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INTRODUCTION

Common wheat (Triticum aestivum L.) is 
a worldwide grown crop and has an important role 
in the world food security (IJAZ & KHAN, 2009). 
China is the largest country for wheat production. 
Wheat yield in China is being promoted by breeding 
and culture techniques but also confronts kinds of 
risks, such as diseases. Wheat stripe rust and powdery 
mildew are the major diseases in China, especially 
in the southwestern region, which cause huge yield 
loss (WAN et al., 2007; ZHANG et al., 2016). Wheat 

breeding lines 92-R series and Guinong (GN) series, 
which are both derived from the cross of three species 
(common wheat, durum wheat and Haynaldia villosa), 
carry resistance to both stripe rust and powdery 
mildew and are wheat-Haynaldia villosa 6VS/6AL 
translocation (T6VS/6AL) lines (CHEN et al., 1995; 
LI et al., 2016). The disease resistance is mainly 
conferred by the stripe rust resistance gene Yr26 and 
powdery mildew resistance gene Pm21, which are 
located on 1BS and 6VS, respectively (MA et al., 
2001; CHENG et al., 2006). After the 92-R series and 
GN series releasing, a lot of resistant wheat cultivars 
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ABSTRACT: Understanding genetic variability in existing wheat accessions is critical for collection, conservation and use of wheat 
germplasms. In this study, 138 Chinese southwest wheat accessions were investigated by genotyping using two resistance gene makers (Pm21 
and Yr26) and DArT-seq technique. Finally, about 50% cultivars (lines) amplified the specific allele for the Yr26 gene (Gwm11) and 40.6% 
for the Pm21 gene (SCAR1265). By DArT-seq analysis, 30,485 markers (6486 SNPs and 23999 DArTs) were obtained with mean polymorphic 
information content (PIC) value 0.33 and 0.28 for DArT and SNP marker, respectively. The mean Dice genetic similarity coefficient (GS) was 
0.72. Two consistent groups of wheat varieties were identified using principal coordinate analysis (PCoA) at the level of both the chromosome 
6AS and the whole-genome, respectively. Group I was composed of non-6VS/6AL translocation lines of different origins, while Group II was 
composed of 6VS/6AL translocation (T6VS/6AL) lines, most of which carried the Yr26 and Pm21 genes and originated from Guizhou. Besides, 
a model-based population structure analysis revealed extensive admixture and further divided these wheat accessions into six subgroups 
(SG1, SG2, SG3, SG4, SG5 and SG6), based on their origin, pedigree or disease resistance. This information is useful for wheat breeding in 
southwestern China and association mapping for disease resistance using these wheat germplasms in future.
Key words: Triticum aestivum L., Population structure, DArT-seq, 6VS/6AL translocation. 

RESUMO: O conhecimento da estrutura da população é essencial para o mapeamento de associação de resistência a doenças para a 
população de trigo. Neste estudo, a técnica de DART-seq™ foi usada para genotipar o genoma inteiro de cultivares de trigo. Finalmente, 
30,485 marcadores (6486 SNPs e 23999 dardos) foram obtidos, e dois grupos de variedades de trigo foram identificados por meio de análise 
principal-coordenadas (PCoA) do nível de todo o genoma e o nível 6AS cromossomo. O grupo I foi composto por linhas não T6VS/6Al de 
diferentes origens, enquanto o Grupo II foi composto de linhas T6VS/6Al, sendo que da maioria destes realizados os genes Yr26 e PM21 
originários de Guizhou.
Palavras-chave: germoplasma de trigo, estrutura populacional, genes de resistência, T6VS/6Al.
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(lines) have been bred in southwestern China (LONG 
et al., 1998; HUANG et al., 2000). However, genetic 
relationship and resistance genes distribution are not 
clear for these germplasms.

Since the development of biotechnologies, 
molecular marker techniques, such as AFLP, SSR and 
SNP, have been widely used in the analysis of genetic 
diversity in common wheat (CHAO et al., 2010; 
PETROVIC et al., 2017). But all of them have various 
degrees of limitations (AKBARI et al., 2006). Diversity 
arrays technology (DArT) is a microarray hybridisation-
based technique, which can detect thousands of loci in 
a single test without need of the sequence information 
(WENZL et al., 2004). Recently, a genotyping-by-
sequencing (GBS) method combining DArT with next-
generation sequencing (NGS), called DArT-seq, has 
been developed. The technique can detect both SNPs 
and DArTs using cost-effective and efficient strategies 
(RAMAN et al., 2014). Due to its rapid, high throughput 
and cost-effective characters, DArT-seq has been widely 
used for genetic diversity studies, linkage mapping, 
QTL identification in biparental mapping population 
and genome wide association studies (GWAS) in wheat 
(LI et al., 2015; BALOCH et al., 2017; KAUR et al., 
2017) and many other crops over the previous four years 
(COURTOIS et al., 2013; SANTOS et al., 2016).

In the present study, a collection consisting 
mainly of wheat resources from southwestern China 
was genotyped from whole genomes using the DArT-
seq technique, meanwhile, Yr26 and Pm21 gene loci 
were also scanned using specific markers. The main 
objective of this study was to: (i) assess the extent of 
the Southwestern China wheat genetic diversity; (ii) 
characterize the distribution of the Yr26 and Pm21 
gene loci; (iii) identify impact of 6VS on population 
structure of southwestern China wheat. 

MATERIALS   AND   METHODS

The 138 wheat (Triticum aestivum L.) 
cultivars (lines) in this study were mainly collected 
in winter wheat regions of southwestern China. Of 
these, 75 cultivars were collected from Guizhou 
province, 40 from Sichuan province. Besides, 23 
cultivars were collected from other regions of China 
(Jiangsu, Hubei, Henan, Shanxi, Shaanxi, Beijing and 
Gansu) (Additional file 1).

Genomic DNA was extracted from young 
leaf tissue of each genotype using the protocol 
recommended by Diversity Arrays Technology Pty 
Ltd. (DArT P/L) (JAMES, 2005). Two markers were 
used to scan for resistance gene loci in this study, 
including the SCAR marker (SCAR1265) for Pm21 

and the SSR marker (Gwm11) closely linked to the 
Yr26. The PCR reactions were performed according 
to the optimised conditions for Pm21 (LIU et al., 
1999) and Yr26 (MA et al., 2001). Genotyping of the 
whole genome was conducted at DArT P/L (Canberra, 
Australia). The DArT-seq technology used the PstI/
TaqI restriction enzymes for genome reduction and 
then DNA fragments were ligated with PstI specific 
adaptor. The adaptor was tagged with specific barcode 
sequences for each sample. Products of each sample 
were amplified for checking the quality and then 
pooled together. The instrument of Illumina Hiseq2000 
was used for sequencing amplicons. After sequencing, 
the resulting sequences were filtered and target datasets 
were formed. At last, an analytical pipeline devised 
by DArT P/L was applied to yield scores of makers 
(DArTs and SNPs) (ZOU et al., 2014). 

For each marker, the polymorphic 
information content (PIC) value was computed 
following the methods described by Zhang et al 
(2011). The Dice genetic similarity coefficient (GS) 
between pair of cultivars is computed according to the 
formula of Dice (1945). Principal coordinate analysis 
(PCoA) was performed in the programme of NTSYS-
pc (version 2.21) using a Dice GS matrix. A model-
based clustering approach (Bayesian clustering) was 
also performed to estimate the population structure 
of the 138 accessions using Structure V2.3.3 
software (PRITCHARD et al., 2000). Admixture 
and independent allele frequencies model was used 
in estimating the proper subgroups. The number 
of subgroups (K) was set from 1 to10 with 5 runs 
performed separately. For each run, 5,000 iterations 
were carried out after a burn-in period of 5,000 
iterations. ΔK was calculated according to Pritchard 
et al. (2000) to estimate the best subgroup number 
(K). Accessions were assigned to a subgroup if the 
probability of membership was greater than 70% 
(TYAGI et al., 2014). If membership was <70%, then 
the accessions were assigned to the mixed subgroup.

RESULTS   AND   DISCUSSION

The DArT-seq method yielded 32,763 
markers (8764 SNPs and 23,999 DArTs). Among 
them, 30,485 markers (6486 SNPs and 23,999 DArTs) 
with a call rate greater than 0.8 were deemed to be 
informative according to the DArT P/L instructions. 
The mean PIC value for SNPs was 0.28 and the median 
was 0.26; the mean value for DArT markers was 0.33 
and the median was 0.37. Distribution pattern for SNP 
PIC values was almost symmetrical and the highest 
frequency (17%) of this marker had a value in the range 
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of 0.20 to 0.25. For DArT markers, the distribution of 
PIC values was asymmetrical and skewed towards the 
higher values and most (32%) had a PIC value in the 
range of 0.45 to 0.50 (Figure 1). PIC value provides 
an estimate of the discriminating power of a marker. 
A PIC value higher than 0.5 is considered to be a sign 
of a very informative marker, while 0.5> PIC> 0.25 
corresponded to an informative marker (BOTSTEIN et 
al., 1980). In the present study, the mean PIC value for 
both types marker was higher than 0.25, comparable 
to those observed in the study with same type marker 
(LOPES et al., 2015; SOHAIL et al., 2015), but lower 
than SSR marker  (RAFEIPOUR et al., 2016; HONORE 
et al., 2017). PIC value is calculated as a maximum 
of 0.5 when a marker is scored as 50% of 0 and 50% 
of 1. Therefore, DArT and SNP are less informative 
than SSR, which has more alleles for a given locus. 
In the study, DArTs revealed a greater number of 
polymorphisms than SNPs. However, BALOCH et al. 
(2017) reported a mean PIC values 0.265 and 0.302 
for DArT and SNP markers and the distribution of PIC 
values was asymmetrical in both markers systems with 
durum wheat. It may be due to that variation (SNPs 
and INDELs) at restriction enzyme cleavage sites and 
restriction fragments are more diverse in our common 
wheat accessions.

The Dice GS was calculated using the 
genotyping data of 30,485 informative markers 
for all possible pairs of accessions. It ranged from 
0.60 to 0.99, with a mean value of 0.72. The Dice 

GS value was higher than the two studies reported 
earlier (PRASAD et al., 2000; NI et al., 2012). 
It may suggest that the 138 genotypes used in this 
study were moderately diverse. The genetic diversity 
loss in our collection is probably because the study 
mainly focused on wheat resistant germplasms from 
two adjacent provinces in southwestern China, which 
share a similar ecology and some core wheat parents.

Gene loci scanning showed that about 50% 
cultivars (lines) amplified the specific allele (193bp) for 
the Yr26 gene (Gwm11) and 40.6% for the specific allele 
(1265bp) for the Pm21 gene (SCAR1265) (Additional 
file 2). Similar results were reported in other studies 
(WAN et al., 2011; JIANG et al., 2014). Considering 
that Pm21 is derived from the T6VS/6AL lines (CAO 
et al., 2010; ZHAN et al., 2010), PCoA was performed 
based on genotype data of the 769 markers (SNP and 
DArT) on chromosome 6AS. A very clear separation 
was observed with the origin of the PCO-1 axis as 
a dividing line (Figure 2A). The PCO-1 and PCO-2 
accounted for 62.4% and 6.0% of the total variation, 
respectively. A significant correlation (r=0.8, P<0.01) 
was observed between cultivars in Group II (Figure 2A) 
and those carrying the Pm21 gene. Combining results of 
both the PCoA and correlation analysis, we deduced that 
Group I was the 6AS/6AL group and Group II was the 
T6VS/6AL group (Figure 2A).

The PCoA was also performed based on 
whole genome genotype data. A two-dimensional 
scatter plot (Figure 2B) shows that PCO-1 and 

Figure 1 - Distribution of the DArT and SNP markers for different PIC value.
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PCO-2 accounted for 12.3% and 6.0% of the total 
variation, respectively. Two clear groups were also 

distinguished based on the origin of the PCO-1 
axis. The PCoA pattern was highly consistent with 

Figure 2 - Population structure based on PCoA using genotype data from 6AS markers (A) or from 30,485   
informative markers at the whole-genome level (B).
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the results obtained using genotype data of the 769 
markers on chromosome 6AS. Three exceptions 
(GN19-4, Q0209-4 and LM33) were found by 
comparing the two figures (Figure 2A and Figure 2B). 
The Group I was highly clustered by 92 cultivars with 
no obvious separation of cultivars (lines) according 
to geographic regions. However, the Group II was 
spread widely along both the PCO-1 and PCO-2 
axis. Forty-eight cultivars were in this group, mainly 
from Guizhou province. The genetic diversity of 
wheat was not completely related to geographic 
distribution. Similar results were obtained by SALEM 
et al. (2014). Formation of the two groups (6AS/6AL 
and T6VS/6AL) might be induced by differential 
selection (CROSSA et al., 2007). Cultivars in Group 
II were mainly from Guizhou, where the selection 
pressure for powdery mildew resistance was more 
considerable than Sichuan, so 6VS segment was 
saved by selection in breeding process. Similarly, 
it was also reported that two groups were formed 
based on Rht8 locus and it neighbour markers on 
chromosome 2D for European wheat (NIELSEN 
et al., 2014) or 1RS/1BL translocation for northern 
Chinese wheat (ZHANG et al., 2011). In the study, 
several lines were scattered between the two groups 
and it is possible that these lines carry 6VS segments 
of different sizes, because there was a low frequency 
of pairing and recombination between chromosome 
6VS from Haynaldia villosa and 6AS from cultivated 
wheat species (CAO et al., 2011).

The PCoA results shown in figure 3A and 3B 
were based on the presence of the Yr26 and Pm21 gene 
loci, respectively. As shown in figure 3A, the distribution 
of the cultivars carrying Yr26 loci was uneven, with more 
in Group II than in Group I. Almost all Pm21-carrying 
cultivars were in Group II, while very few Pm21-carrying 
cultivars did in Group I (Figure 3B). Cultivars in the 
Group II were mainly from Guizhou province and with 
better resistance, which was proved in the field evaluation 
(LI et al., 2014; CHEN et al., 2016). 

Furthermore, population structure was 
investigated using the Structure software. Delta K 
(ΔK) values peaked at K = 6, thus these accessions 
could be divided into 6 subgroups (Figure 4a and 4b). 
Accessions with the membership value of <70% to 
any cluster were considered as mixed. The remaining 
was assigned to the 6 subgroups, with 15(SG1), 19 
(SG2), 9 (SG3), 12 (SG4), 3 (SG5) and 11 (SG6) 
accessions respectively. Besides, 69 accessions were 
assigned as mixed. Group I of PCoA was further 
roughly divided into SG1, SG2, SG3 and SG5, while 
Group II divided into SG4 and SG6 (Additional file 
3). Similarly, KHAN et al. (2015) reported that Indian 

and Turkish wheat were divided into 2 major group 
by first or second principal coordinate according 
to ploidy level or geographical origin. But using a 
Bayesian model-based structure analysis, 3 subgroups 
were divided. In our study, the results between 
structure analysis and PCoA were inconsistent. The 
possible reason was that the PCoA had weak ability to 
discover the tiny population structure, because it only 
considered the first principal coordinate as a group 
differentiation criterion, which could explain 12.3% 
genetic variation for the whole genome level. 

In the SG1, MY26 is a well-known cultivar, 
which was released in 1995 in Sichuan and then 
rapidly spread to Guizhou, Yunnan, Shaanxi and Hubei 
province, and led to the sixth wheat variety rotation of 
Sichuan (YU, 2003). MY26 and other 8 cultivars were 
directly or indirectly bred by line Fan 6, which were 
classified as Fan 6 series or MY series (WAN et al., 
2004). In this study, 13 among the 15 accessions in SG1 
were from Sichuan, and most of them had pedigree 
relationship with MY series. Among the 19 accessions 
in SG2, 15 were from Guizhou, including QM series, 
FY series and JYP series. Most of them were grown 
more than 10 years and lost their resistance to stripe 
rust and powdery mildew in Guizhou (HUANG et al., 
2014; LI et al., 2014). This was also proved by the 
scanning of Yr26 and Pm21 gene markers in our study. 
In the SG3, all of 9 accessions had the relationship 
with GN series, though derived from different regions 
(6 from Sichuan, 2 from Guizhou and 1 from Gansu). 
Interestingly, 6VS or Pm21 were not detected in these 
accessions. The 6VS segment may be lost in breeding 
and separation process during a long period. In the 
SG4, all of 12 accessions were from Guizhou and bred 
through distant crosses, including GX series, P series 
and YG series, most of them carried both of the Pm21 
and Yr26 gene loci and showed disease resistance 
in field (HUANG et al., 2014; LI et al., 2014). The 
pedigree carrying wild species made these cultivars 
heterogeneous compared to those in other subgroups 
and shown a far distance to other subgroups in scatter 
plot (Additional file 3). In the SG5, only 3 cultivars with 
GN series pedigree were involved, and derived from 
Sichuan, Henan and Hubei, respectively. Neither Yr26 
nor pm21 gene loci were carried by the 3 cultivars. In 
the SG6, all of 11 accessions were from Guizhou and 
most of them were QM series with the kinship of GN 
series. Besides, all of cultivars in SG6 were 6VS/6AL 
translocation lines and carried both Yr26 and pm21 
gene loci, which was contrary to those in SG3 and 
SG5. Indeed, they also showed a good performance 
in disease resistance in Guizhou (HUANG et al., 
2014; LI et al., 2014). In the structure analysis, half 
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of the wheat accessions (69) were assigned to mixed 
group indicating significant admixture. The similar 

result was also reported by TYAGI et al. (2014) and 
MACCAFERRI et al. (2015). This admixture was 

Figure 3 - Distribution of resistance gene carriers in different groups based on PCoA at the whole-genome level. A. Plot 
based on cultivars carrying or not carrying the Yr26 gene locus (Gwm11). B. Plot based on cultivars carrying or 
not carrying the Pm21 gene locus (SCAR1265).



Population structure of Chinese southwest wheat germplasms resistant to stripe rust and powdery mildew...

Ciência Rural, v.48, n.4, 2018.

7

possibly a result of germplasm sharing among different 
breeding programs or frequent appearance of a few lines 
with favourable agronomic traits in multiple breeding 
programs (TYAGI et al., 2014). This is also proved by 
our study that many wheat resources from Sichuan and 
Guizhou shared common parents (GN series) in their 
pedigree. Structure analysis could provide the detailed 
population structure of the wheat accessions and help 
us to utilize them reasonably.

CONCLUSION

DArT-seq, based on GBS methods, is an 
effective means of developing qualitative DArT 
and SNP markers. By this technique, intermediate 
genetic diversity was observed in the tested 
138 wheat accessions with the mean Dice GS 
evaluation. Using PCoA, two groups (6AS/6AL 
and T6VS/6AL) were recognised at the level of 
the whole genome and the 6AS chromosome. 
Cultivars in T6VS/6AL group had better resistance 
to stripe rust and powdery mildew, mainly due to 
the presence of Yr26 and Pm21 loci. Model based 
structure analysis further divided germplasms 
into 6 subgroups, and revealed more details in the 
population structure. Results of this study provided 
information for future breeding programs and 
may be useful for conservation of wheat genetic 
resources and association mapping.
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