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ABSTRACT 

Laboratory chemical analysis of leaf samples can be costly and time-consuming, making 
it impractical for assessing crop variability. To address this challenge, researchers have 
focused on developing non-invasive tools that aid nitrogen (N) management, maximizing 
profits, minimizing environmental impact, and meeting market demands. This study 
aimed to develop a computer vision-based classifier system for assessing the N status in 
bean crops. An experiment was conducted in a greenhouse, involving five treatments (0%, 
50%, 100%, 150%, and 200% N of the recommended dose) with six replications, totaling 
30 pots containing six seedlings of Phaseolus vulgaris L. beans in four different 
phenological phases (V4, R5, R6, and R7). Digital RGB images of the bean canopies were 
captured using a camera at four-week intervals (30, 37, 44, and 51 days after emergence 
- DAE). The images were manually labeled to create an image database based on N status. 
Four different computational N status classifiers were developed by training a 
Convolutional Neural Network (CNN), one for each DAE. The classifiers were evaluated 
using confusion matrix metrics (accuracy, precision, and recall), resulting in an overall 
accuracy of about 80% when evaluating nitrogen status at five levels. Improved results 
were achieved by grouping the saturation classes of the 150% and 200% treatments with 
the 100% class (>=100% class), yielding an accuracy of 97% for 30 and 44 DAE. 
Promising results aside, this method opens new possibilities for improvement and 
application to other treatments, electromagnetic spectrum bands, and crops. 

 
 
INTRODUCTION 

Laboratory chemical analyses of leaf samples are 
expensive and time-consuming, therefore infrequently 
conducted. They may also be inefficient when crop 
variability is significant. Therefore, research endeavors 
have focused on developing non-invasive tools to support 
nitrogen (N) management, aiming to maximize profit, 
minimize environmental impact, and meet market demands. 
In this sense, images of leaves, and various biometric 
measures related to shape, texture, and color, among others, 
have been employed to provide quantitative information 
associated with plant nutrition (Confalonieri et al., 2015). 

Golzarian & Frick (2011) extracted distinct color 
and shape characteristics from images of wheat, ryegrass, 

and bromo in the early stages of growth, employing 
principal component analysis to distinguish between these 
species. They achieved classification accuracy ranging from 
82.4% to 88.2%. Romualdo et al. (2014) proposed an 
artificial vision system to analyze and interpret RGB (red, 
green, and blue color model) images for identifying N 
deficiency at various stages of corn crop development. 
Their method, based on Naive Bayes classification, 
successfully identified levels of N deficiency in the initial 
stages of corn growth, with an overall percentage of correct 
answers of 82.5% in V4 and 87.5% in V7. Confalonieri et 
al. (2015) introduced a variation of the DGCI (dark green 
color index) index to estimate N levels in leaves using RGB 
images. They evaluated the new method using data 
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collected from rice cultivation, yielding a mean square error 
of 14.9% for N estimation. 

Despite the potential of imaging techniques for 
determining N deficiency, researchers have acknowledged 
influences on method reliability due to camera quality and 
lighting conditions. Additionally, the inherent complexity 
of biological systems and their component subsystems, as 
well as the intricate interactions between them, involve 
numerous variables, resulting in highly complex 
mathematical models. Recent investigations into 
computational methods based on artificial intelligence (AI) 
techniques have demonstrated positive outcomes in 
generating predictive models and classifiers for plant 
production systems. For example, Abdalla et al. (2020) 
combined two techniques to assess the nutritional status of 
rapeseed at different growth stages, while Gokulnath & 
UshaDevi (2017) employed machine learning techniques 
for the automatic detection of plant diseases, enabling early 
diagnosis. Escalante et al. (2019) used RGB images with 
CNN to estimate nitrogen fertilization and barley yield. 

Convolutional Neural Network (CNN), a technique 
within the domain of Deep Learning, has been successfully 
applied across various fields, including agriculture 
(Kamilaris et al., 2017). CNN represents an extension of 
classical machine learning methods, incorporating 
increased model complexity, and allowing hierarchical data 
representation through multiple levels of abstraction. CNN-
based modeling exhibits the potential to address more 
complex problems accurately and rapidly, provided that 
sufficiently large datasets describing the problem are 
available (Kamilaris & Prenafeta-Boldú, 2018). Dyrmann et 
al. (2016) highlighted that in comparison with classical 
classification methods, CNN-based modeling applied to 
plants is less affected by natural variations such as lighting 
changes, shadows, bias, and occluded plants. 

CNN modeling possesses several features that 
justify its comparison, primarily its exceptional 
performance in image recognition. These models leverage 
convolutional filters to extract relevant information from 
images (Bouguettaya et al., 2022). This capability enables 
various applications, including those within the agricultural 
domain, such as predicting extreme climate damage to 
agriculture to minimize economic losses (Benos et al., 
2021; Zhang et al., 2021), detecting plant diseases through 
leaf images captured at different resolutions, facilitating the 
timely application of preventive techniques (Tiwari et al., 
2016; Sambasivam & Opiyo, 2020), and utilizing deep 
learning with ultra-spectral soil data to achieve precision 
agriculture (Zhong et al., 2021). 

Building upon this foundation, this study proposes 
and demonstrates a method for designing a computer vision 
system based on CNN to classify bean plots according to 
their N content using leaf image cutouts. Furthermore, the 
approach was evaluated on different days after emergence 
(DAE) to assess the reliability and feasibility of                     

the computational classifier for distinct phases of              
bean cultivation. 
 
MATERIAL AND METHODS 

An experiment was conducted to create an image 
database using bean cultivation as the subject. The 
experiment took place during the months of February and 
March, which correspond to the summer season, at the 
facilities of the Faculty of Animal Science and Food 
Engineering (FZEA) of the University of São Paulo (USP) 
in Pirassununga, SP, Brazil. The geographic coordinates of 
the location are approximately 21°57′02″S, 47°27′50″W, 
with an average elevation of 630 meters above sea level. 
The region experiences a Köppen climate classification of 
Cwa type, which is characterized by two distinct seasons: a 
rainy summer and a dry winter with infrequent occurrences 
of frost. The average annual air temperature in the city is 
21.5°C. During summer, the mean air temperature, relative 
humidity, and dew point were recorded as 29.21 ± 6.20°C, 
62.59% ± 20.51%, and 20.33 ± 1.79°C, respectively.  

The image database was collected and organized to 
serve as the predictive attribute (input) for training 
computational classifiers based on deep learning methods, 
with the N level as the target attribute (output) of the model. 
The data collection process and modeling approach are 
described below. 

Data acquisition and preprocessing 

Treatments consisted of recommended nitrogen (N) 
doses based on soil analysis, namely 0%, 50%, 100%, 
150%, and 200%. A total of 30 pots, each filled with 15 dm³ 
soil obtained from C horizon classified as dystrophic Red 
Latosol, were utilized. Cultivation was conducted in pots to 
enable better control over the applied N doses and minimize 
losses. The pots were arranged in a completely randomized 
design, employing a plot scheme subdivided in time, 
specifically at 30, 37, 44, and 51 days after emergence 
(DAE), with plots representing the doses and subplots of the 
season. Irrigation was conducted daily to ensure that the 
water deficit did not influence plants. In all pots, six seeds 
of Phaseolus vulgaris L. beans, specifically the cultivar 
BRSMG Madrepérola, were planted. As N is a highly 
mobile soil nutrient, doses were applied in two stages: one-
third of the total dose during the planting stage and the 
remaining two-thirds at 20 DAE. The other nutrients were 
uniformly mixed with soil material in all pots based on the 
soil analysis results, with N intentionally left as a limiting 
factor for bean production. 

Canopy digital images were captured using a 
Fujifilm digital color camera, specifically the Finepix 
S4500 model, which was equipped with a 3.0" LCD, 14MP 
resolution, and 30x optical zoom. The camera was securely 
mounted at a fixed height using a Vivitar brand VIV-TR75 
universal tripod, which can reach a maximum height of  
1.20 m (Figure 1).
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FIGURE 1. Digital imaging experiment for bean cultivation in pots. 
 
Photographs of bean plants were captured from 

approximately 80 cm away from the pots, ensuring 
consistency by taking them at the same times of the day 
(between 10 a.m. to 2 p.m.) to minimize lighting variation 
impact on the images. Environmental control was not 
applied during the photography sessions to replicate 
conditions similar to those found in the field (Hennessy et 
al., 2022). A photograph was taken of each pot to create a 
comprehensive database. To determine the optimal time for 
distinguishing N levels in leaves, images were acquired 
starting from 30 DAE, which is when nitrogen deficiency 
begins to manifest in the leaves. This process was repeated 
once a week for a total of four weeks, specifically at 30 
DAE, 37 DAE, 44 DAE, and 51 DAE. 

The digital images were processed at the Laboratory 
of Machines and Precision Agriculture (LAMAP) with 
computational support from the Laboratory of Robotics and 
Automation of Biosystems Engineering (RAEB) at FZEA-
USP. The image dataset underwent processing using a 
custom script developed in MATLAB® R2015a software 
(The MathWorks Inc.). The script facilitated automatic and 
random cropping of the images, generating samples or 
clippings for training the N prediction model. 

A preliminary investigation was conducted to 
explore varied sizes of clippings, considering horizontal and 
vertical dimensions ranging from 20 to 240 pixels. These 
dimensions are crucial in deep learning methods. The study 
revealed that clippings with dimensions of 40x40, 60x20, 
and 80x80 pixels, all with a resolution of 96 dpi, could be 
utilized without compromising modeling quality while 
reducing computational demands. Clippings of this size 
enable the development of a computer vision system that 
samples 'n' cutouts from a larger image. The automatic 
classifier can then generate multiple predictions, which, when 
combined, result in a more robust and accurate estimate. 

Convolutional Neural Network-based modeling 

Cutouts from images were randomly assigned for the 
modeling steps, including training, validation, and testing. 
For training, approximately 60% of the images were used, 
resulting in around 1800 clippings for each nitrogen level. 
Validation was conducted using 20% of the images, which 
amounted to approximately 600 clippings for each nitrogen 
level. The validation set was employed during the training 
process to assess the error and determine the stopping 
condition. The remaining 20% of the images were reserved 
for assessing the performance of the N prediction model, 
yielding approximately 600 clippings for each nitrogen 
level. This process was repeated for images collected at 30, 
37, 44, and 51 DAE. 

To augment the training and validation images and 
expand the database, translation and mirroring techniques 
were applied using a MATLAB script. The translation 
technique involved applying a crop filter, smaller than the 
original image, at various positions to generate new images 
from the cropped sections of the original image. Nazki et al. 
(2020) presented a pipeline utilizing GANs in an 
unsupervised image translation environment, which 
improved learning by addressing data distribution in a plant 
disease dataset. This approach reduced the bias introduced 
by acute class imbalance and resulted in better classification 
accuracy (+5.2%) by adjusting the classification decision 
threshold. The mirroring technique involved creating a 
second image by performing a 180° rotation on the original 
image, producing an inverse version. From the database of 
12,000 images, approximately 3000 clippings were 
obtained for each nitrogen level. 

Table 1 provides examples of 60x20 dimension 
cutouts from leaves and leaves with associated soil, 
representing the five nitrogen levels for images collected at 
37 DAE (phenological phase R5).

 
TABLE 1. Examples of 60x20 dimension cutouts associated with nitrogen levels for images collected at 37 days after emergence 
– DAE (phenological phase R5). 

Nitrogen level (%) Cutout – Only Leaf Cutout – Leaf and Soil 

0   

50   

100   

150   

200   
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Once the image database was organized, four N 
classifier models were constructed utilizing CNN architecture, 
with one model designed for each week of the experiment (30 
DAE, 37 DAE, 44 DAE, and 51 DAE). The Sequential Keras 
Library (version 2.0.6) for the Python Programming 
Language (version 3.5.4 rc1) was utilized to build these 
models. The training data was used to construct the models, 
while the validation data was employed to monitor their 

progression and determine the optimal configuration of 
hyperparameters and the most effective combinations of cutout 
sizes. The fine-tuning process, based on the model with the 
highest accuracy, enabled the determination of values for the 
following hyperparameters: type (convolution and pooling), 
size and number of filters, step, activation function ('relu'), and 
the number of layers. This iterative process continued until the 
final models were obtained (as shown in Table 2). 

 
TABLE 2. Convolutional Neural Network (CNN) based architecture for nitrogen level modeling. 

Layer Configuration 

2D Convolutional 32 kernels with size=7x7; activation by Rectified Linear Unit 

2D MaxPooling Pooling size=2x2 

Batch Normalization Default 

2D Convolutional 16 kernels with size=3x3; activation by Rectified Linear Unit 

2D MaxPooling Pooling size=2x2 

Batch Normalization Default 

Flattening Default 

Fully Connected 1000 neurons; activation by Rectified Linear Unit 

Fully Connected 5 neurons; activation by Softmax 
 
Classifier evaluation and validation 
 

Trained models were assessed for performance by 
confusion matrices, which involved comparing the N labels 
predicted during the testing phase with the true labels. 
Confusion matrices are known to provide valuable insights 

into the effectiveness of classifiers in terms of accuracy, 
precision, and recall. Therefore, these metrics were 
calculated based on the values derived from the confusion 
matrix, including true positives, true negatives, false 
positives, and false negatives, following the method 
outlined by Sokolova & Lapalme (2009). 

 
𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =  (𝑇𝑟𝑢𝑒 𝑝𝑜𝑠𝑖𝑡𝑖𝑣𝑒𝑠 +  𝑇𝑟𝑢𝑒 𝑛𝑒𝑔𝑎𝑡𝑖𝑣𝑒𝑠) / 𝑇𝑜𝑡𝑎𝑙                                             (1) 
 
𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =  𝑇𝑟𝑢𝑒 𝑝𝑜𝑠𝑖𝑡𝑖𝑣𝑒𝑠 / (𝑇𝑟𝑢𝑒 𝑝𝑜𝑠𝑖𝑡𝑖𝑣𝑒𝑠 +  𝐹𝑎𝑙𝑠𝑒 𝑝𝑜𝑠𝑖𝑡𝑖𝑣𝑒𝑠)                                                          (2) 
 
𝑅𝑒𝑐𝑎𝑙𝑙 =  𝑇𝑟𝑢𝑒 𝑝𝑜𝑠𝑖𝑡𝑖𝑣𝑒𝑠 / (𝑇𝑟𝑢𝑒 𝑝𝑜𝑠𝑖𝑡𝑖𝑣𝑒𝑠 +  𝐹𝑎𝑙𝑠𝑒 𝑛𝑒𝑔𝑎𝑡𝑖𝑣𝑒𝑠)                                             (3) 

 
While accuracy provides an overall measure of 

correct answers, it can be influenced by the inclusion of 
falsely classified examples. In the case of unbalanced 
classes, accuracy may give the impression of correct 
answers being concentrated in a single class. Hence, it is 
crucial to consider additional metrics such as precision and 
recall. Precision reflects the classifier's ability to accurately 
classify positive instances and avoid misclassifying negative 
instances, ensuring that correct answers are not classified as 
incorrect. On the other hand, recall indicates the classifier's 
ability to identify all the correct samples for each class, 
minimizing false negatives (Sokolova & Lapalme, 2009). 
 
RESULTS AND DISCUSSION 

CNN-based individual training models were created 
for each week (n DAE - n days after emergence). These 

models achieved an overall accuracy of 81.4% at 30 DAE 
(Table 3), 82.8% at 37 DAE (Table 4), 78.9% at 44 DAE, 
and 80.4% at 51 DAE (Table 5). The most favorable 
outcomes were obtained using 60x20 cutouts. 

To assess N status prediction at 30 DAE, the 
generated model was assessed using 592 cutouts from a 
separate testing dataset. The model could identify 0%, 50%, 
and 200% N status accurately. However, it did not perform 
as well in distinguishing between the 100% and 150% N 
status, as indicated by lower recall and precision values for 
these classes (Table 3). This suggests that the image 
database needs a better balance with more samples to 
enhance the performance of future CNN-based modeling 
endeavors. Notably, the precision values for the 100% and 
150% classes were 50.5% and 75.6%, respectively, which 
are lower than those of the other classes.
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TABLE 3. Confusion matrix between the actual and CNN-based models for nitrogen status classification 30 days after emergence. 

Actual Nitrogen Status 
 CNN-Based Classified Nitrogen Status 

Recall (%) 
0 % 50 % 100 % 150 % 200 % 

0 % 112 0 0 0 0 100.0 

50 % 0 132 6 0 0 95.7 

100 % 0 8 49 17 7 60.5 

150 % 0 0 32 99 11 69.7 

200 % 0 4 10 15 90 75.6 

Precision (%) 100,0 91.7 50.5 75.6 83.3 Accuracy 81.4 

Gray cells indicate the correct predictions in each class. CNN: Convolutional Neural Network. 
 
The model developed to predict N status at 37 DAE 

underwent testing using 853 images from a separate test 
dataset, yielding the highest accuracy of 82.8% (Table 4). 
However, the optimal performances were observed in the 

0% and 150% classes, with precision values of 99.0% and 
90.5%, respectively. Consequently, while it achieved the 
highest accuracy among the models, there is a significant 
disparity in the correct predictions across different classes. 

 
TABLE 4. Confusion matrix between the actual and CNN-based models for nitrogen status classification 37 days after emergence.  

Actual Nitrogen Status 
 CNN-Based Classified Nitrogen Status 

Recall (%) 
0 % 50 % 100 % 150 % 200 % 

0 % 399 20 1 0 1 94.8 

50 % 4 90 12 3 21 69.2 

100 % 0 17 66 3 14 66.0 

150 % 0 6 22 105 12 72.4 

200 % 0 3 3 5 46 80.7 

Precision (%) 99.0 66.2 63.5 90.5 48.9 Accuracy 82.8 

Gray cells indicate the correct predictions in each class. CNN: Convolutional Neural Network. 
 
The third model, trained with 44 DAE data, 

exhibited the lowest accuracy among the models, measuring 
78.5%. It was evaluated using 648 cutouts from a separate 
test dataset. However, it demonstrated favorable 

performance in correctly identifying the 0%, 50%, and 
100% classes, as evidenced by the precision values 
(100.0%, 89.0%, and 75.8%, respectively) and recall values 
(93.6%, 98.6%, and 70.5%, respectively) shown in Table 5. 

 
TABLE 5. Confusion matrix between the actual and CNN-based models for nitrogen status classification 44 days after emergence.  

Actual Nitrogen Status 
 CNN-Based Classified Nitrogen Status 

Recall (%) 
0 % 50 % 100 % 150 % 200 % 

0 % 103 7 0 0 0 93.6 

50 % 0 138 2 0 0 98.6 

100 % 0 9 141 13 37 70.5 

150 % 0 1 16 57 8 69.5 

200 % 0 0 27 17 72 62.1 

Precision (%) 100.0 89.0 75.8 65.5 61.5 
Accuracy 

78.9 
Gray cells indicate the correct predictions in each class. CNN: Convolutional Neural Network. 

 
The model designed to predict N status at 51 DAE 

underwent testing using 654 cutouts from a separate test 
dataset. It achieved an accuracy of 80.4%, which is comparable 
to the models generated for 30 DAE and 37 DAE. Notably, it 

generated numerous correct predictions for the 0%, 50%, and 
100% classes, as demonstrated by the precision values (90.8%, 
87.0%, and 85.4%, respectively) and recall values (93.8%, 
82.0%, and 70.1%, respectively) outlined in Table 5. 
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TABLE 6. Confusion matrix between the actual and CNN-based models for nitrogen status classification 51 days after emergence. 

Actual Nitrogen Status 
 CNN-Based Classified Nitrogen Status 

Recall (%) 
0 % 50 % 100 % 150 % 200 % 

0 % 167 11 0 0 0 93.8 

50 % 17 100 5 0 0 82.0 

100 % 0 2 117 25 23 70.1 

150 % 0 0 11 71 9 78.0 

200 % 0 2 4 19 71 74.0 

Precision (%) 90.8 87.0 85.4 61.7 68.9 
Accuracy 

80.4 
Gray cells indicate the correct predictions in each class. CNN: Convolutional Neural Network. 
 

When considering N status classification, the model 
generated with 37 DAE data performed the best in terms of 
accuracy (Table 4). However, when examining the 
precision and recall of each class, the model was not 
consistent in accurately predicting each class, resulting in 
non-uniform performance across classes. Considering these 
metrics, the best model is observed to be the one generated 
with 30 DAE data. This is particularly evident when 
combining data from the 100%, 150%, and 200% classes 
into a single class called "> =100%", as summarized in 

Table 7. Consequently, all records with N status values of 
100%, 150%, and 200% were grouped as "> =100%" and 
utilized alongside records from the 0% and 50% classes to 
train a CNN-based model for predicting three N status 
classes (0%, 50%, and > =100%). Notably, these three N 
doses applied to beans (100%, 150%, and 200%) fall 
within the recommended range for the crop. Hence, leaf 
coloration is expected to be similar since plants received 
the proper amount of N for their development at different 
phenological stages. 

 
TABLE 7. Comparison of CNN-based models for nitrogen status classification at 0%, 50%, and 100% at 30, 37, 44, and 51 days 
after emergence. 

Model Metrics 
Class 

0% 50% >=100% 

30 DAE 

Precision (%) 100.0 91.7 98.2 

Recall (%) 100.0 95.7 96.5 

General Accuracy (%) 97.0 

37 DAE 

Precision (%) 99.0 66.2 87.9 

Recall (%) 94.8 69.2 91.4 

General Accuracy (%) 89.7 

44 DAE 

Precision (%) 100.0 89.0 99.5 

Recall (%) 93.6 98.6 97.5 

General Accuracy (%) 97.1 

51 DAE 

Precision (%) 90.8 87.0 98.6 

Recall (%) 93.8 82.0 98.9 

General Accuracy (%) 94.3 

 
When grouping the 100%, 150%, and 200% classes 

(Table 7) into one (>=100%), the overall accuracy of the 
models increases. Both the 30 DAE and 44 DAE models 
demonstrate the highest accuracy, reaching about 97%, with 
consistent precision and recall values. This suggests that 
leaves from the 100%, 150%, and 200% treatments 
exhibited less variation in color intensity and distribution, 
making it challenging for the models to learn. 

Sabzi et al. (2021) used hyperspectral imaging (HSI) 
to predict N levels in cucumber leaves, employing three 
regression methods (artificial neural networks-particle 
swarm, partial least squares regression, and convolutional 
neural networks). These authors grew the plants in 20 plots 

that received three N levels (30%, 60%, and 90%), with 
leaves being scanned under controlled light conditions. 
They noted that the best models achieved an approximate 
correlation coefficient of 0.9 for numerical value prediction 
within established ranges. In contrast, we used RGB images 
collected in an outdoor environment and employed image 
clippings of leaves for local sensing using computer vision 
equipment. This equipment enables multiple collections 
from the same plant, providing classifications for decision-
making modules. 

Qiu et al. (2021) employed RGB images captured by 
an unmanned aerial vehicle to estimate the Nitrogen 
Nutrition Index (NNI) during different growth periods of 
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rice. They utilized machine learning algorithms (adaptive 
impulse, neural network artificial K-nearest neighbor, 
partial least squares, random forest, and support vector 
machine), with Random Forest algorithms demonstrating 
the best performance and coefficients of determination 
ranging from 0.88 to 0.96. In contrast, the proposed method 
in this study focuses on local sensing using computer vision 
equipment and image clippings of leaves. However, the 
general methodology could be applied to images of 
agricultural fields to predict nutrition parameters. 

Safa et al. (2019) conducted a study using thermal 
images and artificial neural networks (ANNs) to estimate N 
content in perennial ryegrass (Lolium perenne) pastures. 
They aimed to estimate N content based on plant 
temperatures and various environmental parameters (air 
temperature, wind speed, soil temperature and moisture, 
humidity, and solar radiation). The ANN model achieved a 
high variance between training and validation data (94% 
and 93%, respectively) for estimating pasture N content. 

The results demonstrate the promising potential of 
automatic N status prediction using RGB images and deep 
learning techniques. This method could facilitate the 
development of computer vision systems that sample 
cutouts from larger images and use automatic CNN-based 
classifiers to generate multiple predictions, resulting in 
more robust and accurate estimates. However, future 
improvements should include a larger and better-balanced 
image database with an equal number of images for each 
class. Additionally, the method should be evaluated to 
recognize other classes representing treatments below 
100% (e.g., 0%, 20%, 40%, 60%, 80%, and 100%). Lastly, 
exploring other electromagnetic spectrum bands, such         
as near-infrared images, is another potential avenue for 
further investigation. 

 
CONCLUSIONS 

A CNN-based computer vision system was 
developed to accurately identify and classify nitrogen status 
in bean leaves. The system demonstrated the capability to 
detect nitrogen deficiency in the early stages of common 
bean development using RGB images. Although the CNN-
based classifier performed well, there is still room for 
improvement through additional data acquisition 
experiments. Expanding the training database to include a 
wider range of nitrogen status classes and achieving better 
balance among the classes would enhance the classifier's 
performance. Furthermore, the concept presented in this 
study can be extended to explore other bands of the 
electromagnetic spectrum and can be adapted for use with 
different crops. 
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