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1 Introduction
Inflammation, triggered by a variety of harmful stimuli, a 

biological defensive response of the immune system. Activated 
macrophages respond to these stimuli by releasing inflammatory 
mediators (Xing et al., 2022) A persistent stimulation resulting in 
the release of inflammatory factors leads to chronic inflammation 
(Ahn et al., 2015; Hwang et al., 2014). Inflammation, especially 
chronic inflammation, however, plays an inextricable role in tumor 
occurrence and development. There is evidence that chronic 
inflammatory lesions are often secondary to tumorigenesis, and 
inflammatory cells are present in tumor tissue biopsy samples. 
Simply put, inflammation induces apoptosis (Ritter & Greten, 
2019). Therefore, the treatment of chronic inflammation is urgent. 

Traditional steroid and non-steroid anti-inflammatory drugs are 
widely used, but they have serious side effects on the digestive 
tract, kidneys, and central nervous system (Islam et al., 2013). 
For the management of chronic inflammation, there has been 
an ongoing search for novel, safe, effective anti-inflammatory 
agents or functional foods.

Lemon is a fruit rich in vitamins, minerals, and flavonoids. 
The lemon peel has many biological attributes, including 
antioxidant and anti-inflammatory properties, have also been 
linked to contribute to weight loss. By delaying aging, preventing 
diseases, and improving immunity, it plays an important role 
(Abdel Rahman et al., 2019; Asadi et al., 2019; Shimizu et al., 
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Abstract
Chronic inflammation plays a key role in the development and progression of several chronic diseases. Inhibiting the inflammatory 
cascade, thereby minimising the damage caused by the inflammatory mediators, can be one of the strategies in chronic disease 
management. In addition, inflammation is closely related to apoptosis, and inflammation can cause apoptosis. Lemon peel has 
been reported to have antioxidant and anti-inflammatory biological activities. This study aimed to investigate the antioxidant 
activity of fermented lemon peel (FLP) by Lactobacillus plantarum PNU and the effect of its extract (FLPE) on LPS-induced 
inflammatory response in RAW 264.7 cells. The results show that FLP has better antioxidant activity than unfermented lemon 
peel (UFLP). Compared with UFLP extract, FLPE more effectively inhibited the release of NO and pro-inflammatory cytokines 
(IL-1β, IL-6, TNF-α and IFN-γ) and down-regulated pro-inflammatory genes (IL-1β, IL-6, NF-κB p65, COX-2, IFN-γ, iNOS, 
IL-5), and pro-apoptotic genes (caspase-3, caspase-9, p53, p21 and Bax), meanwhile, promoted the release of anti-inflammatory 
cytokine (IL-10) and up-regulated anti-inflammatory genes(IL-10 and IL-4), and anti-apoptotic gene (Bcl2) in LPS-induced 
RAW 264.7 cells. Therefore, this study elucidates the anti-inflammatory activity mechanism of fermented lemon peel by 
studying the balance of inflammatory response and the inhibition of apoptosis. It provides an important reference for the 
future research and treatment of chronic inflammation and related diseases, as well as the development of fermented foods 
with anti-inflammatory effects.
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Practical Application: Inhibiting the inflammatory cascade, thereby minimising the damage caused by the inflammatory 
mediators, can be one of the strategies in chronic disease management. In addition, inflammation is closely related to apoptosis, 
and inflammation can cause apoptosis. Therefore, this study elucidates the anti-inflammatory activity mechanism of fermented 
lemon peel by studying the balance of inflammatory response and the inhibition of apoptosis. It provides an important reference 
for the future research and treatment of chronic inflammation and related diseases, as well as the development of fermented 
foods with anti-inflammatory effects.
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2019; Xi et al., 2017). However, lemon peels are usually discarded 
during food production and then burned (Boswell, 2021). 
In order to reduce environmental damage (greenhouse effect) 
and improve waste utilization (Billant, 2021), we use lactic acid 
bacteria to ferment lemon peels to develop functional foods 
that people can eat (Cullen, 2021; Russell et al., 2021). Fruits or 
fruit peels are thought to have improved biological activity after 
fermentation, according to studies (Cheng et al., 2020; Hu et al., 
2022; Ruiz Rodríguez et al., 2021). Moreover, studies have shown 
that antiproliferative and apoptotic effects of probiotic whey 
dairy beverages in human prostate cell lines (Rosa et al., 2020). 
Nevertheless, there are few research reports on the benefits of 
fermented lemon peels. Accordingly, a cellular inflammation 
model was used in this study to analyze the effects of fermented 
lemon peel on inflammatory responses.

In the systemic inflammatory response syndrome, 
lipopolysaccharide (LPS) is an important pathogenic factor, 
a molecule found on the outer membrane of Gram-negative 
bacteria. It is therefore also used to induce inflammation in 
experimental models (Rebollo-Hernanz et al., 2019; Wu et al., 
2018). It is important to note that macrophages play a key role 
in initiating and maintaining inflammation. When stimulated by 
LPS, macrophages induce the secretion of various inflammatory 
mediators, including interleukins (ILs) and tumor necrosis 
factor-alpha (TNF-α), and an inflammatory cascade, then ensues 
(Ahn et al., 2015; Hwang et al., 2014). The severity of inflammation 
can be determined by detecting these inflammatory mediators 
quantitatively. In this study, an inflammation model induced by 
LPS in RAW264.7 macrophages was used to investigate the effects 
of fermented lemon peel on inflammatory mediator secretion. 
The role of genes involved in inflammation and apoptosis and 
their mechanisms were also studied. The study aimed to establish 
a theoretical foundation for developing fermented lemon peel 
to prevent or treat chronic inflammation.

2 Materials and methods
2.1 Activation of the strain for fermentation

The lemon peel was fermented with Lactobacillus plantarum 
PNU (KCCM 11352P) isolated from Jeonju Kimchi (Lee et al., 
2016), and deposited at the Korea Culture Center of Microorganisms 
(KCCM, Seoul, Korea). The strains were inoculated into MRS 
liquid medium with 2% inoculum and cultured at 37 °C for 
overnight and were used after secondary activation.

2.2 Preparation of fermented and unfermented lemon peels

Fresh, mold-free lemon peels were converted to lemon peel 
powder for fermentation by freeze-drying. Lemon peel powder 
was mixed with water in a ratio of 1:20 and inoculated with 
4% (108 CFU/mL) bacterial inoculum to prepare fermented 
lemon peel (FLP). Following the addition of sugar (40%) to 
the mixture, it was fermented for 24 hours. The procedure to 
prepare unfermented lemon peel (UFLP) was the same as the 
procedure to prepare FLP. However, the bacterial inoculum was 
not added (Pan et al., 2022).

2.3 Assessment of 2,2-diphenyl-1-picrylhydrazyl (DPPH) 
inhibition rate of fermented and unfermented lemon peel

FLP and UFLP were centrifuged to collect supernatants, 
which were then kept at 4°C until needed. The 96-well plate 
was filled with 100 μL of FLP and UFLP, methanol, and 150 μM 
DPPH solution respectively, and a dark reaction carried out 
for 30 min. In order to calculate the DPPH inhibition rate, we 
measured the absorbance at 517 nm and applied the formula 
below (Equation 1):

( ) ( )
( )
A0 A1

   %   1 ] 100[
A2 A3

DPPH inhibition rate
−

= − ×
−

 (1)

A0: sample + DPPH; A1: sample + methanol; A2: methanol + 
DPPH; A3: methanol + methanol

2.4 Assessment of total phenol (TP) content

Phosphomolybdic acid and phosphotungstic acid are 
easily reduced by phenolic compounds and turn blue under 
alkaline conditions. The Folin-Ciocalteu Reagent, a mixture of 
phosphomolybdic and phosphotungstic acid, was used to detect 
the TP content. The standard curve was drawn using gallic acid 
as the reference (standard concentration was 0.03125-1 mg/mL), 
and the standard curve was used to calculate the TP content of 
FLP and UFLP.

2.5 Assessment of total flavonoid (TF) content

The principle of color change in the reaction of sodium 
hydroxide and flavonoids, was used to detect the total flavonoid 
content. Quercetin was used as the reference (standard 
concentration is 0-1280 μg/mL) to draw the standard curve. 
On the basis of the standard curve, the TF content of FLP and 
UFLP was calculated.

2.6 Preparation of the methanol extract of FLP and UFLP

FLP and UFLP were freeze dried. Three extractions at room 
temperature were performed on the dried samples using 100% 
methanol (1:3). By using a rotary vacuum evaporator at 50 °C, 
the extracts were concentrated under reduced pressure to yield 
fermented lemon peel extract (FLPE) and unfermented FLPE 
(UFLPE) powders that were dissolved in dimethyl sulfoxide 
solution to perform experiments.

2.7 RAW 264.7 cell activation

Cells were obtained from the Korea Cell Line Bank in Seoul, 
Korea, as RAW 264.7 cells. Incubation of the cells took place at 
37 °C in a 5% CO2 incubator with Dulbecco’s Modified Eagle’s 
Media (DMEM, Gibco, Thermo Fisher Scientific, Waltham, MA, 
USA) containing 1% penicillin-streptomycin solution (PS, Gibco), 
and 10% inactivated fetal bovine serum (FBS, Gibco). Further, 
subcultures were performed 2 to 3 times a week on cultured cells.

2.8 Toxicity testing

Cultured RAW 264.7 cells were seeded in 96-well plates for 
24 h at 2 × 105 cells/mL. After removing the medium, incubation 
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of the 96 well plate was conducted for 48 hours with medium 
supplemented with various concentrations of FLPE and UFLPE, 
and 1 μg/mL LPS (Sigma-Aldrich Corporation, St. Louis, MO, 
USA). Toxicity testing was carried out based on previous research 
experimental methods (Pan et al., 2020).

2.9 NO production

Cultured RAW 264.7 cells were seeded into 6-well plates for 
24 hours at 2 × 105 cells/mL. Subsequently, DMEM containing 
different concentrations (0.4 and 0.8 mg/mL) of FLPE and 
UFLPE were added along with and LPS (1 μg/mL) to each 
well and incubated for 48 hours. In other words, the groups 
and processing are as follows, Control: no treatment, LPS: 
lipopolysaccharide (1 μg/mL), FH: LPS + FLPE (0.8 mg/mL), 
FL: LPS + FLPE (0.4 mg/mL), UH: LPS + UFLPE (0.8 mg/mL), 
UL: LPS + UFLPE (0.4 mg/mL). The cell culture medium was 
collected for NO production assays, treated with equal amounts 
of Griess reagent (Enzo Life Sciences, Inc., Farmingdale, NY, 
USA), measurement of absorbance at 550 nm was performed 
with a Wallac Victor3 1420 Multilabel Counter.

2.10 Assessment of cytokine concentrations

2 × 105 cells/mL of RAW 264.7 cells were seeded into 6-well 
plates for 24 h. Incubation was carried out for 48 hours with 
different concentrations (0.4 and 0.8 mg/mL) of samples in a 
medium containing LPS (1 μg/mL). A wide range of enzyme-
linked immunosorbent assays kits (BioLegend, San Diego, CA, 
USA) were used to measure enzyme levels in cell culture media, 
including IL-10, IL-1, IL-6, TNF-α and interferon (IFN)-γ.

2.11 Quantitative real-time polymerase chain reaction 
(qRT-PCR) for assessing mRNA levels

RAW 264.7 cells were seeded into 6-well plates for 24 hours 
at 2 × 105 cells/mL. After removing the medium, the samples 
were supplemented with different concentrations (0.4 and 0.8 mg/
mL) and LPS (1 μg/mL), incubated for 48 hours. RNA extraction 
and amplification were performed according to the protocol of 
the previous study, and relative transcript levels of mRNA were 
calculated using the 2−ΔΔCr method (Pan et al., 2020). Table 1 lists 
the primers used in this study.

2.12 Identification of proteins using western blot assay

RAW 264.7 cells were seeded into 6-well plates for 24 hours at 
2 × 105 cells/mL. Media supplemented with various concentrations 
(0.4 and 0.8 mg/mL) of FLPE and UFLPE, and LPS (1 μg/mL) 
were added to each well after the medium was removed, then 
incubated for 48 hours. The protein was extracted, quantified, 
denatured, and electrophoresed according to previous research 
and experimental methods (Pan et al., 2020). From Santa Cruz 
Biotechnology (Santa Cruz, CA, USA), the first antibodies for 
IL-6, NF-KappaB p65, cyclooxygenase-2 (COX-2), inducible 
nitric oxide synthase (iNOS), caspase 3, caspase 9, p21, p53, Bax, 
Bcl2, and E-actin were purchased. As a final step, the bands of 
the proteins were visualized by an Amersham imager 680 (GE 
Healthcare, Chicago, IL, USA).

2.13 Data analysis

Averaging the results of three or more parallel experiments was 
conducted. Plots and analyses were performed using GraphPad 
Prism (GraphPad Prism 9.3.1) and SPSS 22 softwear (SPSS 
Inc., IL, USA). Means and standard deviations (SD) are used 
to express experimental results. Differences in means between 
groups were assessed by unpaired T test or two-way ANOVA or 
one-way ANOVA using Duncan’s multiple range test. And there 
is a significant difference if p is less than 0.05 or less than 0.1.

3 Results
3.1 Antioxidant capacities of FLP and UFLP

The results of the evaluation of the antioxidant capacities 
of FLP and UFLP are shown in Figure 1. The DPPH inhibition 
rate, TP, and TF contents indicated that FLP showed a better 
antioxidant capacity than UFLP.

3.2 Toxic effects of FLPE and UFLPE on RAW 264.7 cells

When the sample concentration was 0.8 mg/mL, the cell 
viability after FLPE and UFLPE treatment reached 81.10 ± 0.24% 

Table 1. Primer sequences of RT-qPCR assay in this study.

Gene Name Primer sequence
IL-6 F: 5’-ATGAAGTTCCTCTCTGCAA-3’

R: 5’-AGTGGTATCCTCTGTGAAG-3’
IL-1β F: 5’-AAGGGCTGCTTCCAAAC-3’

R: 5’-CTCCACAGCCACAATGA-3’
IFN-γ F: 5’-GCTTTGCAGCTCTTCCTCAT-3’

R: 5’-GTCACCATCCTTTTGCCAGT-3’
NF-κB p65 F: 5’-ATGGCAGACGATGATCCCTAC-3’

R: 5’-CGGAATCGAAATCCCCTCTGTT-3’
iNOS F: 5’-ATGGCTTGCCCCTGGAA-3’

R: 5’-TATTGTTGGGCTGAGAA-3’
COX-2 F: 5’-GGTGCCTGGTCTGATGATG-3’

R: 5’-TGCTGGTTTGGAATAGTTGCT-3’
IL-5 F: 5’-GCACAGTTTTGTGGGGTTTT-3’

R: 5’-AAAGAGAAGTGTGGCGAGGA-3’
IL-10 F: 5’-CCAAGCCTTATCGGAAATGA-3’

R: 5’-TTTTCACAGGGGAGAAATCG-3’
IL-4 F: 5’-TCAACCCCCAGCTAGTTGTC-3’

R: 5’-TGTTCTTCGTTGCTGTGAGG-3’
Caspase-3 F: 5’-TTTTTCAGAGGGGATCGTTG-3’

R: 5’-CGGCCTCCACTGGTATTTTA-3’
Caspase-9 F: 5’-CTAGTTTGCCCACACCCAGT-3’

R: 5’-CTGCTCAAAGATGTCGTCCA-3’
p53 F: 5’-ATGGAGGAGCCGCAGTCAGA-3’

R: 5’-TGCAGGGGCCGCCGGTGTAG-3’
p21 F: 5’-ATGTCAGAACCGGCTGGGG-3’

R: 5’-GCCGGGGCCCCGTGGGA-3’
Bax F: 5’-TGCTTCAGGGTTTCATCCAG -3’

R: 5’-GGCGGCAATCATCCTCTG-3’
Bcl2 F: 5’-AAGATTGATGGGATCGTTGC-3’

R: 5’-GCGGAACACTTGATTCTGGT-3’
GAPDH F: 5’-AGGTCGGTGTGAACGGATTTG-3’

R: 5’-GGGGTCGTTGATGGCAACA-3’
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and 80.51 ± 0.68% (Figure 2), respectively. Therefore, the high 
concentration of the sample was set at 0.8 mg/mL. When the 
sample concentration was in the range of 0.2-0.4 mg/mL, the 
cell viability was higher than 97%, and different concentrations 
did not show any significant differences. Therefore, the highest 
concentration in this range, 0.4 mg/mL, was selected as the low 
concentration of the sample for subsequent experiments.

3.3 NO production by RAW 264.7 cells after FLPE and 
UFLPE treatment

The NO production of the cells increased significantly (p < 
0.05) after LPS treatment in comparison with the control group 
(Table 2), whereas after FLPE and UFLPE treatment, the NO 
production was decreased significantly (p < 0.05), with FLPE 
treatment significantly lowering NO production when compared 
to UFLPE treatment.

3.4 FLPE and UFLPE effects on the levels of inflammatory 
cytokines in RAW 264.7 cell culture medium

A high concentration of inflammation cytokines (IL-6, IL-
1β, TNF-α and IFN-γ) was observed in the culture medium of 
RAW 264.7 cells after LPS stimulation (Figure 3), as well as the 
lowest level of anti-inflammatory cytokine IL-10. A significant 
decrease or increase in these cytokines was observed in cell 
culture media after treatment with FLPE and UFLPE, with FH 
having the best effect, near normal levels of RAW 264.7 cells.

3.5 Effects of FLPE and UFLPE on the mRNA and the 
protein expressions of inflammation-related genes in RAW 
264.7 cells

According to Figure 4, under the stimulation of LPS, the 
mRNA expressions of IL-6, IL-1β, NF-κB p65, COX-2, IFN-γ, 
iNOS and IL-5, as well as the protein expression of IL-6, NF-
κB p65, COX -2, iNOS and TNF-α were high, and the mRNA 
expressions of IL-10 and IL-4 were low in the RAW 264.7 cells. 
Meanwhile, we found that FLPE and UFLPE treatment significantly 
(p < 0.05) suppressed LPS-induced inflammation in the RAW 
264.7 cells, and under the administration of FH, the mRNA and 

protein expression levels of the above-mentioned inflammation-
related genes were closest to the normal expression levels in 
RAW 264.7 cells.

3.6 Effects of FLPE and UFLPE on the mRNA and protein 
expressions of apoptosis-related genes in RAW 264.7 cells

In the LPS group, caspase 3, caspase 9, p21, p53, and Bax 
were the most expressed mRNAs and proteins, while Bcl2 was 
the least expressed mRNAs and proteins (Figure 5). We found 
that FLPE and UFLPE treatments had significant effects on cell 
cycle and apoptosis-related representative genes, and the anti-
apoptotic effect of FH was the best, which was closest to the 
expression of each apoptosis-related gene in RAW 264.7 cells 
without LPS stimulation.

4 Discussion
Inflammation is a cascade of physiological or pathological 

defensive responses produced by the body against various 
inflammatory stimuli including infection and tissue damage. 
It is possible for excessive inflammation to damage many organs 

Figure 1. Antioxidant capacity of fermented lemon peel (FLP) and 
unfermented lemon peel (UFLP). The *, ***, **** symbol means 
significantly different (p < 0.1), (p < 0.001), (p < 0.0001), respectively, 
by unpaired T test.

Figure 2. Effects of FLPE and UFLPE on the survival of RAW 264.7 
cells. LPS: lipopolysaccharide (1 μg/mL), FH: LPS (1 μg/mL) + FLPE 
(0.8 mg/mL), FL: LPS (1 μg/mL) + FLPE (0.4 mg/mL), UH: LPS (1 μg/
mL) + UFLPE (0.8 mg/mL), UL: LPS (1 μg/mL) + UFLPE (0.4 mg/
mL). a-f Means with different letters above the bars are significantly 
different (p < 0.05) by Duncan’s multiple range test. The **** symbol 
means significantly different (p < 0.0001) by 2 way ANOVA.

Table 2. Effects of fermented lemon peel extract (FLPE) and unfermented 
lemon peel extract (UFLPE) on NO production in RAW 264.7 cells.

NO production (μM)
Control 19.29 ± 0.23e

LPS 28.39 ± 0.44a

FH 19.72 ± 0.23de

FL 20.14 ± 0.06d

UH 21.21 ± 0.71c

UL 25.16 ± 0.15b

Control: no treatment, LPS: lipopolysaccharide (1 μg/mL), FH: LPS + FLPE (0.8 mg/
mL), FL: LPS + FLPE (0.4 mg/mL), UH: LPS + UFLPE (0.8 mg/mL), UL: LPS + UFLPE 
(0.4 mg/mL). a-e Means with different letters within a column are significantly different 
(p<0.05) by Duncan’s multiple range test.
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of the body and may even be life-threatening in severe cases 
(Chen et al., 2017), thus, making it important and necessary to 
combat it. Studies have shown that citrus lemon peel powder 
reduces intestinal barrier defects and inflammation in mice with 
colitis (Tinh et al., 2021). Additionally, fermented dry citrus unshiu 
peel extract inhibits the inflammatory response induced by LPS, 
according to study (Kim et al., 2019). Our study examined the 
antioxidant properties of fermented lemon peel. Furthermore, 
we evaluated the anti-inflammatory and anti-apoptotic effects 
of fermented lemon peel on RAW 264.7 cells infected with 
LPS. The results clearly show that fermented lemon peel has 
good antioxidant capacity, and simultaneously exhibited anti-
inflammatory and anti-apoptotic effects by inhibiting the release 
of pro-inflammatory cytokines and regulating the expression 
levels of genes related to inflammation and apoptosis.

Oxygen-free radicals are effectors of inflammatory responses, 
and the excessive production of these radicals can aggravate 
inflammatory responses. Some studies have pointed out that the 
pro-inflammatory cytokines released during an inflammatory 
response can activate macrophages and leukocytes to secrete a large 

number of peroxide-free radicals, thereby worsening inflammation. 
Therefore, antioxidants that scavenge free radicals could have 
the potential to reduce inflammation Samarghandian  et  al. 
(2016). the DPPH assay, TP, and TF contents are indicators 
of the antioxidant potential of a substance (Ghasemzadeh & 
Jaafar, 2014; Eor et al., 2021). It has been determined that the 
antioxidant properties of fermented lemon peel are superior 
to that of unfermented lemon peel in this study. Therefore, we 
postulated that the fermented lemon peel with good antioxidant 
activity could exert anti-inflammatory effects by quenching 
oxygen-free radicals.

Various immunopathological changes have been linked to 
NO, a reactive free radical. As an important pro-inflammatory 
mediator, NO levels are suggestive of the severity of inflammation. 
A large amount of NO is released by LPS in RAW 264.7 cells, 
thereby triggering multiple inflammatory pathological responses 
(Ji  et  al., 2021). TNF-α and IL-1β that trigger the cascade 
of inflammatory mediators. Of these, as an important pro-
inflammatory cytokine, TNF-α, regulates immune cells, and 
induces fever and cell apoptosis by producing IL-1β and IL-6, 

Figure 3. Effects of FLPE and UFLPE on the levels of cytokines TNF-α, IL-1β, IL-6, IFN-γ and IL-10 in RAW 264.7 cell culture medium. LPS: 
lipopolysaccharide (1 μg/mL), FH: LPS + FLPE (0.8 mg/mL), FL: LPS + FLPE (0.4 mg/mL), UH: LPS + UFLPE (0.8 mg/mL), UL: LPS + UFLPE 
(0.4 mg/mL). a-f Means with different letters above the bars are significantly different (p < 0.05) by Duncan’s multiple range test.
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further triggering the inflammation cascade. As a multifunctional 
cytokine, IL-6 regulates immunological and inflammatory 
responses, and its expression is positively regulated by IL-1β 
and LPS (Al-Roub et al., 2021; Dimou et al., 2019). IFN-γ, a 
glycoprotein secreted by T lymphocytes and NK cells, increases 
macrophage sensitivity to TNF-α and other cytokine secretions, 
and its overproduction may lead to local inflammation and tissue 
destruction (Lee et al., 2013).

NF-κB plays a key role in cell inflammation and immunity 
by regulating the expression of cytokines and other pro-
inflammatory genes. NF-κB p65 is activated and translocated 
from the cytoplasm to the nucleus, leading to the transcription 
of pro-inflammatory mediators, such as IL-6, TNF-α, and iNOS 
(Han et al., 2019; Liu et al., 2016; Wang et al., 2017). iNOS is 
a cytokine produced by activated macrophages. When iNOS 
levels are excessive, they promote the release of inflammatory 

Figure 4. Effects of FLPE and UFLPE on the mRNA expression (A, B) of inflammation-related genes IL-6, IL-1β, NF-κB p65, COX-2, IFN-γ, iNOS, 
IL-5, IL-10 and IL-4, and protein expression (C, D) of IL-6, NF-κB p65, COX-2, iNOS and TNF-α in RAW 264.7 cells. LPS: lipopolysaccharide 
(1 μg/mL), FH: LPS + FLPE (0.8 mg/mL), FL: LPS + FLPE (0.4 mg/mL), UH: LPS + UFLPE (0.8 mg/mL), UL: LPS + UFLPE (0.4 mg/mL). a-f 
Means with different letters above the bars are significantly different (p < 0.05) by Duncan’s multiple range test.
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cytokines and the production of NO, which leads to various 
types of inflammatory lesions in the body (Cinelli  et  al., 
2020) An enzyme called COX-2 mediates inflammation and 
is also expressed in inflammatory cells provoked by LPS, pro-
inflammatory cytokines, and tumor promoters (Gandhi et al., 
2017). As macrophages and T lymphocytes become activated, 
IL-5 is secreted. IL-5, as a factor in the differentiation and 
growth of B lymphocytes and eosinophils, is often associated 

with autoimmune diseases accompanied by inflammatory 
responses (Jeon et al., 2014). The cytokines IL-4 and IL-10 play 
a crucial role in the regulation of the immune system and are 
anti-inflammatory cytokines. Studies have shown that the high 
expression of IL-4 and IL-10 in RAW264.7 monocyte-macrophages 
is beneficial for macrophages to play an immunoregulatory 
function (Han et al., 2021). Similar conclusions were drawn from 
our research results, which suggest that fermented lemon peel 

Figure 5. Effects of FLPE and UFLPE on the mRNA (A) and protein (B, C) expressions of apoptosis-related genes caspase 3, caspase 9, p21, 
p53, Bax and Bcl2 in RAW 264.7 cells. LPS: lipopolysaccharide (1 μg/mL), FH: LPS + FLPE (0.8 mg/mL), FL: LPS + FLPE (0.4 mg/mL), UH: 
LPS + UFLPE (0.8 mg/mL), UL: LPS + UFLPE (0.4 mg/mL). a-f Means with different letters above the bars are significantly different (p < 0.05) 
by Duncan’s multiple range test.
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5 Conclusion
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