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1 Introduction
The strawberry (Fragaria ananassa) is a fruit comprised 

of components with important physiological activity: vitamin 
C, tannins, flavonoids, anthocyanins, catechin, quercetin and 
kaempferol, organic acids (i.e., citric, malic, oxalic, salicylic, and 
ellagic), and minerals (i.e., K, P, Ca, Na, and Fe) (Kallio et al., 2000; 
Mosquera, 2010; Ribeiro et al., 2018). As such, it is considered 
a functional food with multiple health benefits demonstrated 
by its antioxidant, anti-inflammatory, anti-hypertensive, and 
anti-proliferative properties (Gasperotti et al., 2015; Bastos et al., 
2019) and hepatoprotector activity (Morales-Ávila et al., 2020). 
Additionally, the strawberry is characterized by its bright red color, 
a unique flavor defined by the balance of sugar and acidity, and 
a white or red pulp according to the variety (Perin et al., 2019). 
Notably, its soft yet firm texture makes it susceptible to physical 
damage (abrasion, cuts, and bruises), contributing to the loss 
of native fluids and the growth of pathogenic microorganisms 
(Gol et al., 2013; Feliziani & Romanazzi, 2016).

Spray drying (SD) is a technological alternative for the 
preservation of perishable fruits such as strawberries, where 
the quality of the powder depends on various factors associated 
with the stability of the feed and the SD process (Phisut, 2012; 
Tontul & Topuz, 2017). Typically, the source feeding the SD 
behaves as a thermodynamically unstable colloidal system 
and its structure is a fundamental property associated with its 
stability. In this context, colloidal particles with a larger size than 
the molecules of the dispersing medium present an important 

interfacial area that causes a high accumulation of free energy. 
This energy accumulation, in addition to other numerous forces 
present (i.e., Van der Waals, electrostatic, steric, hydration, and 
hydrophobic) (McClements, 2004; Piorkowski & McClements, 
2014) also contributes to the stability of the system. Importantly, 
these factors are related to the feed composition and the applied 
homogenization process (Kubo et al., 2013). In strawberry-based 
suspensions, the presence of sugars, acids, minerals, and polymers 
such as structural carbohydrates and pectins, lead to interactions of 
a repulsive nature and Van der Waals type attraction; as described 
by DLVO theory, the predominance of repulsive forces in this 
type of attraction promotes the physical stability of the colloidal 
system (Missana & Adell, 2000; Coupland & Sigfusson, 2005; 
McClements, 2007). This electrostatic repulsion is important 
when the particles approach each other and provide a double 
electrical layer, effectively becoming the necessary energy barrier 
to prevent the union between the particles (Dickinson, 2009).

Different methods have been used to stabilize a colloidal 
system, all of which involve exerting a synergistic effect. 
They include modification of the medium ionic strength, pH 
modification, addition of compounds related to surface activity, 
use of hydrocolloids to increase the viscosity and reduce the 
molecular mobility of particles in the continuous phase, and 
reduction of the size of dispersed particles (shear, ultrasound, 
or other), etc. (Dickinson, 2014; Moscovici Joubran et al., 2019). 
Taken together, these methods outline diverse properties related 
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Stabilty of strawberry suspensions

to the stability of colloidal systems: Viscosity (μ), ionic strength, 
zeta potential (ζ), dielectric constant of the continuous medium 
(ε), stability index by spectral absorption (R), pH, particle 
size (D10, D50, D90, D[3,2], D[4,3] or other), density, surface 
tension, among others (Dickinson, 2003; McClements, 2007; 
Yu et al., 2016).

Several authors have applied homogenization processes to 
stabilize fruit drinks/pulps with positive results by using banana 
(Calligaris et al., 2012), rosehip nectar (Saricaoglu et al., 2019), 
orange juice (Leite et al., 2014), and mango juice (Zhou et al., 
2017). However, other authors have reported a decrease in the 
stability of strawberry nectar with increasing homogenization 
pressure despite the reduction in particle size (Moscovici 
Joubran et al., 2019); Furthermore, the same situation occurs 
in strawberry suspensions obtained from vegetable processors 
due to the high particle size produced.

Consequently, the objective of this research was to evaluate 
the influence of the high-pressure (time-pressure) homogenization 
process and the concentration of gum arabic (GA) on the stability 
of strawberry-based suspensions for spray-drying purposes.

2 Materials and methods
2.1 Materials

Fresh strawberries (fragaria ananassa Duch, var. Monterrey) 
were used and refrigerated at 4 °C until use. Strawberries with a 
degree of maturity in the 5-6 scale according to the Colombian 
technical standard NTC 4103 were selected, and samples with 
any type of deterioration were discarded. The selected fruit had 
the pedicle and sepal removed and were washed and disinfected 
(Tecnas S.A, Citrosan, Medellín, Colombia). Additionally, GA 
(Tecnas S.A, Master Gum FT, Medellín, Colombia) was used.

2.2 Preparation of strawberry suspensions

Batches of strawberry suspensions were each prepared 
at three kg. Initially, the washed and disinfected fruits were 
crushed in a vegetable processor (Oster, Oster Classic vegetable 
processor, Medellín, Colombia), operating at speed 3 for 2 min. 
Subsequently, this pulp was homogenized at 10000 rpm for 
10 min (Silverson, L5 series mixer, MA, USA) (strawberry pulp 
total solids 9%), then the GA was added, keeping the container 
in a temperature-controlled water bath at 20 °C. Finally, the 
suspension was subjected to a 2nd phase of homogenization 
(ST REGIS, piston homogenizer 3DD13-2941, Chicago, USA) 
at the pressure and time defined in the experimental design.

2.3 Characterization of the suspensions

The zeta potential (ζ) of the suspensions was determined 
with a zeta potential meter (Malvern Paranalytical, Zetasizer 
Nano ZS90, Malver, UK) after diluting the suspensions at 
a 1:100 ratio (Rezvani  et  al., 2012). The spectral absorption 
stability index (R) was determined by the ratio of absorptions 
(A800/A400) (Mirhosseini et al., 2009) by using a UV-Visible 
spectrophotometer (Thermo Scientific Evolution 60, Walthman, 
MA, USA) and diluting the suspensions in water also at a 
1:100 ratio. The viscosity (μ) of the suspension was determined 

with a rheometer (AMETEK-Brookfield, Brookfield DV-III 
Ultra, Middleboro, MA, USA), a temperature-controlled bath 
model Brookfield TC-502 at 25 °C, and an RV4 spindle at speeds 
from 0.01 to 100 rpm, reporting the value at a speed of 100 rpm 
(Mirhosseini et al., 2009). The particle size was determined with 
the particle sizer meter (Malvern Paranalytical, Mastersizer 
3000, Malver, UK) analyzer that used the LV system for liquids 
and the diameters relative to the equivalent surface (D [3;2]), 
equivalent volume (D [3,4]); the percentiles at 10, 50, and 90% 
(D10, D50, and D90 respectively) were reported.

2.4 Statistical design

A response surface methodology was used with a centered 
central composite design (α=1), wherein homogenization pressure 
(P) (4,14-10,34 MPa), homogenization time (t) (3-5 min), and 
GA (0.2-0.4%) were the input variables and ζ, R, μ, and the 
particle size (D[3,2], D[4,3], D10, D50, and D90) were the output 
variables. Analysis of variance was performed with a significance 
level of 5%. A multi-response optimization was performed by 
using statisical software (Stat-easy. Inc, Desing Expert 11, 
MN, USA) to establish criteria that favor the stability of the 
colloidal system and utilizing impacts and weights according 
to the ANOVA. All the variables were measured in triplicate, 
including the optimum obtained. Mathematical modeling of 
the dependent variables was performed by using a quadratic 
model, adjusting from the test of the non-adjustment and the 
determination coefficient (R2).

3 Results and discussion
3.1 Characterization of strawberry-based suspensions

Table 1 reports the mean values and standard deviation 
of the dependent variables evaluated in the study of the 
influence of the homogenization process, along with the GA 
on the stability of strawberry suspensions. Table 2 reports the 
p-values for the response surface models of the dependent 
variables as a function of the independent ones. Additionally, 
Figure 1 reports the response surface graphs of the dependent 
variables (R, μ, ζ, D [3;2], D[4;3], D10, D50, and D90) as functions 
of the independent variables (P, t, and GA).

The ζ varied between -24.79 and -28.3 mV, denoting a 
negative electrical potential that can be attributed to anions from 
the dissociation of salts present in the strawberry (i.e., citrates, 
malates and ascorbates of potassium, magnesium, and calcium, 
etc.) (Kallio et al., 2000; Mahmood et al., 2012). In addition to 
GA, strawberries have pectin in their cell walls. Pectins and GA 
have carboxyl groups susceptible to ionization (glucoronic acid 
in the case of gum arabic and galacturonic acid in pectin) that 
depend on their degree of methoxylation, especially in pectin 
(McClements, 2009; Alba et al., 2016). When the strawberry 
suspension has a pH of 3.5, pectin is negatively charged; because 
this polyacid has a pKa between 3.5 and 4.0, the predominant 
species in this pH range is in the form of galacturonate (Croak & 
Corredig, 2006).This anion charge is in the co-ion layer attached 
to the interphase of the dispersed particles, while a high density 
of positive charge contributed by the dissociated ions is located 
in the double electrical layer or Stern layer. Together, these work 
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to strengthen the repulsive forces between particles and, in turn, 
increase the stability of the colloidal system (Cano-Sarmiento et al., 
2018). Ultimately, the ζ did not present significant differences 
(p > 0.05) with respect to the independent variables, a situation 
that has also been reported in mango-based colloidal systems 
(-16.1 ± 0.2 mV) (Zhou et al., 2017). The small changes observed 
can be associated with a greater or lesser release of ionizing 
compounds (Cano-Sarmiento et al., 2018).

Other groups have reported that when a colloidal system 
presents a IζI> 25 mV, there is a strong electrostatic repulsion 
of the particles, which gives it an adequate physicochemical 
stability (Mirhosseini  et  al., 2008; Dickinson, 2014; Arango 
Torres  et  al., 2019). For example, similar values have been 
reported for stable guacamole emulsions (IζI = 27.7 ± 0.3 mV) 
(Estrada Mesa et al., 2017). Furthermore, greater values have 
been reported in coconut-based colloidal systems (IζI = 45.6 ± 
2.5 mV) (Lucas Aguirre et al., 2018) and in yacon suspensions 

(IζI = 33.8 ± 4.0 mV) (Arango Torres et al., 2019); however, Marin 
Arango et al. (2019) reported stable blackberry suspensions with 
probiotics and prebiotics with IζI = 13.3 ± 0.3 mV. An increase of 
the amount of probiotic suspension with the addition of GA and 
xanthan gum is highlighted in some studies (Mirhosseini et al., 
2008; Arango Torres et al., 2019), implicating that their presence 
confers greater stability to fruit pulps and their beverages.

In this context, strawberry-based suspensions have an 
important electrostatic component which, together with the 
viscous forces of the colloidal system, gives them physicochemical 
stabilization.

The R index presented significant differences (p < 0.05) 
with respect to P, while there were no differences with respect 
to t and GA. Average values fluctuated between 0.46 ± 0.01 and 
0.53 ± 0.01. According to the behavior of the response surface 
graph, R decreases with the increase of P, being more favorable 
to P = 10.34 MPa. This is consistent with a greater disintegration 

Table 1. Stability assessment of strawberry-based suspension.

Run P  
(MPa)

T  
(min)

GA  
(% p/p) - ζ (mV) R μ (Pas) D [3;2] (µm) D [4;3] (µm) D10 (µm) D50 (µm) D90 (µm)

1 4.14 4 0.3 25.3 ± 0.9 0.51 ± 0.01 10.96 ± 0.05 110.4 ± 54.3 259.7 ± 9.03 91.3 ± 1.2 220.0 ± 1.7 484.3 ± 22.5
2 10.34 3 0.4 27.0 ± 0.7 0.50 ± 0.00 8.62 ± 0.02 47.7 ± 0.6 242.0 ± 16.5 61.1 ± 0.6 168.7 ± 2.1 464.3 ± 11.5
3 10.34 3 0.2 25.3 ± 1.0 0.47 ± 0.00 9.53  ± 0.07 80.1 ± 35.3 145.3 ± 1.1 53.7 ± 1.3 135.7 ± 1.3 253.0 ± 5.0
4 7.24 4 0.3 28.3 ± 0.6 0.48 ± 0.01 11.45 ± 0.01 38.3 ± 0.8 187.6  ± 3.5 54.4 ± 0.7 150.7  ±  2.8 372.7  ± 7.7
5 10.34 4 0.3 25.7 ± 0.6 0.47 ± 0.01 9.69 ± 0.11 48.2 ± 3.0 171.7 ± 8.1 54.7 ± 2.0 145.7 ± 6.4 331.3 ± 17.2
6 7.24 4 0.2 26.1 ± 1.2 0.51 ± 0.01 8.55 ± 0.03 44.6 ± 0.5 199.3 ± 8.1 56.1 ± 0.3 152.3 ± 1.5 393.3 ± 15.0
7 7.24 4 0.3 26.4 ± 0.8 0.49 ± 0.01 11.77 ± 0.06 41.9 ± 2.9 193.3 ± 6.4 59.8 ± 3.1 158.3 ± 4.2 378.3 ± 11.3
8 7.24 3 0.3 25.3 ± 0.5 0.53 ± 0.01 8.48 ± 0.06 62.0 ± 0.8 213.0 ± 1.0 72.2 ± 1.1 180.7 ± 1.5 405.7 ± 1.5
9 4.14 3 0.4 28.1 ± 1.1 0.52 ± 0.01 8.69 ± 0.08 63.9 ± 0.9 265.3 ± 8.3 82.0 ± 0.4 207.7 ± 2.1 515.0 ± 14.8

10 4.14 3 0.2 26.1 ± 1.2 0.50 ± 0.01 9.67 ± 0.01 65.9 ± 0.9 273.0 ± 6.6 81.0 ± 0.9 203.7 ± 2.3 508.7 ± 12.8
11 10.34 5 0.2 26.3 ± 0.6 0.47 ± 0.02 9.87 ± 0.13 89.1 ± 13.6 140.3 ± 12.8 49.2 ± 3.9 130.3 ± 10.1 248.3 ± 28.3
12 10.34 5 0.4 24.8 ± 1.2 0.48 ± 0.01 13.02 ± 0.03 38.5 ± 0.3 208.7 ± 7.5 50.8 ± 0.5 156.3 ± 2.1 432.7 ± 21.6
13 4.14 5 0.2 26.0 ± 1.1 0.52 ± 0.13 10.54 ± 0.07 68.0 ± 0.7 279.3 ± 19.4 82.5 ± 0.3 204.0 ± 2.6 510.7 ± 12.0
14 7.24 4 0.4 26.1 ± 1.0 0.49 ± 0.01 10.83 ± 0.07 48.9 ± 0.6 206.3 ± 9.9 59.0 ± 0.7 154.7 ± 1.6 400.7 ± 12.8
15 7.24 5 0.3 25.9 ± 0.9 0.50 ± 0.01 11.10 ± 0.07 45.1 ± 0.2 191.3 ± 1.1 57.8 ± 0.1 152.3 ± 1.1 377.3 ± 5.5
16 7.24 4 0.3 25.5 ± 0.6 0.46 ± 0.01 11.78 ± 0.02 34.4 ± 0.1 179.0  ± 1.4 47.4 ± 0.1 139.0 ± 0.7 362.3 ± 2.8
17 7.24 4 0.3 27.7 ± 0.6 0.46 ± 0.01 11.13 ± 0.03 30.6 ± 0.2 191.0 ± 7.0 48.6 ± 0.8 148.3 ± 3.1 392.7 ± 16.0
18 7.24 4 0.3 25.4 ± 0.6 0.51 ± 0.01 11.13 ± 0.08 55.0 ± 0.7 241.7 ± 10.7 73.6 ± 0.5 189.3 ± 2.0 480.7 ± 26.8
19 4.14 5 0.4 25.7 ± 1.4 0.52 ± 0.01 13.22 ± 0.10 54.9 ± 1.4 233.7 ± 10.0 70.6 ± 1.2 185.0 ± 4.6 465.7 ± 24.1
20 7.24 4 0.3 25.4 ± 0.9 0.50 ± 0.01 10.88 ± 0.19 51.4 ± 1.5 241.7 ± 39.6 67.7 ± 1.0 175.3 ± 3.0 458.3 ± 40.5

Table 2. p-values for the response surface models of the dependent variables as a function of the independent ones.

Variable
Principal effects Quadratic effects Interaction effects

R2

A B C AA BB CC AB AC BC
ζ 0.546 0.369 0.559 0.657 0.751 0.414 0.651 0.619 0.098 0.37
R 0.020* 0.531 0.618 0.555 0.276 0.685 0.586 0.855 0.515 0.53
µ 0.375 0.001* 0.050* 0.769 0.469 0.370 0.796 0.817 0.01* 0.81

D[3;2] 0.914 0.463 0.015* 0.475 0.114 0.498 0.816 0.039* 0.323 0.79
D[4;3] 0.001* 0.223 0.101 0.255 0.900 0.859 0.829 0.004* 0.285 0.86
D10 0.004* 0.172 0.969 0.078 0.688 0.314 0.836 0.422 0.450 0.78
D50 0.000* 0.174 0.345 0.049* 0.726 0.298 0.913 0.107 0.489 0.83
D90 0.0001* 0.394 0.016* 0.517 0.994 0.830 0.924 0.003* 0.503 0.86

A: P (MPa); B: t (min); C: GA (%). *significant differences (p < 0.05).
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of the particles, which confers a change in the optical properties 
of the suspension, since R is related to the properties of light 
scattering, average particle size, and wavelength (Aizawa, 2014). 
In agreement with Kaufman & Garti (1981), colloidal systems 
with low R values show good physicochemical stability due to 
the smaller particle size. Therefore, the strawberry suspension 
was consistent with this hypothesis and was enhanced by the 
previously mentioned effect of the ζ. Similar R values have been 
reported in stable yacon (smallanthus sonchifolius) suspensions 
(0.446 - 0.607) (Arango Torres et al., 2019).

The µ is fundamental in the definition of the stability of 
colloidal systems, where the presence of hydrocolloids contribute 
to form networks that greatly influence the mobility of particles 
in the continuous phase and enhance viscous forces against 
gravitational forces (Dickinson, 2009; Williams & Phillips, 2009). 
The µ showed significant differences (p < 0.05) with respect to t, 
GA, and a linear interaction t-GA, while there was no significant 
effect (p > 0.05) in the interval of P evaluated (8.27-10.34 MPa). 
A consistent behavior was observed with respect to GA and t, 
increasing µ with the increase of GA and t. However, the t-GA 

interaction was positive, denoting the highest µ when the system 
operates at higher t (5 min) and higher GA (0.4%). Furthermore, 
it is known that cell wall pectin has a synergistic effect with added 
GA, enhancing at higher t, where a higher release from the cell 
structure is favored, and the values reached are high compared 
to banana suspensions (204 Pa) and similar to suspensions of 
yacon (1000 Pa) (López et al., 2009) and avocado emulsions 
(1034 Pa) (Estrada Mesa et al., 2017).

The µ of the SD feed is a critical parameter for the powder 
properties to be obtained. Specifically, it generates a resistance 
to displacement and greatly influences the radial and tangential 
velocity components during atomization and, thus, the drying 
kinetics and other properties (López et al., 2009; Miller et al., 2016). 
Therefore, it was possible to define criteria for the operability of 
the pilot unit in which the milling cutter suspension (Vibrasec, 
model PASALAB 1.5) with µ < 1000 Pas was used.

The effect of P is very characteristic for each product and 
on its stability; for example, Moscovici Joubran et  al. (2019) 
reported a destabilization of strawberry nectars when the µ was 

Figure 1. Response surface graphs of strawberry-based suspensions.
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reduced by the effect of the increase in P (50, 100, 150 Mpa); 
Augusto et al. (2013) reported a modification of the rheological 
parameters of tomato pulp, decreasing the resistance of the gel 
with the increase in P; Yu et al. (2016) reported a positive effect 
of homogenization in taro suspensions, reducing particle size and 
sedimentation due to increased P. Leite et al. (2015), reported 
the same effect in cashew apple juice.

In general, pistons or high-pressure homogenizers affect 
the behavior of the physicochemical properties of the colloidal 
system since they force the structure to unwind according to 
the level of P applied. At the same time, there is a stretching of 
the macromolecules present in the original food or in the added 
additives, which are mostly solvated, trapping more water between 
the macromolecular segments during their relaxation stage. 
In this way, the rheological behavior of the system is modified 
according to the interactions segment-solvent and segment-
segment present (Semenova et al., 2010; Nguyen et al., 2016). 
In the case of strawberry suspensions, viscous forces contribute 
to the physicochemical stability of the colloidal system.

The particle sizes (D [3;2], D [4;3], D10, D50, and D90) were 
statistically significant (p < 0.05) with respect to the independent 
variables P, GA, and the P-GA interaction. The D [3;2] fluctuated 
between 30.6 ± 0.2 and 110.4 ± 54.3 µm, where the behavior 
showed a decrease in the particle size at higher levels of GA in 
the formulation. Moreover, the effect of P is mainly observed 
with the negative interaction with GA, where this effect is at a 
minimum at 4.14 MPa and throughout the whole range of GA, 
while it tends to be at a maximum at 10.34 MPa and 0.2% GA.

As for the average diameter of the Brouckere medium (D [4;3]), 
it fluctuated between 140.3 ± 12.8 and 279.3 ± 19.4 µm, showing 
a clear effect of an increase in P with a reduction in the particle 
size. Also, the effect of GA is more evident when it interacts with 
P. This is because the biggest decrease in D[4:3] occurs when 
the system operates at 10.34 MPa and 0.2% GA (280 → 140 µm), 
where the fluid behaves with less µ and the shear effect becomes 
more effective in the disintegration of the particles. Any increase 
in GA (>µ) does not favor the reduction of D [4; 3], even at P of 
10.34 MPa and 0.4% GA (230 → 200 µm). This difference can be 
attributed to the protective effect of the hydrocolloid by retaining 
the solid particles of the strawberrysuspension in its cross-linked 
structure and protecting the solids from shear stresses.

Percentiles D10 and D50 showed significant differences 
(p < 0.05), while t and GA were not critical independent 

variables. A similar behavior is observed in both variables, 
where fluctuations were low, (91.3 ± 1.2 – 47.4 ± 0.1 µm) 
and (220.0 ± 1.7 – 130.3 ± 10.1 µm), with average values of 
63.6 ± 13.0 and 167.9 ± 26.3 µm, respectively. The behavior of 
both variables was as expected, where a decrease in particle 
size is observed with an increase in P, reaching D10 values of 
approximately 204.17 µm at P = 4.14 MPa and 147.75 µm at 
P = 10.34 MPa.

The percentile D90 presented significant differences (p < 0.05) 
with respect to P, GA, and the linear interaction P-GA, while 
t was not an influential variable. As for D10 and D50, it was 
observed that D90 decreases while P increases; however, the 
level of reduction depends on the negative interaction with GA. 
When the formulation contains low levels of GA (0.2%) and P 
= 10.34 MPa, D90 is 248 µm, whereas at P = 10.34 MPa and 
high levels of GA (0.4%), the value of D90 was 430 m. Notably, 
it was observed that when the system operated at P = 4.14 MPa 
the synergy with the GA is negligible. This situation was already 
mentioned above and is attributed to the protective effect of GA. 
This behavior was also observed in yacon suspensions, where 
xanthan gum presented a protective effect against shear stress in 
the homogenization (D50). Interestingly, the different percentiles 
D10 (127.8 ± 8.2), D50 (251.2 ± 16.3), and D90 (424.3 ± 28.7) 
for the yacon suspension were higher than the particle size for 
the strawberry suspension, which can be attributed to the higher 
fiber content in the yacon suspension (Arango Torres et al., 2019).

3.2 Experimental optimization

The experimental optimization was defined under the 
following criteria: minimize ζ, R, D [3,2], D [4,3], D10, D50, 
and D90 with fixed μ at 1000 Pas, achieving 84% desirability at 
P = 9.89 MPa, t = 4.7 min, and GA = 0.22%. Table 3 shows the 
values of the experimental validation and the theoretical values 
obtained from the quadratic models at the determined optimal 
condition. The variables ζ, R, μ, D10, and D50 presented experimental 
values obtained from experiments in triplicate with percentage 
errors of less than 11% when compared to theoretical values; on 
the other hand, D [3,2], D [4,3], and D90 yielded high percent 
error due to the complexity of adjusting for multiple responses.

The values of D [3;2] and D [4,3] obtained in the experimental 
validation at P = 10.24 Mpa, were found to be 41.8 ± 0.6 and 
186.7 ± 2.5 µm. These were higher than those obtained by 
Moscovici Joubran et al. (2019) in the process of homogenizing 

Table 3. Optimization using the design optimization module (Design expert 11).

Parameters Weight Impact Experimental value Theoretical value Percentage error
ζ (mV) 1 ++ -27.0 ± 0.8 -26.10 3.4

R 0.1 +++++ 0.47 ± 0.015 0.47 0.0
μ (Pas) 1 +++++ 890.0 ± 47.5 1000.00 11.0

D [3.2] (µm) 0.1 +++ 41.8 ± 0.66 71.2 41.2
D[4.3] (µm) 1 ++++ 186.7 ± 2.51 145.9 27.9

D10 (µm) 1.04 ++++ 54.3 ± 0.6 49.7 9.1
D50 (µm) 1.0 +++ 148.3 ± 1.5 153.4 3.3
D90 (µm) 0.1 +++ 370.3 ±  8.1 268.5 37.9

(+)The greater the number of signs + the greater the impact of the response variable on the stability of the suspension.
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strawberry nectar at the pressure of 50 Mpa (11.6 ± 0.8 µm and 
132.0 ± 1.5 respectively). These findings are consistent with one 
another because of higher shear forces by the higher P applied. 
Notably, while other authors reported D [4, 3] of 1 µm for the 
strawberry juice homogenization process at 100 MPa, these values 
conferred good stability to the sedimentation (Karacam et al., 
2015).

4 Conclusions
The evaluation of a strawberry-based colloidal system for use 

in spray drying processes in the PASLAB 1.5 pilot unit (Vibrasec 
S.A.S) fulfilled the requirements for processing related to physical-
chemical stability and µ (<1000 Pas). In general, the strawberry 
suspension was mainly affected by P, GA, and P-AG interaction, 
while t was not a critical variable. The strawberry-based colloidal 
system showed good physicochemical stability, caused by several 
synergistic effects. It had an important electrical potential in 
the proximity of the co-ion layer (-27 mV), which contributes 
to enhanced repulsive forces between the particles against the 
attractive forces. Additionally, viscous forces (favored by the 
presence of the added GA and native pectin) predominated over 
gravitational forces and were related to particle size, a variable 
highly favored by the effect of higher applied P.
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