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ABSTRACT 

The cultivation of soy and cotton is of great importance in the Brazilian economic 
scenario, both of which move billions of reais per year in exports. Weed management is 
important for obtaining optimal yields. Among the plants that have gained resistance and 
tolerance are those of the genus Ipomoea spp. These plants affect soybean and cotton 
crops throughout their cycle, thereby affecting their productivity. In this context, the 
objective of this work was to develop an embedded system for the selective spraying of 
rope and viola in cotton and soybean crops using algorithms for the classification and 
detection of objects in real time (Faster R-CNN and YOLOv3). This project was 
developed at the Agricultural Machinery Laboratory of the Federal University of 
Rondonópolis. The algorithms were trained to detect three classes (soybean, viola, and 
cotton) and were evaluated in terms of precision and sensitivity in the laboratory and field. 
Control results using faster R-CNN sprays demonstrated that real-time object detection 
algorithms for the selective control of weeds can be used for soybean and cotton crops. 

 
 
INTRODUCTION 

Weeds are categorized as plants that develop in a place 
unsuitable for the objectives of humans, interfering negatively 
with economic crops, both in productivity and in the final 
quality of harvested products (Vasconcelos et al., 2012). 

However, it is widely known that losses caused by 
weeds exceed the losses of any category of agricultural 
pests, such as insects, nematodes, diseases, and rodents 
(Abouziena & Haggag, 2016). In bulk crops like beans, the 
decrease in yield reaches 71 % (Kozlowski et al., 2002), the 
average losses in soybean vary from 37% (Fleck & 
Candemil, 1995) to 58% (Rizzardi et al., 2003), and in some 
cases, the total loss of the crop. 

Because of their fast growth characteristics and their 
ability to inhabit various environments (Ferreira & Miotto, 
2009), these crops are found in vegetable crops (Moreira & 
Bragança, 2011), sugarcane (Correia & Kronka JR., 2010; 
Azania et al., 2011), soybean, cotton (Constantin et al., 
2011), and cereals. The areas where these species 
predominate have reduced productivity, for example, there 

was 34% reduction in the number of end of stalks and 46%  
reduction in productivity when Ipomoea hederifolia grew in 
competition with sugarcane crop (Silva et al., 2009), while 
in the soybean crop the reduction varied from 15.53% to 
80% according to the density of cordgrass (Piccinini et al., 
2018; Pagnoncelli et al., 2017). Rizzardi et al. (2004) pointed 
out substantial increase in the incidence and density of 
cordgrass in recent years, directly affecting soybean crops.  

In the area of selective spraying technologies, 
electronic optical sensors are used to measure reflectance 
intensities of spectral bands. Light Dependent resistors 
(LDR) were used to detect the presence of weeds or only the 
exposed soil from the reflectance of the red spectrum in the 
visible and near infrared (NIR) range, with 100% accuracy 
(Viliotti, 2002).  

These types of sensors are also employed in 
commercially available nozzle controllers such as 
WeedSeeker® (Trimble Navigation Limited®). The second 
generation WeedSeeker2® has two optical sensors 
equipped with normalized difference vegetation index 
(NDVI) readers, which increases detection efficiency. 



Hederson de S. Sabóia, Renildo L. Mion, Adriano de O. Silveira et al., 
 

 
Engenharia Agrícola, Jaboticabal, v.42, special issue, e20210163, 2022 

Another commercially available sensor is the WEED-IT® ², 
which works based on chlorophyll fluorescence in response 
to high-intensity near-infrared light (Visser & 
Timmermans, 1996).  

Currently, controllers using image sensors and 
artificial intelligence have been developed and marketed as 
See & Spray® (Blue River technology), which process 
images obtained by cameras used as sensors, detects the 
presence of weeds in areas of cotton plantations, and allows 
a more selective spraying. 

Embedded electronics coupled with the use of 
computer vision pose a challenge to the industry in the 
commercialization of related products for weed control. The 
main detection methods are image-based (Bakhshipour & 
Jafari, (2018); Ferreira et al. (2017); Dyrmann et al. (2016); 
Lee et al. (2017); Carranza-Rojas et al. (2017)), spectrum-
based (Shirzadifar, et al. (2018), Li et al. (2017)) and spectral 
image-based to identify weeds from both ground and aerial 
photography (Louargant et al. (2018); Lin et al. (2017)).  

Recent approaches using deep learning have shown 
satisfactory results in classification, segmentation, object 
detection, and image-tracking tasks (Zhou et al., 2019). The 
employment of machine vision with deep learning is 
growing in recent researches for developing selective 
application technologies. For example, Ferreira et al. (2017) 
developed a software for weed detection in soybean crops 
using deep convolutional networks and obtained accuracy 
above 99%. 

Considering this, we aimed to evaluate the 
application of two object detection algorithms (FASTER R-
CNN and YOLOv3) in real time and develop an embedded 

selective spraying system for the control of Ipomoea spp. in 
soybean and cotton crops. 
 
MATERIAL AND METHODS 

This work was conducted in the Agricultural 
Machines and Mechanization Laboratory of the Federal 
University of Rondonópolis. The project involved the 
development of an on-board system for spraying under field 
conditions, object classification and detection, and valve 
actuation for spraying. 

Faster R-CNN (Ren et al., 2016) is an evolution of 
FAST R-CNN (Girshick, 2015), which improves the 
computational performance of the network in terms of 
processing time and detection in selective search 
algorithms. YOLO (You Only Look Once) is a real-time 
object detection algorithm (Redmon & Farhadi, 2018) based 
on convolutional neural networks for multiple object 
detection with good generalization ability and 
simultaneously performing predictions at multiple locations 
in the image, that predicts a class to which object belongs in 
an optimized manner and allows working at high frames per 
second (FPS) rates.  

An image bank containing soybean, cotton, and rape 
leaves images was created as per interest for detection. 
Images were captured using a semi-professional Nikon 
P250 camera in areas of the Federal University of 
Rondonópolis and Mato Grosso Institute of Cotton (IMA) 
in Rondonópolis (Figure 1). The high variability and 
quantity of images helped in the learning process of a CNN, 
and should correspond as closely as possible to its real 
application (Olsen et al. 2019).

 

 

FIGURE 1. Photos of leaves of rape-string (1a, 1b, 1c), cotton (2a, 2b, 2c) and soybean (3a, 3b, 3c), at various angles, 
environments and weather conditions used to form the training and testing data set of the network. Source: the author. 

The images were resized to 416 × 416 pixels before 
training the algorithm networks. The image bank contained 
1,612 training images including 1,214 images acquired 
from crop modules planted at the UFR and 398 obtained at 
the IMA. Out of this, 708 images were of rape-string leaves, 
487 of cotton leaves, and 417 of soybean leaves, and 10% 
of the images, that is 162 images, were randomly chosen to 
compose the test set, which was divided into 54 images of  

each class. The images varied with respect to the number of 
leaves contained in each sample at different angles, forming 
a dataset with representative variability.  

After resizing all images in the bank, the manual 
tagging and labeling process was performed with the help 
of a program with a graphical interface known as Labelimg 
available in Darrenl's (2019) repository (Figure 2). 
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FIGURE 2. Labelimg interface, at the moment of performing the labeling and marking of the location of the vine leaf in the 
image. Source: the author. 

The algorithms were trained on a computer with a 
3.19 GHz i7-8700 processor, 16 GB memory, GeForce 
RTX 2070 video card, and 8 GB of dedicated memory. In 
this study, we used the smaller architecture version of 
YOLOV3, which is a smaller and faster network called 
YOLOv3 tiny (ALEXEY, 2019) developed for hardware 
with medium configurations, which makes it possible to 
achieve the goal with lower computational cost, instead of 
using the YOLOV3 backbone, which has a larger number 
of layers and parameters as the network architecture. 
Because of the size of memory available on the GPU and 
the processing capacity of the computers used in this study, 
the YOLOv3 tiny version was chosen. YOLO-tiny network 
has the advantage of being faster, although it loses accuracy 
compared to YOLO network (Partel et al., 2019).  

For the training run, the number of classes and 
batches, filters, and values of the anchor boxes were varied 
according to the purpose of our study. The number of 
training classes was changed to three, and the defined batch 
size was 64 divided into 16 subdivisions, with the learning 
rate set at 0.001. The convolutional layer filters were 
changed according to [eq. (1)].  

Equation 1: Calculation of the number of filters to be 
applied to the image in the YOLOv3 tiny network in the 
detection layers. 

Filters=3∙(c+5)                                                      (1) 

c refers to the number of classes that will be 
submitted to the network for learning; in this study, 
the filters were set to 24. 

 
The faster R-CNN (Ren et al., 2016) used in this 

study was made available by Evan (2019), and the pre-
trained incepton_v2 network architecture made available 
by Pkulzc (2019) was used. The number of classes to be 
trained was changed according to YOLOV3 and the 
learning rate was 0.0002. The faster R-CNN model of this 
project was developed and executed in TensorFlow’s 
object detection API. 

The evaluations of the networks in field conditions 
were checked for their precision and sensitivity in each class 
in each algorithm by visually analyzing each frame of video 
of each repetition recorded at the time of the tests. 
Subsequently, the number of leaves captured by each 
camera were counted according to correctly detected leaves 
(VP), non-detected leaves (FN) and incorrectly detected 
leaves (FP), and the calculations were proceeded. 

A prototype of autonomous sprayer was developed 
for the field tests, as shown in Figure 3.

 

dialing 

Label 



Hederson de S. Sabóia, Renildo L. Mion, Adriano de O. Silveira et al., 
 

 
Engenharia Agrícola, Jaboticabal, v.42, special issue, e20210163, 2022 

 

FIGURE 3. A) front view, B) rear view, C) right side view, D) left side view of the prototype selective sprayer developed in 
conjunction with the Smart Agriculture group. 

 
The developed spray system was composed of a tank 

with a capacity of 30 L, pressurization pump, and four 
sections connected by hydraulic connections and high-
pressure hoses. Each section was composed of a solenoid 
valve and a spray tip.  

The pump and reservoir were positioned on the 
upper part of the chassis, affixed with screws to a base 
wood; the nozzles and spray valves located at the rear of the 

prototype were fixed on a galvanized plate, that was spaced 
0.63 m from the chassis by 25 x 25 mm metalon bars.  

The solenoid valves were placed between the hoses 
and the tips of each section allowing the syrup to run 
through the hose. The spacing between the cameras and 
spray bar was 0.10 m and the support for the sensors was 
positioned 0.50 m from the ground, as shown in Figure 4.

 

 
 

FIGURE 4. Selective spraying system built in the prototype selective sprayer. 
 

The tips for applying the product were installed at a 
height of 0.50 m from the ground, providing an overlap of 
22% with a spray range of 0.70 m, JACTO nozzles, yellow 
color, model JSF, flow rate of 0.76 L.min-1 with an 
application angle of 110º at a working pressure of 310.26 kPa. 

The on-board system for the detection and control of 
selective spraying was composed of four  Logitech C920 
HD PRO webcams with maximum resolution of 
1080p/30qps - 720p/30qps and auto focus feature; a 
Pentium gold G5400 computer with 3.70 GHz processor, 
8.00 GB RAM, NVIDIA GeForce GTX 1050 video card 
(4GB GDDR5 memory, Windows 10 operating system); a 
Plotting Board with Arduino Nano with Atmega Atmel 

328P microcontroller; DVR Valves of stainless steel with 
working pressure up to 1172.11 kPa and voltage of 12 V; a 
Pressure pump (Seaflo brand) with a working pressure of 
420 kPa and a flow rate of 4.92 L.min-1  

The webcams (sensors) are connected to a computer 
that performs the processing of the detection algorithm, 
which sends a signal to the Arduino microcontroller when 
the leaf of the vine string is detected. The sent signal 
indicates the sensor that detects the weed, so that the 
microcontroller sends a signal to each relay channel where 
the detection occurred. In this way, the valves were actuated 
individually, because each solenoid valve was connected to 
a relay channel, which in turn was connected to four 
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different digital ports on the Arduino that performed the 
actuation only when the port emitted 5V signal. In this case, 
as soon as the programming detects the leaf, the computer 
sends a command to the microcontroller, which sends a 
signal to the relay module that activates the solenoid valves 
to initiate the spraying.  

The power to the entire system was supplied using 
a 12 V direct current (DC) battery with a 60 Ah supply. To 
power the computer with a bivolt source of alternating 
current, a 1000 W power voltage inverter that transforms 
12 V DC voltage from the battery to 127 V alternating 
current (AC).  

The average flow rate of the nozzles in this study was 
0.64 L min-¹ at a 400 kPa working pressure of the pump and 
was obtained using Chaim's (2019) methodology (Equation 
(2)). To calculate this, the system was actuated for 1 min, and 
the sprayed volume was collected in a 1 L volumetric cup. 

𝑞 =                                                                     (2) 

Where: 

q = the flow rate of the system in L.min-1, 

V = volume obtained in the graduated cup in liters 
for the system actuation time (Ts) in minutes. 

 
To evaluate networks in the field, Partel et al. 

methodology (2019) was adopted, in which two test 
modules were set up. The first module contained two rows 
of the soybean crop of 2 meters in length each, with plant 
spacing of 0.20 m and inter-row spacing of 0.90 m. The 
second module contained two rows of cotton crops 4 meters 
in length each with plant spacing of 0.15 m and inter-row 
spacing 0.90 m. The spacing adopted in this study does not 
correspond to the adequate spacing for the soybean crop 
because of the prototype gauge to avoid crushing the 
evaluated rows of the crop during the evaluations.  

To obtain sufficient number of frames of images per 
second, the prototype sprayer was moved in the field 
evaluations with a maximum speed of 0.5 m.s-1, pump 
pressure at 400 kPa, and flow rate of the tips at 0.64 L.min-¹. 
Ten repetitions were performed for each culture in each 
module. A schematic of the experimental evaluation area is 
shown in Figure 5.

 

 

FIGURE 5. Sketch of the evaluation area of the algorithms in the field. 
 

At the time of evaluations, the real-time videos were 
recorded by each camera for each repetition provided by the 
networks. These videos were saved, and later converted into 
images in order to analyze each image frame by frame for 
counting the number of correctly detected leaves (PV), non-
detected leaves (FN), and incorrectly detected leaves (FP). 
The data were then tabulated, and precision and sensitivity 
were calculated for each class, camera, and repetition. 

The number of sprayed string plants was also counted 
for each repetition, algorithm, and module. To determine the 
percentage of control of the target plants in the area, a person 
walked behind the prototype to take notes every time a spray 
nozzle was activated on the desired target.  

RESULTS AND DISCUSSION 

The YOLOv3 tiny during the evaluations carried out 
in the field on cotton crops detected only one leaf as being 
correct for the crop in only one out of ten repetitions that 
were performed. Thus, the average accuracy obtained was 
10% (Figure 6). 

The error in the cotton leaf classification may be 
related to the leaf format and angle at which the images are 
captured, as the cotton leaves are also cordate and, 
according to their stage and the angle in relation to the 
camera, present a format similar to that of a cotton cord.

 
 
 

Caption 

         Symbol        Description 

Soybean 

Cotton 

Corda de viola 

Tire 
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FIGURE 6. In the image (a) the only cotton leaf detected, (b) leaves not detected, and (c) leaf incorrectly detected by the YOLOv3 
tiny at the time of the evaluations. 

 
The capture angle also has an effect on detection 

accuracy, as observed by Quan et al. (2019), in which the 
authors evaluated different object detection algorithms 
(YOLOV2, FASTER R-CNN, and FASTER R-CNN with 
VGG19) for detection of  different phenological growth 
stages in corn plants and weeds as a function of three 
different positioning angles for image capture (0°, 30°, and 
75°), and observed better results at 75° angle for all 
algorithms. Higher values were observed for FASTER R-
CNN with VGG19 delivering accuracy of 98.20% and 
sensitivity of 97.25%. The authors attributed this difference 
to the larger image size and view of the corn plants. The 
views of the corn plants were frontal and superior at 30º and 
75º angle , while at 0º angle they were only superior as used 

in this study.  Accuracy of 98.00% in case of Soybean plants 
shows that the algorithm sometimes misclassified weeds    
as crops. 

Higher precision was observed in the detection of 
weeds in the cotton crop with 93% compared to 76% in the 
soybean crop (Table 1). Although the shape of the cotton 
leaves is more similar to that of the springtails, the algorithm 
confuses more in the detection because of similarity 
between leaflets of soybean and leaves of springtail, thus 
decreasing the precision of weed detection (Figure 7).  

This fact can perhaps be explained by the features 
extracted from the images of both plants at the time of 
training and learning and may present more similar points 
for the algorithm.

 

 

FIGURE 7. Camera images during field repetitions (a) incorrect and correct soybean leaf detection, (b) and (c) soybean leaves 
detected and not detected by the YOLOv3 tiny algorithm. 
 

Authors Kazmi et al. (2015) extracted 14 vegetation 
indices from creeping thistle and sugar beet to differentiate 
the plants and obtained 97.00% accuracy; however, the 
features extracted during training and learning of the CNNs 
in this study are unknown. 

 
TABLE 1. Accuracy of the YOLOv3 tiny algorithms in 
detecting the classes of cordgrass, soybean and cotton for 
both modules evaluated. 

YOLOv3 tiny Precision 

Cotton module Soybean modulo 

Cotton Corda-de-viola Soybean Corda-de-viola 

10,00% 93,00% 98,00% 76,00% 

 
With respect to the sensitivity, for vine-string in both 

modules and classes, it was observed below 12.00%, as 
shown in Table 2. These results were below the values 
obtained in the laboratory test image sets, demonstrating the 
low capacity of the YOLOv3 tiny algorithm to recover all 
the objects contained in the image in real time.  

TABLE 2. Sensitivity of the YOLOv3 tiny algorithm in real 
time for the three classes evaluated in the study. 

YOLOv3 tiny sensitivity 
Cotton module Soybean modulo 

Cotton Corda-de-viola Soybean Corda-de-viola 
1,00% 8,00% 10,00% 12,00% 

 
These sensitivity values may have been influenced 

by the environmental conditions at the time of the test and by 
the camera used, which was programmed for use with an 
automatic zoom and did not present an adequate focus on the 
images. The constant search for focal adjustment on the move 
may have contributed to the low detection of all objects in the 
image and incorrect classification of some plants (Figure 8). 
According to Zheng et. al. (2017) detection in natural RGB 
images is difficult because of the complex background, 
different illumination, weather, shadow regions, and color 
similarities. According to Hong et al. (2012), lighting 
conditions are one of the challenges in machine vision, as 
reflectance can increase on brightly lit days, reducing feature 
differentiation and making detection difficult because 
increased reflectance distorts image colors. 
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FIGURE 8. (a) and (b) incidence of high light on cotton plants at the time of evaluations, causing non-detection and incorrect 
detection of leaves by the algorithms and (c) blurring of the image at the time of focal adjustment of the camera. 

 
The faster R-CNN showed excellent precision 

results for both cotton and soybean crops. For rapeseed, 
there was a variation of 4.00% between the averages of both 
modules, as shown in Table 3.  

 
TABLE 3. Average precision results in the detection of the 
three classes in both modules in 10 repetitions for Faster 
R-CNN. 

Faster R-CNN Precision 
Cotton module Soybean module 

Cotton Corda-de-viola Soybean Corda-de-viola 
100,00% 92,00% 96,00% 88,00% 

 
The accuracies for cotton and cottonseed in               

the cotton module were above 90.00%; whereas they were  

below 88.00% for cottonseed in the soybean module, as 
shown in Figure 9. Similar results were observed by Olsen 
et al. (2019) during evaluation of the performance of two 
convolutional neural network architectures in classifying 
eight weed species, where they obtained accuracies ranging 
from 88.50% to 97.60% across weed species, using the 
ResNet-50 architecture. The authors attributed the lower 
accuracy in some weeds to the availability of fewer unique 
visible features to be trained on. They further pointed out 
that a high degree of confusion in the classification of weeds 
is related to similar image features.  

Thus, as pointed out earlier, the position of the leaf 
or leaflet at the time of capturing image may be similar to 
other species to be detected, leading the machine to a 
misclassification.

 

 

FIGURE 9. (a), (b), and (c) Cotton leaf detections; (d), (e), and (f) Rope leaves; and (g), (h), and (i) Soybean leaflets performed 
by the Faster R-CNN algorithm. 
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Another important fact to highlight is the accuracy 

of the crops of interest, as there was little error in classifying 

weeds as crops. This result is significant because the aim is 

to control weeds, and if they are detected and misclassified, 

they are not sprayed. However, the detection of crop plants 

of economic interest as weeds leads to a waste of herbicides 

and consequently a larger quantity of products in the 

environment.  
In terms of sensitivity, faster R-CNN obtained 

results lower than 26.00% when performing real-time 
detection for both modules (Table 4). The low capacity to 
detect all objects in the image is insignificant for crops of 
economic interest, considering that the objective is to spray 
only the weeds. As for the weeds, the detection of all leaves 
is not necessary; however, the detection of at least one leaf 
from each plant is necessary to activate the nozzles and 
perform herbicide spraying. 

TABLE 4. Average sensitivity of the Faster R-CNN 
algorithm of the 10 repetitions in the evaluation modules for 
the three different classes. 

Faster R-CNN Sensivity 
Cotton module Soybean module 

Cotton Corda-de-viola Soybean Corda-de-viola 
18,00% 25,00% 24,00% 26,00% 

 
In comparison between the algorithms, faster R-

CNN showed better results in terms of sensitivity for both 
modules and both classes; however, the accuracy was close 
to that of the YOLOv3 tiny, which was superior for the 
soybean module that detected a smaller number of soybean 
leaflets as weeds. The accuracy error in the classification of 
the cotton leaf algorithm may be related to the shape of the 
leaves and the angle at which the images were captured, as 
cotton leaves are also cordate and, depending on their stage 
and the angle in relation to the camera, have similar shape 
to that of the cotton leaf.  (Table 5). 

 
TABLE 5. Average of Precision and Sensitivity of the 10 repetitions of the evaluations of the algorithms in the field, for each 
class to be detected. 

Algorithm Results 

Algorithm  Cotton module Soybean module 

Faster  
R-CNN 

Cotton Corda-de-viola Soybean Corda-de-viola 

Precision *Sbl. Precision *Sbl. Precision *Sbl. Precision *Sbl. 

100,00% 18,00% 92,00% 25,00% 96,00% 24,00% 88,00% 26,00% 

YOLOv3 Tiny 

Cotton Corda-de-viola Soybean Corda-de-viola 

Precision *Sbl. Precision *Sbl. Precision *Sbl. Precision *Sbl. 

10,00% 1,00% 93,00% 8,00% 98,00% 10,00% 76,00% 11,00% 

*Sensivity (Sbl.) 
 

Quan et al. (2019) compared the classic FASTER-
CNN, faster R-CNN with VGG19 architecture and the 
YOLOv2 version, and showed that FASTER R-CNN was 
superior to YOLOv2 in terms of accuracy, which was found 
10.31% in detection of corn seedlings between 6-7 leaves. 
Although it is an earlier version of YOLO, it shows that 
faster R-CNN has superior accuracy results but slower 
processing.  

Control through spraying is directly related to the 
accuracy and sensitivity of detection. In this context, the 

faster R-CNN showed variations in the control during the 
repetitions in each module. In the cotton module, higher 
percentages can be observed, varying from 67.00% to 
87.00% between repetitions. As for the soy module, the 
lowest percentage occurred in Repetition 9, perhaps due to 
several passes of the prototype in the area where some of 
the rape leaves were crushed, making its detection and 
consequently its control difficult. However, the other 
repetitions showed percentages greater than or equal to 
67.00% in the control of weeds (Tables 6 and 7).

 
TABLE 6. Ryegrass control using the Faster R-CNN algorithm in the soybean and cotton modules. 

corda-de-viola Control in Cultivation 

Algorithm Rep. 
Cotton Soybean 

sprayed Total controlled sprayed Total controlled 

Faster  
R-CNN 

1 11 15 73,00% 6 9 67,00% 
2 12 15 80,00% 7 9 78,00% 
3 13 15 87,00% 9 9 100,00% 
4 10 15 67,00% 9 9 100,00% 
5 13 15 87,00% 7 9 78,00% 
6 13 15 87,00% 8 9 89,00% 
7 12 15 80,00% 6 9 67,00% 
8 12 15 80,00% 6 9 67,00% 
9 13 15 87,00% 5 9 56,00% 
10 13 15 87,00% 7 9 78,00% 
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For the YOLOv3 tiny algorithm, as shown in Table 
7, the control of the vine string was below 44% in both 
modules. This value is reflected by the low number of 
sensitivities presented by the detection algorithm, although 
it has good accuracy in detection. 

The average number of weeds that are sprayed in the 
cotton module was 3 (three) plants out of 15, representing 
an average of 19.00% in the control. As for the soy module, 
the control was 20.00%, with an average of 2 sprayed plants 
out of 9 present in the module in 10 repetitions. 

 
TABLE 7. Control of the cotton cordgrass performed by the YOLOv3 tiny algorithm in the soybean and cotton modules. 

corda-de-viola Control in Cultivation 

Algorithm Rep. 
Cotton Soybean 

sprayed Total controlled sprayed Total controlled 

YOLOv3 Tiny 

1 1 15 7,00% 3 9 33,00% 

2 6 15 40,00% 4 9 44,00% 

3 3 15 20,00% 2 9 22,00% 

4 2 15 13,00% 0 9 0,00% 

5 2 15 13,00% 1 9 11,00% 

6 3 15 20,00% 2 9 22,00% 

7 1 15 7,00% 2 9 22,00% 

8 4 15 27,00% 1 9 11,00% 

9 4 15 27,00% 0 9 0,00% 

10 3 15 20,00% 3 9 33,00% 
 

For the Faster R-CNN algorithm, the best average 
control of cordgrass plants was obtained in both modules, 
controlling 12 out of 15 plants present in the cotton module 
and 7 sprayed plants out of 9 plants present in the soybean 
module. The average control was 81% for the cotton module 
and 78% for soybean (Table 8). 

 
TABLE 8. Average of control of cotton cordgrass of both 
algorithms and modules. 

Average of control (%) 
Algorithms Module 

Faster R-CNN 
Cotton Soybean 

81,00% 78,00% 

YOLOv3 tiny 
Cotton Soybean 

19,00% 20,00% 
 

CONCLUSIONS 

In field tests performed on the selective sprayer 
prototype, the faster R-CNN showed better results in the 
control of cotton and soybean weevils present in both the 
cotton and soybean modules, even with low sensitivity 
values. The on-board system developed for the spraying 
prototype was efficient for the individual activation of each 
nozzle, performing the application selectively according to 
the detected target. The FASTER R-CNN algorithm 
demonstrated its applicability as an Ipomoea spp. plant 
detection tool for variable-rate herbicide spraying. 
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