
Cad. Saúde Pública, Rio de Janeiro, 31(2):257-263, fev, 2015

257

Going open source: some lessons learned from
the development of OpenRecLink

Rumo ao software aberto: algumas lições
aprendidas com o desenvolvimento
do OpenRecLink

Rumbo al código abierto: algunas lecciones
aprendidas del desarrollo de OpenRecLink

1 Centro Biomédico,
Universidade do Estado do
Rio de Janeiro, Rio de Janeiro,
Brasil.
2 Instituto de Estudos em
Saúde Coletiva, Universidade
Federal do Rio de Janeiro, Rio
de Janeiro, Brasil.

Correspondence
K. R. Camargo Jr.
Departamento de
Planejamento e
Administração em
Saúde, Centro Biomédico,
Universidade do Estado do
Rio de Janeiro.
Rua São Francisco Xavier
524, 7º andar, Bloco D, Rio de
Janeiro, RJ 20559-900, Brasil.
kenneth@uerj.br

Kenneth Rochel de Camargo Jr. 1

Claudia Medina Coeli 2

Abstract

Record linkage is the process of identifying and
merging records across different databases be-
longing to the same entity. The health sector
is one of the pioneering areas of record link-
age techniques applications. In 1998 we began
the development of a software package, called
RecLink that implemented probabilistic record
linkage techniques. In this article we report the
development of a new, open-source version of
that program, now named OpenRecLink. The
aim of this article is to present the main charac-
teristics of the new version and some of the les-
sons learned during its development. The new
version is a total rewrite of the program, based
on three goals: (1) to migrate to a free and open
source software (FOSS) platform; (2) to imple-
ment a multiplatform version; (3) to implement
the support for internationalization. We describe
the tools that we adopted, the process of develop-
ment and some of the problems encountered.

Software; Database; Record Linkage

QUESTÕES METODOLÓGICAS METHODOLOGICAL ISSUES

Resumo

Linkage de registros é o processo de identificação
e fusão de registros entre diferentes bases de dados
pertencentes à mesma entidade. O setor de saúde é
uma das áreas pioneiras na aplicação de técnicas
de record linkage. Em 1998, iniciamos o desen-
volvimento de um programa chamado RecLink,
que implementava as técnicas de relacionamento
probabilístico. Neste artigo, relatamos o desen-
volvimento de uma nova versão de fonte aberta
desse programa, agora chamado OpenRecLink.
O objetivo deste artigo é apresentar as principais
características da nova versão e algumas das li-
ções aprendidas durante o seu desenvolvimento.
A nova versão é uma reescrita total do programa,
com base em três objetivos: (1) migrar para uma
plataforma de software livre e de código aberto, (2)
implementar uma versão multiplataforma e (3)
implementar o suporte para a internacionaliza-
ção. Descrevemos as ferramentas adotadas, o pro-
cesso de desenvolvimento e alguns dos problemas
encontrados no seu desenvolvimento.

Software; Base de Dados; Relacionamento
de Dados

http://dx.doi.org/10.1590/0102-311X00041214

Camargo Jr. KR, Coeli CM258

Cad. Saúde Pública, Rio de Janeiro, 31(2):257-263, fev, 2015

Introduction

Record linkage is the process of identifying and
merging records across different databases be-
longing to the same entity 1. As a result, it creates
a new database that has more variables, improv-
ing the ability in answering research questions. It
can also be used to identify records that refer to
the same entity within a single database 1, which
is useful for both data quality improvement and
the study of repeated health events.

The health sector is one of the pioneering
areas of record linkage techniques applications.
Although new techniques have been developed
and applied, Winkler 2 pointed out that none of
them has consistently outperformed the proba-
bilistic linkage techniques based on the Fellegi-
Sunter model.

In 1998 we began to develop an application
for probabilistic record linkage, out of the need
to have an affordable tool that would implement
Felegi and Sunter’s methodology of probabilistic
record linkage 3. Right from the start we intend-
ed to have the program developed as a Free and
Open Source Software (FOSS), for a number of
reasons: it is more appropriate to the scientific
ethos; it can attract developers beyond one spe-
cific team, thus speeding up the software lifecy-
cle and, at least in theory, produce stronger code;
and finally, it can assure the survival of the pro-
gram itself, even if the original authors choose
not to continue its development 4. We chose to
use the C++ language due to its power, general
availability and support. We chose a program-
ming tool that offered support for graphic user
interface development under 32 bit Windows
(Microsoft Corp., USA). We used a third-party
vendor library for the database back-end, which
supported the venerable xbase (dbf) file format.
Although we distributed freely the package from
the beginning, we could not open-source it, be-
cause it relied on third-party code to which we
had no rights to distribute (and were in fact for-
bidden to do so). The software we developed –
called RecLink – went through a number of itera-
tions and reached a stable level in version 3 5,6,
which became widely used in Brazil 7.

With time, however, some of the problems
of the approach we adopted became apparent.
There were issues with index files when the num-
ber of records was too large – and that became
increasingly common in the experience of our
users. The dbf format itself had some limita-
tions that were increasingly becoming apparent
(especially the maximum number of variables).
The graphic interface framework depended on
a proprietary implementation of another lan-
guage, not C or C++, which locked us to that spe-

cific vendor. These problems became clearer on
two occasions.

First, a collaborator developed a routine to
estimate linkage parameters based on the E/M
algorithm 8, but we realized we would not be able
to distribute it, since it included a specific library
licensed under the Gnu Public License (GPL),
which determines that all code should be made
available to end users (unlike the Less General
Public License, LGPL, that allows for some excep-
tions), something which we could not do. That
part of the library had to be rewritten in order to
allow the distribution of the program. Second,
somewhere during the development of the third
version of the program, the software company
that produced the C++ development tools we
were using signalized their discontinuation; al-
though that decision was reversed, it made us
deeply aware of the risks of vendor lock-in in
terms of software development.

At the same time, we started adopting Linux
as our operating system (OS) of choice (more
specifically, the Ubuntu distribution), and decid-
ed to have a version of the software available that
would run under that OS as well, something that
was not possible with the toolset we were using.
It became clear that a new version was necessary.
We had three design goals in mind: making the
software available in different OSs, at first Win-
dows and Linux; making the software available
in different languages, initially Portuguese and
English; and improving the overall performance
of the system.

The aim of this article is to present the main
characteristics of the new version and some of
the lessons learned during its development.

Characteristics of the program

We tried to keep the user interface as similar as
possible to the previous version, adopting the
name “OpenRecLink” to both signalize con-
tinuity and the new open source nature of the
program. As in the previous version, most op-
erations require two steps: the definition of
a configuration file, using a graphic interface
(“assistant”) through a step-by-step procedure
which includes checks for errors in the configu-
ration, and then batch processing the data files
based on the generated configuration. A major
modification, compared to the previous ver-
sion, was in the deduplication routine, which
was totally redesigned. The main changes in
this routine were a better display of possible
duplicate records and an easy mechanism to
change unique identifiers, in addition to marked
performance enhancements.

LESSONS LEARNED FROM THE DEVELOPMENT OF OpenRecLink 259

Cad. Saúde Pública, Rio de Janeiro, 31(2):257-263, fev, 2015

Another area that underwent major changes
was the file format adopted (see technical details
in the following sections). Because of the new for-
mat, routines for file management (creation, in-
dexing, copying, exporting and importing) were
added to the program.

The general operation of the program is
demonstrated by its menu structure, shown with
comments in Figure 1.

Choice of development tools

After some research, and having decided to stick
to C++ as our language of choice, we decided
to use wxWidgets (http://www.wxwidgets.org)
as our graphic framework of choice, using the
gnu toolchain (the gcc compiler suite), and co-
deblocks (http://www.codeblocks.org/), an IDE
built with wxWidgets and with several facilities
for developing code with that framework, includ-
ing a graphic screen designer, called wxSmith.

The gcc toolchain is available in practically
every major OS in use, is one of the most stan-
dards-compliant toolsets available, and pro-
duces high quality binary code. Under Windows
we also use a command-line environment called
MSYS (http://sourceforge.net/projects/mingw/
files/MSYS/), that provides a very similar set of
tools to those available under Linux, thus allow-
ing us to use a single set of makefiles to create
versions for both systems, which considerably
accelerated the process of generating new ver-
sions for distribution.

Although all the tools used in the develop-
ment of the new version allow the development
of closed-source commercial programs, we de-
cided to use an open-source model, adopting the
GPL version 3 for licensing. WxWidgets not only
provides multi-platform support, but also in-
cludes support for the gettext framework, which
allows multi-language support without recom-
pilation; a tool scans the C++ code and identifies
strings that were marked using a specific conven-
tion, and generates a text file with all such strings
(a .mo file), which can then be translated into
different languages and compiled into as many
.po files as necessary, which can be selected at
runtime by the program.

The development process

Development started by the end of 2009, being
hosted at Sourceforge (http://reclink.source-
forge.net/). For a first iteration, we still used the
dbf file format. We designed a C++ class wrapper
that encapsulated the library we were using (also

free and open source), in order to make it easy
to transition to other database back-ends in the
future, a decision that later proved its value.

We made a few preliminary alpha versions of
the software and started researching alternatives
for the dbf file format. We ruled out from the start
any full-fledged DBMS from consideration; pre-
vious attempts, still in the closed-source phases
of development, showed that all the overhead
introduced by SQL interpretation layers, journal-
ing and other features introduced an undesirable
level of complexity and performance problems at
the same time.

We adopted a dual-license library (free for
open-source programs, and royalty-based for
closed-source ones) at first, that seemed to have
the simplicity and performance that we wanted.
Although the former was true, when we finally
managed to do actual load tests with the new
version of the program, we were dismayed to
find that a test linkage had a tenfold increase in
processing time, even when comparing an old 32
bit computer with a single-core processor with a
modern, 64 bit, double core one.

All the indexing systems we used up to this
point were based on B-Tree variants. Although
perfectly suited for interactive databases, that
are being queried and updated all the time, they
are not necessarily suited for the kind of batch
processing that takes place in our program. As
data files grow in size, node and leaf splitting and
recombining become more frequent, and that
takes a toll on the overall performance.

We decided to take a brute-force approach,
creating an indexing system based on a two step
process: first, the data file is read from beginning
to end, generating a second file which contains
as many records, each consisting of the index key
(a fixed size character sequence) and a pointer
to the record in the data file. Then the generated
index file is sorted in-place, using an adapted
version of the qsort algorithm. Searches on the
index file are made with a simple binary search,
with one important adaptation: since we admit
multiple entries with the same key, when a key
is found it is not necessarily the first occurrence
in the index file, so the program skips back in the
index file to find the first occurrence, since this
is necessary for the correct operation of many
routines in the program.

We had to create our own record file format,
loosely based on the dbf format, but far less re-
strictive. Field names can be up to 15 characters,
the number of fields can be anything expressed
by an integer (usually a fairly large number, re-
gardless of implementation), any field can be
up to 1k (1024) bytes in length, and the total
size of a record can be up to 32k bytes in length.

Camargo Jr. KR, Coeli CM260

Cad. Saúde Pública, Rio de Janeiro, 31(2):257-263, fev, 2015

Figure 1

OpenRecLink menu structure and main functions.

File: Set of tools to work with OpenRecLink data files and indexes, including exporting/importing data.
Submenus:
 Tools
 File
 Visualize
 Structure
 Reset
 Index
 Quit
 Move
 Annex
 Export
 Import
 Import dbf
 Activity log
 About
 Quit
Copy: Routines for selective copy of parts (records and/or fields) of data files.
Submenus:
 Configure
 Run
Standardize: Routines for standardizing data.
Submenus:
 Configure
 Run
Linkage: Routines for blocking and comparison of links, including estimating m and u weights.
Submenus:
 Configure
 Generate frequency
 Analyse frequency
 Generate matrixes
 Calculate
 Run
 Reduce pairs
 Mark/unmark
 SQL export
Deduplication: Routines for identifying duplicate records on data files.
Submenus:
 Configure
 Run
 Inspect
Combine: Routines for automated classification, clerical review and combining linked files.
Submenus:
 Examine
 Run
Join:
Submenus: Routines for linkage based on a shared unique identifier.
 Configure
 Run

LESSONS LEARNED FROM THE DEVELOPMENT OF OpenRecLink 261

Cad. Saúde Pública, Rio de Janeiro, 31(2):257-263, fev, 2015

Having created the wrapper class previously all
those transitions between different data back-
ends were relatively easy to undertake. We in-
cluded an information string in the file header
to make sure that it is indeed the correct type of
file that is being opened, and also to allow dif-
ferentiation of the 32 and 64 bits of the data and
index files, since the aforementioned differences
in integer type sizes make the two incompatible
with each other.

We were still worried about performance is-
sues with the adopted strategy, but tests made so
far indicate that there were definite gains. A test
program made specifically to compare indexing
strategies, comparing our solution to a B-Tree
implementation 9 originally made in C, which
we adapted as a C++ class, showed a significant
gain: generating an index with a 50-byte key size
for a file with 1,529,952 records took 12:38 min-
utes/seconds with the B-Tree (best result after
tweaking certain parameters, especially page
size) and 5:23 minutes/seconds for the sorted
index (2:35 min for generating the file and 2:48
min for sorting). Using the generated indexes to
create a sorted list of records, output to a text file,
took similar amounts of time (2:56 min and 2:44
min, respectively). The tests were performed on
a computer with an Intel Core i7 computer with
32 Gbytes of RAM, a 1 Terabyte hard disk, running
Ubuntu Linux 14.04, 64 bits. Obviously larger files
will lead to different results, and the increase in
processing time is not linear in either case, but
nevertheless this comparison is relevant.

During the early testing phases of the pro-
gram we encountered a specific performance
problem with the indexing scheme we adopted
during the clerical review process, which re-
quired a workaround; explaining that requires a
closer look at the operation of two modules of
the program. For the linkage operation itself, as
explained before the program will take a previ-
ously created configuration file, and will read one
of the files from beginning to end, comparing
each record to those within a zone in the other
file (the block, specified by user-defined param-
eters), and generating a score computed for all
the determined field comparisons in the configu-
ration; for each comparison a record is generated
in another file, called the pairs file, containing
the final score and the pointers to the compared
records in each file (low values can be kept from
generating records in the pairs file, according to a
user-defined threshold).

Another module of the program allows a kind
of “virtual joining” of the linkage files, looking
into each record of the pairs file and display-
ing the data of the corresponding records in the
two linked files. This is made to allow for a cleri-

cal review of the linkage process. Navigation in
that module is made according to blocks with
the same score. Since multiple pairs can have
the same score, that created a problem for the
search function. Going back to the point of the
index file corresponding to the beginning of a
block that has tens of millions of records is very
time consuming. In order to get around that,
that specific routine was changed to create a sort
of virtual index of the index, registering where
each block begins.

Releasing new versions

We have followed one of the principles of FOSS
developments, to release new versions as often
as possible 4,10. Before releasing new versions,
we perform tests of performance and function-
ality with two test databases that we created for
this purpose from actual data, with known true
matches and true no matches. As new versions
are released, they are being deployed in our re-
search as beta releases, with further testing being
done with actual use. Both Linux and Windows
64 bit versions are tested at this stage. Early user
feedback drives further development.

Discussion

Whereas in the articles that we previously pub-
lished dealing with the closed source version of
the program 5,6 our goal was to present the op-
erating aspects of the software, in this text one
of our concerns, following Prlić & Procter 10 is to
promote the project and try to create, or in this
case expand, a community around it, hopefully
involving more developers. From our experi-
ence, we believe that there are already enough
researchers in public health who can participate
in the development of open source programs.

As for the lessons learned, first of all adopt-
ing good programming practices is essential. The
separation between business logic and user in-
terface, that was already adopted in the closed
version, proved fundamental in the transition.
Although the code was rewritten almost in its en-
tirety, in order to remove dependencies on closed
source third party libraries, the classes that were
designed and the general approach to the prob-
lems were maintained and served as a blueprint
for the new version.

Second, the tools we chose proved to be ad-
equate to the task. The general availability of
many multi-purpose open source libraries in C
and C++, including the GUI framework itself, was
vital for the successful development of the new

Camargo Jr. KR, Coeli CM262

Cad. Saúde Pública, Rio de Janeiro, 31(2):257-263, fev, 2015

version. Although we would rather concentrate
on the Linux version, we have a user base that
only works with Windows, and the multiplatform
capabilities of wxWidgets were one of the key fea-
tures for its adoption.

This, however, introduced another level of
complexity, particularly in terms of testing; one
of the principles proposed by Prlić & Procter 10,
‘be your own user’, is harder to adhere to when it
comes to using different platforms. We can count
on our existing user base to help us in this regard.

In parallel to the more technical aspects of
coding, we have invested in training different
groups in using the software, which has proven
to be a key aspect in the diffusion of its use. Al-

though we do have a website for the program,
currently our main channel of interaction with
users is via e-mail.

Finally, we have striven to create adequate
documentation for users, not so much for devel-
opers. Limitations in resources have prevented
us from fully addressing this issue; that, and the
improvement of communication and interaction
with users and potential developers, are areas in
which we intend to invest additional efforts.

Once again referring back to Prlić & Procter 10,
we should not lose sight of the fact that the soft-
ware we develop is an instrument for our scien-
tific research, and not an end in itself.

Resumen

La vinculación de registros es el proceso de identifi-
car y combinar registros a través de diferentes bases
de datos que pertenecen a la misma entidad. El sector
de la salud es una de las zonas pioneras en el récord
de técnicas de vinculación de aplicaciones. En 1998 se
inició el desarrollo de un paquete de software, llamado
RecLink, que implementaba técnicas de registro de
vinculación probabilísticos. En este artículo se pre-
senta el desarrollo de una nueva versión de código
abierto de ese programa, ahora llamado OpenRecLink.
El objetivo de este artículo es presentar las principa-
les características de la nueva versión y algunas de las
lecciones aprendidas durante su desarrollo. La nueva
versión es una reescritura total del programa, sobre la
base de tres objetivos: (1) migrar a un software libre y
de código abierto de la plataforma (FOSS), (2) imple-
mentar una versión multiplataforma; (3) poner en
práctica el apoyo a la internacionalización. Se descri-
ben las herramientas que hemos adoptado, el proceso
de desarrollo y algunos de los problemas encontrados.

Programas Informáticos; Base de Datos; Vinculación
de Datos

Contributors

K. R. Camargo Jr. and C. M. Coeli were responsible for
elaboration, revision and approval of the final version
of the article.

Acknowledgments

The study received funding from CNPq and FAPERJ. C.
M. Coeli and K. R. Camargo Jr. received research fello-
wship grants from CNPq.

LESSONS LEARNED FROM THE DEVELOPMENT OF OpenRecLink 263

Cad. Saúde Pública, Rio de Janeiro, 31(2):257-263, fev, 2015

References

1.	 Christen P, editor. Data matching concepts and
techniques for record linkage, entity resolution,
and duplicate detection. Berlin/New York: Spring-
er; 2012.

2.	 Winkler WE. Foreword. In: Christen P, editor. Data
matching concepts and techniques for record link-
age, entity resolution, and duplicate detection.
Berlin/New York: Springer; 2012. p. vii-viii.

3.	 Fellegi IP, Sunter AB. A theory for record linkage. J
Am Stat Assoc 1969; 64:1183-210.

4.	 Raymond ES. The cathedral and the bazaar. First
Monday 1998; 3(3). http://ojphi.org/ojs/index.
php/fm/article/view/578/499 (accessed on 22/
Jun/2014).

5.	 Camargo Jr. KR, Coeli CM. Reclink: aplicativo para
o relacionamento de base de dados, implemen-
tando o método probabilistic record linkage. Cad
Saúde Pública 2000; 16:439-47.

6.	 Camargo Junior K, Coeli C. RecLink 3: nova ver-
são do programa que implementa a técnica de
associação probabilística de registros (probabilis-
tic record linkage). Cad Saúde Colet (Rio J.) 2006;
14:399-404.

7.	 Silva JPL, Travassos C, Vasconcellos MM, Campos
LM. Revisão sistemática sobre encadeamento ou
linkage de bases de dados secundários para uso
em pesquisa em saúde no Brasil. Cad Saúde Colet
(Rio J.) 2006; 14:197-224.

8.	 Junger WL. Estimação de parâmetros em relacio-
namento probabilístico de banco de dados: uma
aplicação do algoritmo EM para o Reclink. Cad
Saúde Colet (Rio J.) 2006; 14:225-32.

9.	 Stevens A. C database development. 2nd Ed. New
York: MIS Press; 1992.

10.	 Prlić A, Procter JB. Ten simple rules for the open
development of scientific software. PLoS Comput
Biol 2012; 8:e1002802.

Submitted on 16/Mar/2014
Final version resubmitted on 28/Jul/2014
Approved on 30/Jul/2014

