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1 Introduction
Maize is the third largest grain crop globally, and in China, 

is one of the three major grain crops with the highest yield and 
area. Maize food processing products are indispensable in daily 
life. From 2008-2018, total maize production increased from 
166 million tons to 257 million tons, representing a net increase 
in 91 million tons, maize planting area increased from 29.93 
million ha to 42.13 million ha, representing a net increase in 
12.2 million ha. It is expected that future maize production and 
planting area will continue to increase. Maize is also an important 
feed and industrial raw material. High production levels are 
crucial to maintaining grain production, animal husbandry 
and food security in China and globally. It is expected that the 
contribution of maize to national grain production will reach 
90% by 2020 (National Bureau of Statistics, 2018). Therefore, 
developing methods for the mechanization of maize harvesting 
is required to improve kernel harvest quality for meet industrial 
and food processing demands.

Maize harvesting in developed countries has been mechanized 
since the end of the 20th century. Because the maize is operated 
on a large scale and the row spacing is consistent in developed 
countries, the whole row harvest is adopted. In addition, the 
moisture content of maize kernels is low during harvesting 
owing to the use of the one-ripening per year planting system, 

which has little damage to the directly harvested maize. During 
harvest, threshing after picking has been adopted, which 
involves harvesting the maize kernels directly by replacing the 
maize header of the combine harvester, adjusting the rotation 
speed of the cylinder and the threshing clearance (Chen et al., 
2012). For example, The United States adopts advanced seeding 
equipment with electronic monitoring, automatic adjustment, 
and laser positioning to improve the positioning ability of the 
seeds, so that the seeding strips are more standardized and the 
control depth is more accurate and consistent. Airplanes are 
used to fertilize and spray pesticides at some of the larger farms. 
Generally, the direct harvest of maize kernel begins 2-4 weeks 
after the black layer or milk line disappears at the top of maize 
kernel. Field dehydration can reduce the kernel water content 
to 15-18% and reduce the drying cost (Hiregoudar et al., 2011; 
Mathanker & Hansen, 2014; Pastukhov et al., 2021).

At present, the main maize kernel harvesting methods in 
China involve harvesting ears, peeling, drying, threshing, and 
re-drying, which has high time and labor costs. However, maize 
picking, peeling, threshing, gathering and straw crushing can 
be completed at the same time by directly harvesting the maize 
kernels and greatly decreasing labor intensity while increasing 
production efficiency. Due to China’s national conditions are 
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different, including high water content of maize kernel, inconsistent 
planting row spacing, and different agronomic requirements in 
various regions. The maize harvesting technology and equipment 
in developed countries are only applicable to some regions of 
China. For example, the Huang-Huai-Hai region is one of the 
main maizes producing areas in China where two cropping 
systems are usually employed (Liu et al., 2015). Due to a short 
farming season, the moisture content of maize kernels is higher 
than 28% during actual harvest, and the harvest has great 
damage to maize kernel at maturity stage. It has been pointed 
out in some studies that the average moisture content of maize 
kernels in China reaches 26.65%, and the average breakage rate 
of maize kernels during direct harvesting reaches 8.56%, which 
is higher than the ≤5% national standard (China Machinery 
Industry Federation, 2008) high damage rate of maize kernels 
not only reduces maize quality and commercial price, but also 
decreases difficulties of drying costs and introduces storage. 
Evidently, the high kernel breakage rate restricts the promotion 
of maize direct harvesting technology in China (Fan et al., 2019; 
Yang et al., 2018).

Many previous studies have investigated the primary and 
secondary factors of maize kernel damage. Some people studied 
the effect of mechanical threshing on the quality of maize 
seed threshed at different moisture contents (MC). The results 
showed that the damage percentage increased and the seed 
vigor parameters decreased with increasing seed MC during 
threshing in both cultivars (Gu et al., 2019; Petkevichius et al., 
2008). Through experimental analysis, concluded that different 
threshing concave structures would have an important effect 
on maize kernel breakage during threshing (Pužauskas et al., 
2016; Steponavičius et al., 2018). The maize threshing test was 
conducted, their results indicated that the breaking rate increased 
as water content increased and the threshing cylinder speed 
significantly affected the breaking rate (Srison  et  al., 2016). 
Some scholars discussed the effects of corn variety, moisture 
content and ear type on kernel mechanical crack (Zhang et al., 
2019). Some people studied the correlation between key factors 
such as thresher speed, concave clearance and feeding speed 
and crushing entrainment loss during high humidity maize 
harvest. The results showed that the importance of drum speed, 
feeding speed and concave clearance on corn crushing rate and 
entrainment loss rate decreased in turn (Zhu et al., 2020). The 
mechanism underlying the effect of water content was explored 
on maize threshing, their results highlighted grain breakage 
strength and threshing force as major factors (Gao et al., 2011). 
The difference of grain water content was studied before and 
after maize harvest, then found that the grain water content 
after harvest was positively correlated with the water content 
and the crushing rate before harvest. The results showed that the 
higher water content of crops led to the easy crushing of kernel 
(Li et al., 2021). The study that the damage rate of maize kernels 
with high moisture content on the surface was significantly 
higher during threshing and separation. Therefore, the drum 
speed and concave clearance were optimized in the threshing 
link of maize kernels with high moisture content to reduce the 
damage rate of maize kernels (Fu et al., 2020).

Overall, previous research has indicated that maize moisture 
content, cylinder speed, feeding mode, feeding amount, and 

threshing clearance affect maize kernel breakage and un-threshing 
rates. However, most previous studies focused on the threshing 
mechanism, overall breakage rate of direct harvesting, fracture 
morphology and related influencing factors, which rarely damage 
individual maize kernels. We consider that maize kernel damage 
should be quantified and characterized before undertaking 
specific investigations of the causes and primary and secondary 
factors of maize damage.

The combination of image processing technology and machine 
learning has satisfactory speed and accuracy in grain characteristic 
analysis, detection, classification, and evaluation (Chen & Yu, 
2021a, b), which provides an effective tool for studying grain 
damage detection and evaluation. Some scholars have established 
a vision system based on image processing technology to detect 
and evaluate the appearance quality and varieties of rice, and 
accurately distinguish the whole grain and broken grain of rice 
(Payman et al., 2018). Distinguishing features were extracted 
through image processing, and support vector machine (SVM) was 
used to classify and evaluate the quality and defects of different 
rice (Mittal et al., 2019). The size and shape characteristics of 
lentils were measured by image processing technology, and 
the shelling efficiency of lentils was further predicted by the 
regression model based on the measured values (Shahin et al., 
2012). An image processing system (MATLAB) was proposed 
to judge the quality of grain. The grain samples were classified 
according to color, shape and size, the impurities such as stones, 
damaged seeds and broken particles were identified (Sharma 
& Sawant, 2017). Some people proposed a method based on 
digital image analysis, which could automatically quantify the 
percentage of defective corn and highlight the defective maize 
area in the image (Orlandi et al., 2018). An image processing and 
feature extraction algorithm of barley grain automatic detection 
system was proposed and optimized, which was an important 
part of barley grain defect classification system (Kociołek et al., 
2017). Some scholars used texture analyzer and artificial neural 
network to classify and recognize the texture features of test 
objects (Zhu & Wu, 2019). Some researchers indicated that 
artificial neural network was used to classify and identify the test 
objects by material components (Pranoto et al., 2022) or predict 
the characteristics of the test objects quality (Abdelbasset et al., 
2022). Some scholars extracted the color features of corn leaves 
based on image processing, and used artificial neural network 
to classify the maturity of maize (Peter et al., 2017). Previous 
studies have shown that image processing and neural network 
technology have strong application potential in the research 
of crop characteristics and feature extraction and recognition.

The above research mainly used image processing and 
machine learning technology to realize the automatic evaluation 
of corn quality and the recognition of corn varieties. Although 
the results of previous studies were sufficient for calculating 
the total damage rate of maize grains in direct harvesting, they 
were insufficient for quantifying damage in a single maize 
kernel. In the present study, samples were collected from direct 
harvesting field experiments to extract maize kernel damage 
under different conditions by image processing, the quantitative 
model of maize kernel damage was established based on BP 
neural network, and the parameters were optimized. This will 
provide an important help for the development of maize kernel 
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direct harvest technology, and improve kernel harvest quality 
to satisfy food processing industry demands.

2 Materials and methods
2.1 Materials and equipment

Damaged maize kernel samples were collected in Shiyezhou, 
Zhenjiang city, Jiangsu province, China (32°12’21.4”N, 119°18’34.8”E) 
in October 2018. The maize variety was “Zhengdan 958”, which 
has an average growth period of 96 days, an average quality of 264 
g per ear, a kernel moisture content of 27.75%, and an average 
of 100 g of 100 grains. The test equipment included a maize 
kernel combine harvester (Figure 1a), with an engine power of 
117 kW, and equipped with a maize picking head with 6 rows 
and a width of 3990 mm. A schematic diagram of the combine 
harvester and a partially enlarged view of both sides were shown 
in Figure 1b. Adjustment of the cylinder speed was realized by 
hydraulic stepless speed change. The external drive and speed 
regulating device of the tangential flow threshing cylinder were 
located on the right side of the machine. The clearance adjusting 
device of the tangential concave was located on the left side of 
the machine.

Some maize kernel samples were collected from each group 
(Figure  1c), and 5 damaged maize kernels (Figure  1d) were 
randomly selected for specificity analysis. The image acquisition 

system was set up as shown in Figure 1e. The system comprised 
a computer and USB digital microscope (UMU1000XIR). The 
digital microscope and computer were connected by the USB 
cable, and the focus could be adjusted by turning the focusing 
roller. The digital microscope was linked to the software AMCap 
and measurements. A darker background could improve imaging 
owing to the inherent color of the maize kernels, namely yellow 
or yellowish-white. Therefore, images were acquired in front of 
a black background with an LED annular light source. The focal 
length and sample position were adjusted to optimize imaging 
for the first image, and then fixed parameters were convenient 
for subsequent imaging. Next, images of 30 damaged maize 
kernels of samples for 6 groups were captured in turn, then files 
were numbered and stored.

Figure 1. Equipment and materials: (a) Maize kernel combine harvester, (b) Schematic diagram and partial enlargement of the maize kernel 
combine harvester, (c) Maize kernel samples, (d) Five damaged kernel samples in each group, (e) Image acquisition system (1. USB cable, 2. 
Focusing roller, 3. LED lamp cover, 4. Metal base, 5. Computer, and 6. Mouse).

Table 1. Field test operation parameters.

Test group 
number

Entrance 
clearance (mm)

Export 
clearance (mm)

Cylinder speed 
(rpm)

1 35 15 300
2 35 15 350
3 30 10 300
4 30 10 350
5 25 5 350
6 25 5 300
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6 groups of field experiments with different operation 
parameters (Table 1) were designed to compare the differences 
in kernel damage from changing one parameter and keeping 
the other parameters the same.

2.2 Image preprocessing methods and establishment of 
BPNN kernel quantitative damage model

The software Measurement was used to measure the maize 
kernel images preliminarily and roughly, which was brought by 
UMU1000XIR. Firstly, the average number of pixels corresponding 
to 1 mm was obtained by measuring the calibration scale several 
times. Then, the maize crack was measured roughly, and the 
maximum length was recorded (Figure 2a).

Images were preprocessed using grayscale, binarization, 
filtering and morphological operations (Figure 2b) (Li et al., 

2009). A reasonable gray image could be obtained using the 
weighted average method for RGB (Figure 2b).

a) The gray thresh function provided was used to find the 
appropriate image threshold using the maximum variance 
between clusters. Then the optimal binary image was 
obtained by manual adjustment (Figure 2b);

b) Some noise contained in the image after binarization 
was removed using median filtering technology, the filter 
window was 3 × 3 (Figure 2b);

c) The imdilate function was used to expand or the imerode 
function was used to corrode the binary image. The choice 
between expansion (Figure 2b);

d) or corrosion (Figure 2b);

e) depended on whether the main crack could be highlighted. 

Figure 2. Image processing and BPNN model structure: (a) Crack length measurement, (b) Image preprocessing flow chart, (c) The flow chart 
of feature extraction process, (d) Image feature extraction, and (e) BPNN model.
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The clear cracks and boundaries were extracted and then 
synthesized to directly calculate the pixel area to obtain the 
contour area. A flow chart of the feature extraction process 
was shown in Figure  2c. The crack image and boundary 
image extracted by the steps in the flowchart were shown 
in Figure 2d. The pixel area was further counted by region 
props function. The kernel contour area and damage area 
were calculated.

The quantitative model of maize kernel damage established 
for BPNN in MATLAB 17.0 (Figure 2e). The total number of 
samples had 6 (the average value of 5 damaged kernels in each 
group), the training set, test set, and verification set account for 
70%, 15%, and 15% respectively. The model was composed of 3 
input, 4 output, and 4 hidden layer units. The data of 6 groups 
for threshing drum operating parameters (Inlet clearance, outlet 
clearance, and drum speed) were the input matrix data of the 
neural network. According to the image processing (Grayscale, 
binarization, filtering, and expansion / corrosion), the crack 
image and contour image were obtained (Figure 2d). Then the 
crack image was inversed, the bwlabel function marked the 
connection area of the crack inversion image and contour image, 
and the regional feature information (Crack / fracture length, 
crack / fracture area, and grain contour area) were acquired 
by the regionprops function. The ratio of crack / fracture area 
to grain contour area were calculated, then obtained the crack 
pixel proportion and breaking pixel proportion respectively. 
The image processing data of 5 grains in each group were 
averaged to obtain 6 groups of average data, which formed the 
output matrix of the neural network (Average crack length, 
average crack pixel proportion, average breaking length, and 
average breaking pixel proportion). According to “the number 
of neurons in the hidden layer is about two-thirds of the sum 
of the number of neurons in the input layer and the output 
layer”, the number of hidden layers was determined to be 4 or 
5. After many times of training, the effect was better when the 
number of the hidden layer was 4. Levenberg-Marquardt was 
selected as the training function. The prediction error would 
be reduced in reverse by automatically adjusting the weight 
and threshold. The prediction model was established, and the 
output of the prediction model were obtained and compared 
with experiment data.

3 Results and discussions
3.1 Overall analysis of kernel damage

The change in threshing strength was caused by the 
different test conditions of the respective groups during the 
field test, which leaded to difference in damage intensity. 
Some kernels were only slightly cracked, while others were 
broken. The number of cracked kernels gradually decreased, 
the proportion of broken kernels gradually increased as the 
threshing clearance decreased, and the threshing strength 
increased at the same cylinder rotation speed (Figure 3a). We 
found that the proportion of broken kernels increased with 
increasing rotational speed by comparing groups 1-2 and 3-4 
with the same threshing clearance. The kernel breakage rate 
increased with increasing cylinder rotation speed when threshing 
clearance was fixed. There were fewer cracked kernels in the 
high-speed rotation group than in the low-speed rotation group, 
but the ratio of broken kernels was larger in the former than 
the latter, because the threshing clearance and the cylinder 
rotation speed were different (Figure 3a). Thus, the change in 
cylinder rotation speed was a key factor affecting the kernel 
breakage rate when the threshing clearance and the cylinder 
rotational speed changed within a certain range. The order of 
threshing intensity was: 5 > 4 > 6 > 2 > 3 > 1.

The damage types observed in the collected maize kernel 
samples mainly included cracks, breakages, or a combination 
of both. The maximum crack length and breakage area were 
measured by Measurement, and a broken line graph based on 
the calculated mean and variance with error bars (Figure 3b). 
The order of average values for crack or breakage length 
in each group was 1 < 3 < 2 < 6 < 4 < 5. This indicated that 
kernel damage becomes increasingly serious with increasing 
threshing intensity. The proportion of damaged area to 
total area of each kernel in the six groups of samples was 
calculated, and then the average of the proportions was 
calculated (Figure 3c). The order of proportions was: 5 > 4 
> 6 > 2 > 3 > 1. The larger proportion represented a longer 
crack or that more parts of the kernel were broken, which 
meant the damage was more serious. We concluded that 
decreasing the threshing intensity properly could effectively 
decrease the damage.

Figure 3. Overall analysis of grain damage: (a) The ratio of cracked kernels to broken kernels, (b) Total mean length of damage in each group, 
and (c) The total mean of the proportion of pixels in each group of damage to the total pixels.
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3.2 Model of kernel quantitative damage

In Figure 4a, when the BPNN model converged in 3 epochs, 
the training ended. the BPNN error was mainly concentrated 
-0.024 ~ 0.006, the error was small (Figure 4b). The R was above 
0.95 in Figure 4c, which meant that the established model had 
high reliability.

In Table 2, it was found that there were large errors in N1 
(groups 1, 2), N2 (groups 6), and the errors of other groups 
were around 10% under different combinations of operating 
parameters. The accuracy of BPNN kernel damage quantitative 
model in judging all kernel damage characteristics was above 
85%, the BP neural network model of kernel quantitative damage 
was certainly feasible and relatively accurate and reliable.

3.3 Analysis of kernel crack and breakage length and pixels

The cracked and broken kernels were analyzed separately. The 
means of crack length were used to plot the graph in Figure 5a. 
The order of average crack length in each group was 1 < 3 < 2 
< 4 < 5 < 6 (Figure 5a). The average crack length of groups 1, 2, 
and 3 was similar, because the changes in threshing intensity 
were small. Because the cylinder rotation speed increased and 
the threshing clearance of groups 5 and 6 decreased. There 
were significantly more broken kernels in groups 5 and 6 than 
cracked kernels, the minimum threshing clearance resulted in 
a relatively large threshing intensity. As shown in Figure 5b, 
we concluded the ratios that the maximum cracked area was 

about one fifth of the total area. The cracks in groups 1-3 was 
usually from abrasion or slight cracking due to the relatively 
weak threshing intensity. the total area of cracks was relatively 
small. The cracks in groups 4 and 5 were relatively large due to 
high threshing intensity, leading to a high proportion of cracks, 
it was not recommended to directly harvest maize kernel under 
the parameters.

The only form of damage observed in this group 1 was 
cracks. The maximum length was relatively small in the case 
of some small breakages in the crown or side of the kernel. As 
shown in Figure 5c, groups 2-4, and 6 were similar in maximum 
height. The length of group 5 was overall large since the cylinder 
rotation speed was relatively large, and the threshing clearance 
was small leading to breakages. In order to further analyze and 
judge the size of the breakage area, and thus the damage level 
was obtained (Figure 5d). The trend was basically the same as 
that seen in Figure 5c, but with evident differences between the 
groups in the chart. Kernel breakages increased as threshing 
intensity increased, and the proportion was larger as a result. 
The difference range between BPNN model and test results was 
0%-10.4% (Figure  5a), 0.02%-1.52% (Figure  5b), 0%-20.5% 
(Figure 5c), and 0%-6.9% (Figure 5d). This showed the prediction 
results of BPNN for different kernel damage categories and their 
quantification were good, and the kernel damage quantification 
model was relatively reliable. When the inlet clearance was 
30-35 mm, the outlet clearance was 10-15 mm and the drum 
speed was 300-350 rpm under different combinations of operating 

Figure 4. BPNN model training results. (a) Performance; (b) Error; (c) Regression.

Table 2. Comparison of kernel quantitative damage between BPNN model and experiment.

Number

Operating parameters Experiment BPNN model
Inlet 

clearance 
(mm)

Outlet 
clearance 

(mm)

Drum 
speed 
(rpm)

K1 (mm) N1 (%) K2 (mm) N2 (%) K1 (mm) N1 (%) K2 (mm) N2 (%)

1 35 15 300 8.00 1.20 0.00 0.00 8.30 1.56 0.00 0.40
2 35 15 350 8.67 0.80 15.67 24.00 8.70 2.32 13.00 18.90
3 30 10 300 8.33 1.80 15.00 19.67 9.30 2.33 16.50 22.10
4 30 10 350 15.00 9.50 16.00 31.00 15.00 9.39 16.00 31.00
5 25 5 350 17.33 10.20 18.33 35.00 17.20 10.18 18.50 35.20
6 25 5 300 17.67 2.90 14.00 22.00 19.50 5.30 16.90 28.90

Note: K1: average crack length; N1: average crack pixel proportion; K2: average breaking length; N2: average breaking pixel proportion.
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drum speed was 300 rpm, the damage of maize kernel 
was small;

(3) We only collected relatively few samples to test the 
feasibility of image and machine learning technology 
for quantitative research on kernel damage. Therefore, 
increasing the amount of sample is important for research 
aiming to further quantitative research on damage.
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