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1 Introduction
Microalgae are widely studied due to their photosynthetic 

properties. Photosynthesis provides them with the ability 
to use carbon dioxide as carbon source, process known 
as dioxide biofixation, reducing CO2 emissions to the 
atmosphere (CHEN  et  al., 2009). Biofixation enables the 
microalgae to accumulate carbon, which promotes the 
synthesis of energy storage compounds. Among these 
compounds are micronutrients, carotenoids, vitamins and 
sterols, and macronutrients such as high biological value 
proteins, carbohydrates, and important fatty acids with 12-22 
carbon atoms, often essentials, like liloneic and lilolenic acids 
(CHACÓN-LEE; GONZÁLEZ-MARINÕ, 2010).

The biomass obtained from the cultures may also be used 
in the production of second-generation biofuels, which are 
defined as those produced from non-alimentary biomass. 
Usually, second generation biofuels substrates are agriculture 

byproducts such as cereals straw, sugar cane bagasse, and generic 
effluents. Other substrates may also be generated biofuels 
production, such as modified gramineae, rapid growth forests 
and microalgae (SIMS et al., 2010).

Among these microalgae that may serve to the described 
purposes is the cyanobacteria Synechococcus nidulans. This 
species was identified over 30 years ago and is found in aquatic 
environments, mostly in well-lit surface water. Naturally 
occurring, Synechococcus biomass is generally abundant, with 
cellular densities that can vary from hundreds to millions of 
cells per milliliter of sea water (SIX et al., 2007).

In order to use microalgae full potential it is necessary to 
establish optimum culture parameters. This goal is accomplished 
by changing the nutritional and physical characteristics of 
the organism, as well as the configuration of the reactor. 

Resumo
Neste trabalho, foi construído um estimador neuro-fuzzy da concentração de biomassa da microalga Synechococcus nidulans a partir de 
concentrações iniciais da batelada, visando possibilitar a predição da produtividade. Nove experimentos em réplica foram realizados. O 
crescimento foi acompanhado diariamente pela transmitância do meio e mantido até o final da fase exponencial de crescimento. O treinamento 
das redes ocorreu segundo delineamento experimental 33, os fatores foram o número de dias no vetor de entrada (3, 5 e 7 dias), o número 
de clusters (10, 30 e 50 clusters) e o valor de abrandamento do filtro interno (Sigma) (0,30, 0,45 e 0,60). A variável resposta foi o somatório 
do erro quadrático das validações. Estas possuíam 24 (A) e 18 (B) dias de crescimento. As validações demonstraram que, em experimentos 
de longo período (Validação A), é necessário usar poucos clusters e Sigmas altos. Já, em curtos períodos (Validação B), o Sigma não gera 
alterações. O ponto ótimo ocorreu com 3 dias na entrada, com 10 clusters e Sigma de 0,60, cujo coeficiente de determinação médio foi 0,95. 
O estimador neuro-fuzzy mostrou-se uma alternativa robusta para predição do crescimento desta microalga.
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Abstract
In this study, a neuro-fuzzy estimator was developed for the estimation of biomass concentration of the microalgae Synechococcus nidulans 
from initial batch concentrations, aiming to predict daily productivity. Nine replica experiments were performed. The growth was monitored 
daily through the culture medium optic density and kept constant up to the end of the exponential phase. The network training followed a full 
3³ factorial design, in which the factors were the number of days in the entry vector (3,5 and 7 days), number of clusters (10, 30 and 50 clusters) 
and internal weight softening parameter (Sigma) (0.30, 0.45 and 0.60). These factors were confronted with the sum of the quadratic error in 
the validations. The validations had 24 (A) and 18 (B) days of culture growth. The validations demonstrated that in long-term experiments 
(Validation A) the use of a few clusters and high Sigma is necessary. However, in short-term experiments (Validation B), Sigma did not 
influence the result. The optimum point occurred within 3 days in the entry vector, 10 clusters and 0.60 Sigma and the mean determination 
coefficient was 0.95. The neuro-fuzzy estimator proved a credible alternative to predict the microalgae growth.
Keywords: black-box; cellular concentration; predictive microbiology.
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numerical computation developed by INRIA (Institut National 
de Recherche en Informatique et en Automatique) and distributed 
under the GNU (General Public License). SciLab has several 
toolboxes for different tasks, including neural and neuro-fuzzy 
modules (SCHERER, 2010; BORDEIANU et al., 2008).

One available module is LOLIMOT (Local Linear Model 
Tree), a robust adaptive neuro-fuzzy system with learning 
capabilities, used for pattern recognition, system identification, 
image processing and prediction (MARZOOGHI et al., 2012). 
LOLIMOT is a Takagi-Sugeno-Kang (TKS) algorithm. This type 
of algorithm is employed in non-linear systems identification 
and presents advantages over other neural networks, such as 
smaller training sets and noise sensibility (MARSILI-LIBELLI, 
2004).

Therefore, this study aimed to design a neuro-fuzzy 
state estimator for the estimation of daily concentration of 
Synechococcus nidulans using different initial batch profiles 
under nitrogen source restriction.

2 Materials and methods

2.1 Microalgae culture

Nine identical experiments were performed using the 
microalgae Synechococcus nidulans in Zarrouk medium 
(ZARROUK, 1966) with 50% of its original nitrogen source 
(1.25 g.L–1 of NaNO3). This species belongs to the Biochemical 
Engineering Laboratory collection, in the Federal University 
of Rio Grande. The cultures were prepared in closed 2L 
photobioreactors, under constant stirring using a diaphragm 
pump, sterile air at a flow of 0.480 L.min–1 and 2500 lux 
luminance with 12h day/night photoperiod. The initial cellular 
concentration was 0.2 g.L–1.

Cellular growth determination

Cellular concentration was determinated each 24 h 
by measuring the absorbance of the culture medium in 
spectrophotometer at 670  nm (COSTA  et  al., 2002). The 
absorbance was then correlated with a previously established 
dry weight standard curve at the same wavelength. The cultures 
were kept under the experimental conditions until the end of the 
exponential growth phase. This period was established by three 
days of similar cellular concentrations, which demonstrated that 
the growth had ceased.

2.2 Digital filter

To correct the noise effects deriving from the large number 
of factors associated with microalgae growth, which may 
possess a negative effect on the repeatability and accuracy of 
the measurement, a noise reduction stage is necessary. To deal 
with these characteristics, a double exponential digital filter 
was employed. This utilizes a series of measurements (xn-1, xn, 
xn+1, …), and their corresponding filtered values (yn-1, yn, yn+1, 
…), where n is the current sample value. The filter application 
follows Equation 1.

Determination of kinetic factors and the employment of biomass 
concentration prediction are necessary to enable microalgae 
industrial scale utilization, which can be achieved by state 
estimators (ÇELEKLI; YAVUZATMACA, 2009).

Among the possible approaches that may be applied in the 
state estimator, the use of neuro-fuzzy networks is one that has 
gained attention in the scientific community. These networks are 
highly capable of dealing with nonlinearity and noise, which are 
inherent to bioprocesses (KHATAEE et al., 2011). A neuro-fuzzy 
network is an algorithm that processes information in a similar 
way the neuron structure in the human brain does. Each neuron 
in the first layer network is connected to the neurons in the 
second layer, as it is for the following layers, and is responsible 
for part of the knowledge diffused in the network (GADKAR; 
MEHRA; GOMES, 2005).

The way the network realizes its pattern recognition is 
similar to a classic mechanistic modeling. Data from the 
experiments are separated into two groups. The first group 
is the training group, which is used for the quadratic error 
minimization in order to compose the model. The error 
minimization in the neural network aggregates weights to 
each neuron connection that will be responsible by the output 
composition. When this stage is completed, the model is tested 
and is accomplished using the second group, the validation 
group. In the compose model or in neural network, this is 
evaluated by statistical tests (HU et al., 2008).

The fuzzy portion of the network is related to the fuzzy 
logic between the neurons. Fuzzy logic is an addendum to 
the Boolean logic, where an element may belong mutually to 
several groups, instead of one at a time, through a pertinence 
or membership function. It allows a more precise evaluation 
of how a variable may influence the final result (KARAKUZU; 
TÜCKER; ÖZTÜRK, 2006).

The neuro-fuzzy network is affected by internal or external 
factors. Concerning internal factors, the parameters involved 
may be the iteration quantity, weight softening parameters, 
internal digital filters, number of neuron layers or amount of 
neurons per layers, as well as how they connect. External factors 
such as vector size and form also affect the network. Changes in 
these parameters provide different responses outputted by the 
network model, thus calibrating such factors for a given data set 
generates higher robustness and assertiveness in the algorithm 
(TAYLOR, 2006).

However, neural networks are only sensitive to changes that 
occur within the training data. For instance, a trained network 
is capable of accurately predicting different profiles only if such 
data are obtained in the same manner as the training group. Any 
change in the data acquisition process, such as using different 
culture medium or reactor may change the data inner relations, 
rendering the network unable of returning a reliable output. 
To contemplate the process changes, it is possible to generate a 
new network-model by modifying the entry data, making the 
change a prediction parameter (MASTERS, 1995).

The amount of data required to the neuro-fuzzy network 
design is very large, thus it is necessary a computational system 
capable of performing these operations. SciLab is a software for 
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Clustering are the iteration manner in which the network 
minimizes the error between the data and the composed model; 
as more clusters are added into the network more the error 
value decreases. However, when adding clusters beyond the 
necessary value, the algorithm becomes narrow and is only 
capable of running with data similar to the training universe, 
thus loses robustness. This phenomenon is known as over-
training (MASTERS, 1995). In this study, 10, 30 and 50 clusters 
were evaluated.

The internal weight softening parameter (σ, Sigma) is part 
of a digital filter, which is accountable for how the algorithm 
is affected by the noise in the entry data. As a factor in the 
experimental design, Sigma was evaluated in the levels 0.30, 
0.45 and 0.60.

The dependent variable used in the experimental design 
was the Sum of Quadratic Error (SQE) between the validation 
of biomass concentration values of the present experiment and 
the biomass concentration estimated by the network.

The experimental design was performed using the statistical 
software R. R is a programming language and software 
environment for statistical computing and graphics freely 
available under the GNU license. The design was realized in a 
calculation package of R named “RcmdrPlugin.DoE”, which is a 
GUI (Graphical User Interface) for the R console (GRÖMPING, 
2011).

3 Results and discussion
The 9 experiments resulted in 14 to 24 days of culture 

growth and maximum biomass concentration of 1.28  g.L–1. 
Two experiments were randomly selected to be used in the 
validation group: Validation A with 24 days of culture growth 
and Validation B with 18 days of culture growth. The daily 
experiments of biomass concentration are presented in Table 1.

For the training experiments, 27 networks were used to 
complete the experimental design. Each network was then 
evaluated using both validation experiments. The estimation 
profiles with the least sum of quadratic errors for each entry 
vector of both validations are presented in Figure 1.

Table 2 presents a summary of the experimental design, 
where only the effects and conjugated parameters that were 
significant at a 90% confidence level are displayed.

The results show that Validation A (24 days) presented 
significant parameters for the factors interactions and the 
linear factors of clusters and Sigma. The linear Sigma effect 
presented a negative value and the linear cluster effect had a 
positive effect, being the response variable the sum of quadratic 
error. Negative effects denote an improvement in the network 
prediction capability. Validation A demonstrated that for long-
term experiments the number of days did not influence the final 
result, enabling the use of a small entry vector. However, it is 
necessary to decrease the number of clusters, as well as increase 
the internal filter influence in order to counterbalance the lack 
of iterations and the small amount of entry data in which the 

y
n
 = a2 + 2× (1–a)–(1–a)2 × y

n–1	 (1)

where a is the internal softening parameter. As this parameter 
value approaches a unitary value, the output filtered value is 
closer to the unfiltered value. The established value for this study 
was 0.6 (SEBORG; EDGAR; MELLICHAMP, 1989).

2.3 Numeric procedure

The processing procedure used in the state estimator was 
establishing subsequent biomass concentrations with previous 
points. In order to generate more stable connections between 
the neurons, thus leveling different period experiments and 
improving processing abilities, the biomass concentration 
values were standardized between 0 and 1 by dividing all 
concentrations by the highest biomass concentration throughout 
the experiment.

An example of this procedure is feeding the system during 
the firsts three days as an entry vector in order estimate the 
culture growth. The response of the firsts three days was the 
fourth day. The fourth day biomass concentration data was then 
fed back into the input vector after excluding the first day, thus 
making the entry vector the second, third and fourth days. The 
response for this vector is the fifth daily biomass concentration. 
This procedure was repeated until the estimation reached the 
final experiment biomass concentration.

Therefore, during the network training it was necessary to 
provide to the algorithm all the biomass concentrations of the 
training group in the described fashion. This generated a matrix 
containing the entry concentration in the first three columns 
and the response in the last column. Hence, this group did not 
take part in the prediction, but it was responsible for composing 
the system’s relations, enabling the prediction that was possible 
with another data set.

The validation group was used to determine the network 
performance and liability. To achieve the estimation, the initial 
days of the validation experiment was fed into the network in 
order to predict the following concentration in the described 
manner. Such fashion was repeated until the complete culture 
profile was estimated.

2.4 Topology optimization

For assigning the correct architecture to the neuro-fuzzy 
network, a wide variety of design alternatives must be evaluated. 
Therefore, an experimental design may be applied to diminish 
and generate simpler array of essays. In this study, a full 3³ 
factorial design was applied to the neuro-fuzzy network, 
whose parameters were: number of the days in the entry vector, 
number of clusters and the internal weight softening parameter 
(σ, Sigma).

Changing the number of concentration points during the 
training and network utilization the number of days in the entry 
vector varied. Architectures were constructed with 3, 5 and 7 
days in the entry vector.
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Table 1. Biomass Concentrations in the Experiments.

Time (d)
Training experiments (g.L–1) Validation experiments (g.L–1)

1 2 3 4 5 6 7 24 Days 18 Days
1 0.20 0.22 0.20 0.21 0.21 0.22 0.21 0.22 0.22
2 0.26 0.26 0.32 0.32 0.30 0.27 0.29 0.30 0.29
3 0.28 0.27 0.34 0.35 0.33 0.35 0.34 0.31 0.36
4 0.31 0.28 0.36 0.36 0.35 0.42 0.40 0.32 0.42
5 0.34 0.29 0.38 0.38 0.36 0.50 0.49 0.32 0.49
6 0.38 0.30 0.42 0.43 0.40 0.54 0.57 0.33 0.52
7 0.41 0.31 0.45 0.49 0.41 0.57 0.64 0.35 0.56
8 0.45 0.33 0.47 0.55 0.41 0.60 0.68 0.36 0.59
9 0.49 0.42 0.49 0.57 0.42 0.64 0.73 0.40 0.64

10 0.51 0.48 0.52 0.58 0.44 0.67 0.81 0.42 0.69
11 0.52 0.63 0.53 0.58 0.45 0.74 0.86 0.47 0.74
12 0.52 0.68 0.55 0.63 0.46 0.79 0.86 0.50 0.79
13 0.53 0.74 0.59 0.70 0.47 0.83 0.86 0.52 0.83
14 0.56 0.75 0.61 0.71 0.48 0.80 0.86 0.54 0.95
15 0.60 0.85 0.59 0.73 0.49 0.77 0.63 1.01
16 0.62 0.88 0.58 0.77 0.46 0.75 0.70 1.05
17 0.70 0.95 0.56 0.81 0.45 0.75 1.06
18 0.74 1.00 0.77 1.06
19 0.76 1.07 0.79
20 0.78 1.19 0.82
21 0.84 1.28 0.83
22 0.97 0.92
23 0.97 0.97
24 1.01 1.02

a b

Figure 1. Biomass Prediction Profiles. (a) Validation with 24 days: ( ) Experimental Data, (-) 50 Clusters, Sigma 0.60, 3 Entry Vector, (⋅⋅⋅) 10 
Clusters, Sigma 0.60, 5 Entry Vector (---)10 Clusters, Sigma 0.60, 7 Entry Vector; (b) Validation with 14 Days, ( ) Experimental Data, (-) 30 
Clusters, Sigma 0.45, 3 Entry Vector; (⋅⋅⋅) 10 Clusters, Sigma 0.60, 5 Entry Vector (---)10 Clusters, Sigma 0.60, 7 Entry Vector.
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portion. The calculated Fisher F-value for the regression (2.883) 
was larger than the standard (2.040); therefore, the response 
surface model generation process is possible. The coded model 
for this design is presented in Equation 2:

2 2

2.26 1.40 0.81 –1.36

–1.54 –1.80

SQE C D S C

S D C D

= + × + × × ×

× × × × 	
(2)

where C is the number of clusters, D is the number of days in 
the entry vector and S is the internal weight softening parameter. 
Since the presented model poses three coefficients to enable the 
graphical representation, the postulation of a given parameter 
is needed. Given that the Sigma parameter, alone, had no 
influence in interaction with other variables, at this confidence 
level it was determined that this value would be established 
in the experimental design in order to construct the response 
surfaces of the adjacent parameters. The responses surfaces are 
presented in Figure 2.

Despite the profiles changes according to each Sigma factor, 
the surfaces analysis establishes that lower values of quadratic 
error are achieved primarily in small entry vector, and, as the 
Sigma increases, in larger number of clusters. The smallest 
quadratic error was found in the experiment within 3 days in 
the entry vector, 0.45 Sigma and 10 clusters, in agreement with 
the surface and effects found in short-term experiments.

Consequently, in order to contemplate both experiment 
periods, the number of clusters must be small, 10 clusters, since 
the architecture was improved in both validations. The second 
parameter is the use of a small entry vector, 3 days, as it did not 
influenced the long-term culture validation and improved the 
network performance in the short-term experiment. The last 
parameter is the use of a large Sigma factor (0.60) as it improves 
assertion in long-term experiments and does not influence 
greatly brief cultures prediction. Also the relatively large Sigma 
factor improves the network robustness even in the presence of 
large noise variance. In this situation, the mean determination 
coefficient (R²) between the present experiment data and the 
estimated biomass concentrations was 0.95 for both validations.

pattern recognition can be realized. This is supported by the fact 
that in Validation A, a network that used 3 days in the entry 
vector, 10 clusters and Sigma 0.60 reached the sum of quadratic 
error approximately half the essays with the same number of 
clusters and entry vector.

To perform further analysis of the experimental design is 
necessary to discuss the model generated by the design and its 
coupled response surface. Nevertheless, the calculated Fisher 
F-value for the regression (1.021) was smaller than the standard 
(2.040) for this situation (18 degrees of freedom for residual and 
8 for regression); thus, this model is not predictive, precluding 
the model and response surface analysis.

Validation B (18 Days) otherwise presented significant 
parameters for the interaction, the linear cluster and days in 
the entry vector effects, the interactions between linear Sigma 
and linear clusters, linear Sigma and days in the entry vector 
in its quadratic portion and linear clusters and quadratic days 

Table 2. Full 3³ Factorial Design Summary.

Validation Parameter Estimated 
effect

Standard 
error T value Regression 

coefficient
A Intercept 1.857 0.366 5.075 1.857

Sigma (L) –1.265 0.634 –1.996 –0.632
Cluster (L) 1.199 0.634 1.891 0.599

B Intercept 2.262 0.422 5.36 2.262
Cluster (L) 2.809 0.731 3.843 1.405
Days (L) 1.630 0.731 2.229 0.815
Sigma (L): 
Cluster (L)

2.724 1.266 2.151 1.365

Sigma (L): 
Days (Q)

–3.093 1.266 –2.443 –1.546

Cluster (L): 
Days (Q)

–3.604 1.266 –2.845 –1.801

Validation A: 24 days experiment; Validation B: 18 days experiment. (L) Linear Effect; 
(Q) Quadratic Effect.

a b c

Figure 2. Response Surfaces for Sum of Quadratic Error with Postulated Sigma. (a) Response Surface at Sigma 0.30; (b) Response Surface at 
Sigma 0.45; (c) Response Surface at Sigma 0.60.
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http://dx.doi.org/10.1016/j.ijhydene.2011.11.149

MASTERS, T. Advanced Algorithms for Neural Networks – A C++ 
Sourcebook. 2nd ed. New York: John Wiley & Sons Inc., 1995. 430 p.

SCHERER, C. Métodos Computacionais da Física. São Paulo: Editora 
Livraria Da Física, 2010. 358 p.
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and Control. New York: John Wiley & Sons Inc., 1989. 700 p.

SIMS, R. E. H.  et  al. An overview of second generation biofuels 
technologies .  Bioresource Technolog y ,  v.   101,  n.   1 , 
p.  1570‑1580,  2010. PMid:19963372. http://dx.doi.org/10.1016/j.
biortech.2009.11.046

SIX, C.  et  al. Diversity and evolution of phycobilisomes in marine 
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de divers facteurs physiques et chimiques sur la croissance et 
la photosynthèse de spirulina máxima.  1966. Tese (Doctorat)-
Université Des Paris, Paris, 1966.

4 Conclusion
The neuro-fuzzy estimator architecture is more reliable and 

generates better estimated profiles when three initial biomass 
concentrations are used in the entry vector. The network used 10 
clusters iterations under an internal weight softening parameter 
of 0.60. With this architecture, the network accomplished 
estimated profiles with a mean determinatison coefficient of 0.95 
in relation to the present biomass concentration data.

Thus, the estimator composed in the present study is a 
viable alternative tool to estimate future biomass concentration 
of microalgae, such as Synechococcus nidulans, from initial 
batch growth data, enabling a more extensive control over 
the autotrophic bioprocess and an optimization in generating 
biomass.
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