of its
severity among patients with suspected OSA. This conclu-
sion is based on the good performance of ODM for the
detection of moderate-to-severe OSA. Moreover, the varia-
bility of the main result derived from ODM compared to
PSG (ODI and AHI, respectively) is at least similar to the
clinical variability in the AHI permitted by the AASM arising
from the use of the recommended or acceptable criteria
for the definition of hypopnea (PSG-AHI3% and PSG-
AHI4%, respectively). First, we showed that the bias (mean

difference) between PSG-AHI3% vs PSG-AHI4% was signifi-
cantly higher than that between PSG-AHI3% vs ODM-ODI3%
and PSG-AHI4% vs ODM-ODI4%. Second, the variance (2±
SD) between PSG-AHI and ODM-ODI was similar to the
PSG variance derived from the different criteria for defining
hypopnea (recommended vs acceptable) permitted by the
AASM as shown by the Bland-Altman plots (Figure 2).
Finally, the ROC curve, AUC, sensitivity, specificity, accu-
racy, PPV, NPV, LR+, and LR- of ODM were high for the
diagnostic test designed to detect moderate-to-severe OSA
(Table 3).

Figure 2 - Scatter plots and Spearman’s correlation (r) and Bland-Altman plots comparing A) PSG-AHI3% and PSG-AHI4%, B) PSG-
AHI3% and ODM-ODI3%, and C) PSG-AHI4% and ODM-ODI4%.PSG=polysomnography; AHI=apnea-hypopnea index; ODM=overnight
digital monitoring; ODI=oxygen desaturation index.

4

Wireless oximeter for OSA diagnosis
Pinheiro GL et al.

CLINICS 2020;75:e2414



The concept that PSG is the gold standard for the diagnosis
of OSA has been recently challenged (20). The traditional
method for describing OSA using the metric of the number of
apneas and hypopneas per hour of sleep (AHI) may not
encompass all aspects of the OSA burden that may be better
described, for instance, by the analysis of the oxygen signal
(21,22). For instance, a recent study showed that the hypoxic
burden is a major predictor of cardiovascular disease-related
mortality, suggesting that clinical symptoms and oximetry
data alone may play a major role in the management of
patients with suspected OSA (21). Moreover, the recognition
of respiratory events by PSG is highly dependent on the nasal
cannula signal that provides a semi-quantitative measure of
airflow. Therefore, it is not surprising that the definition of
hypopnea is still being debated and not standardized, in
contrast to that of apnea, which is unequivocal. The definition
of hypopnea relies on more robust variables such as the
presence of arousal or level of associated oxygen desaturation,
owing to the limitation in the objective measurement of
airflow. The AASM recommends that hypopnea must be
defined whenever a 30% fall in airflow is associated with
arousal or oxygen desaturation of at least 3% (16). The AASM
also accepts a more stringent hypopnea definition that requires
a 4% or greater decrease in oxygen saturation and ignores
arousal (16). Although the choice of hypopnea definition has a
substantial effect on the AHI and number of patients
diagnosed with OSA, there is no standard adapted threshold
value of AHI (23). Despite the recommended AASM criteria,
several agencies, including the Centers for Medicare and

Medicaid Services, continue to require a more stringent
hypopnea definition, requiring a 4% or greater decrease in
oxygen for the diagnosis of OSA. Oximetry provides a robust
signal and tracks the pivotal consequences of respiratory
events, which are actually the chief source of the variabi-
lity in the hypopnea definition (3% vs 4% desaturation).
The observation that the main result of ODM-ODI exhibited
agreement with the PSG-derived AHI provides strong evi-
dence of the reliability of ODM for the diagnosis of OSA
among patients referred to the sleep laboratory due to a high
probability of OSA.
In our study, the diagnostic performance of ODM for

detecting moderate-to-severe OSAwas similar to that of HST
(24) (AUC=0.955 vs 0.891, respectively). HST is widely used
and accepted for the diagnosis of OSA (25). ODM may be
potentially beneficial for the large-scale diagnosis of OSA
because it does not require special infrastructure, profes-
sional assistance for preparing patient for the test, and addi-
tional time for data analysis. We anticipate major reductions
in the cost of the OSA diagnosis and the possibility of
accessing under-served areas where PSG and HST are not
readily available. The system operates over Wi-Fi or mobile
networks. Mobile networks are widely available across large
countries such as Brazil and India. The solution may also be
helpful in First World countries. For instance, it is estimated
that 23.4 million individuals with OSA (representing 80% of
the American population with OSA) remain undiagnosed
(11). Therefore, a simple diagnostic system for OSA may be
helpful worldwide. A large randomized trial among patients
with suspected OSA reported poorer outcomes when only
oximetry was disclosed to the physicians (26). However, the
authors acknowledged that poorer outcomes with oximetry
data may be partially explained by lower physician con-
fidence. Another important advantage of ODM over most

Table 1 - Characteristics of the sample population.

Range

Male (%) 169 (55.6)
Age, y 55.3±13.8 18–90
BMI, kg/m2 30.9±5.7 15.0–52.2
Epworth Sleepiness Scale 11±6 0–24
Comorbidities
Arterial hypertension (%) 151 (49.7)
Dyslipidemia (%) 87 (28.6)
Diabetes mellitus (%) 64 (21.1)
Depression (%) 26 (8.6)
Coronary artery disease (%) 20 (6.6)
Asthma/COPD (%) 15 (4.9)
PSG
TRT, min 453.3±36.7 341.0–543.0
TST, min 359.5±62.5 166.0–499.0
SL, min 18.1±24.0 0.0–188.0
WASO, min 75.1±49.9 5.0–285.0
SE, % 79.6±12.6 40.0–98.0
AHI3%, events/h 35.3±30.1 0.0–139.7
Moderate-to-severe AHI3% (%) 203 (66.8)
PSG-ODI3%, events/h 32.4±28.2 0.3–129.3
AHI4%, events/h 25.6±27.7 0.0–133.6
Moderate-to-severe AHI4% (%) 151 (49.7)
PSG-ODI4%, events/h 23.2±25.5 0.0–119.1
ODM
TRT, min 470.7±45.4 241.6–662.8
Valid time, min 462.6±46.2 238.5–548.3
ODI3%, events/h 30.3±25.9 0.3–130.7
ODI4%, events/h 22.8±24.1 0.0–124.9

Data are presented as mean+SD or number and percentage (%).
Abbreviations: BMI=body mass index; OSA=obstructive sleep apnea;
COPD=chronic obstructive pulmonary disease; PSG=polysomnography;
TRT=total recording time; TST=total sleep time; WASO=wake after sleep
onset; SL=sleep latency; SE=sleep efficiency; ODI=oxygen desaturation
index; AHI=apnea-hypopnea index; SpO2=oxygen saturation;
ODM=overnight digital monitoring.

Figure 3 - Receiver-operator characteristic curves of PSG-AHI3%
vs PSG-AHI4% (light gray line), PSG-AHI3% vs ODM-ODI3%
(medium gray line), and PSG-AHI4% vs ODM-ODI4% (black line)
PSG=polysomnography; AHI=apnea-hypopnea index; ODM=
overnight digital monitoring; ODI=oxygen desaturation index;
vs=versus.
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HSTs is the fact that the sleep study can easily be accessed
from the cloud and repeated as many times as necessary or
clinically indicated, without the necessity of return of the
equipment for download. We speculate that ODM may
therefore be able to overcome the limitation of the night-
to-night AHI variability observed in PSG (27), which is
frequently overlooked in clinical practice due to the limita-
tions imposed by the current diagnostic methods for OSA.
Moreover, ODM is a simple and reliable method that may be
particularly useful for monitoring patients under a variety of
treatment modalities, such as the mandibular advancement
device, oropharyngeal exercises, position therapy, and weight
loss. Patients using CPAP with sub-optimal compliance may
also be aided by ODM studies with and without CPAP (28).
Our study has several limitations. First, the study was

conducted in a sleep laboratory, and the performance of
ODM could possibly decrease in an uncontrolled environ-
ment. The number of technical failures related to battery and
communication failure were relatively low (6.6%) and within

the same range as those observed in HST (B8%) (29).
Moreover, the technical problems were relatively simple
(battery charging malfunction) and can be easily solved.
Second, the typical HST uses the total recording time to
obtain the respiratory disturbance index, whereas PSG-AHI
is derived from the sleep time. Therefore, the difference
between the methods is directly influenced by sleep
efficiency. The current ODM has a built-in accelerometer
that can exclude periods of intense movement. However,
future studies are necessary to validate an algorithm to help
estimate sleep efficiency. Third, the analysis was performed
by a proprietary algorithm, which does not allow review
and editing of the data. However, PSG is dependent on
human analysis and therefore introduces inter-scorer varia-
bility (30), which is absent from automatic algorithms.
Finally, ODM cannot distinguish between central and
obstructive events, and was not used among patients with
significant comorbidities, such as heart failure and severe
pulmonary diseases.

Table 2 - Four-class confusion matrix showing classification agreement between the evaluated pairs: A) PSG-AHI3% vs PSG-AHI4%,
B) PSG-AHI3% vs ODM-ODI3% and C) PSG-AHI4% vs ODM-ODI4%.

A) PSG-AHI3%
AHIo5 5pAHIo15 15pAHIo30 AHIX30

PSG-AHI4% AHIo5 31 45 5 0
5pAHIo15 0 25 42 5
15pAHIo30 0 0 23 27
AHIX30 0 0 0 101

B) PSG-AHI3%
ODM-ODI3% AHIo5 5pAHIo15 15pAHIo30 AHIX30

ODIo4 18 7 0 0
4pODIo12 13 43 7 3
12pODIo25 0 19 46 6
ODIX25 0 1 17 124

C) PSG-AHI4%
OD-ODI4% AHIo5 5pAHIo15 15pAHIo30 AHIX30

ODIo5 68 9 1 0
5pODIo14 13 46 11 0
14pODIo26 0 16 31 9
ODIX26 0 1 7 92

Abbreviations: PSG=polysomnography; AHI=apnea-hypopnea index; ODM=overnight digital monitoring; ODI=oxygen desaturation index.

Table 3 - Diagnostic performance using the best cutoff for the evaluated pairs: PSG-AHI3% vs ODM-ODI3%, and PSG-AHI4% vs ODM-
ODI4%. PSG AHI3% vs PSG AHI4% were compared using the same cutoff, as recommended by the American Academy of Sleep Medicine.

Cutoffs

PSG-AHI4% X15 events/h ODM-ODI3% X12 events/h ODM-ODI4% X14 events/h

Sensitivity 74.4% 95.1% 92.1%
Specificity 100.0% 80.2% 88.9%
Accuracy 82.9% 90.1% 90.5%
PPV 100.0% 90.6% 89.1%
NPV 66.0% 89.0% 91.9%
LR+ Infinite 9.7 8.2
LR- 0.5 0.1 0.1

Abbreviations: PSG=polysomnography; AHI=apnea-hypopnea index; ODM=overnight digital monitoring; ODI=oxygen desaturation index; PPV=positive
predictive value; NPV=negative predictive value; LR+=positive likelihood ratio; LR-=negative likelihood ratio.
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’ CONCLUSION

In conclusion, the performance characteristics of ODM
were comparable to the simultaneously performed diagnos-
tic PSG with a lower burden on the participants, and ability
to collect and review data on multiple nights at a highly
favorable cost. Additional validation in the home setting is
needed to confirm the utility of this device as a diagnostic
and management tool for OSA.
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