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ORIGINAL ARTICLE

Computerized brain tumor segmentation  
in magnetic resonance imaging

Segmentação computadorizada de tumores do encéfalo em imagens de ressonância magnética
Maryana de Carvalho Alegro1, Edson Amaro Junior2, Rosei de Deus Lopes3

ABSTRACT
Objective: To propose an automatic brain tumor segmentation system. 
Methods:  The system used texture characteristics as its main 
source of information for segmentation. Results: The mean correct 
match was 94% of correspondence between the segmented areas 
and ground truth. Conclusion: Final results showed that the proposed 
system was able to find and delimit tumor areas without requiring 
any user interaction.

Keywords: Magnetic resonance imaging; Image processing, computer-
assisted; Brain neoplasms 

RESUMO
Objetivo:  Propor um sistema para segmentação automática de 
tumores do encéfalo. Métodos: O sistema emprega parâmetros de 
textura como sua principal fonte de informação para a segmentação. 
Resultados: Os acertos chegaram a 94% na correspondência entre 
a segmentação obtida e o padrão-ouro. Conclusão: Os resultados 
obtidos mostram que o sistema é capaz de localizar e delimitar as 
áreas de tumor sem necessidade de interação com o operador. 

Descritores: Imagem por ressonância magnética; Processamento de 
imagem assistida por computador; Neoplasias encefálicas

INTRODUCTION
Magnetic resonance imaging (MRI) is important tools 
in brain tumor treatment because they provide a non-
invasive method to visualize brain internal structures 
with high anatomical resolution. The MRI is usually 
the technique of choice for tumor growth assessment, 

surgery planning, and chemotherapy and radiotherapy 
follow-up(1,2). The segmentation of the tumor area allows 
to quantity the mass volume and its response to the 
treatment, but it usually has to be performed manually, 
what is a time-consuming and cumbersome activity 
that yields two main problems(3): (1) low response to 
small changes and (2) high variability between different 
segmentations. Computer systems can ease the manual 
segmentation burden while providing a tool for easily 
assessing tumor mass development(4,5). 

This study presents a brain tumor segmentation 
method for MRI which purpose is to easily segment 
tumor masses in MRI images with reproducible 
results. Our pipeline is capable of automatically 
segment tumor masses, which means that there is no 
need for manual selection of a starting region, unlike 
semi-automatic segmentation schemes. We use texture 
analysis techniques for extracting useful information 
that allow the discrimination between normal and 
tumor tissues. Textures features were chosen because 
it could detect image patterns often inconspicuous 
to the human eye(6); such ability can be very handy in 
detecting the subtle MRI signal changes induced by 
the presence of abnormal tissue. Texture analysis has 
a long history in medical imaging, and several studies 
have used it(7-9).

On the following sections we describe a 
computational pipeline and the empirical results 
accomplished. Lastly, the pro and con of the system are 
discussed.
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OBJECTIVE
To propose a brain tumor segmentation system suited 
for MRI processing, which purpose is to easily segment 
tumor masses in MRI with reproducible results.

METHODS
The study was structured as a pipeline of four 
main stages: pre-processing, feature computation, 

segmentation, and post-processing. This pipeline 
works with three different types of MRI: T1, T1 
with contrast (T1c) and FLAIR images. Since each 
modality is better suited for imaging a different type 
of tissue (i.e. FLAIR for edema and T1 for fat), they 
are handled as separated information channels. Thus, 
all pipeline stages are designed to work with the three 
MRI modalities at the same time. The pipeline and its 
stages are illustrated in figure 1.

Figure 1. Segmentation pipeline

Pre-processing
MRI suffer from several artifacts inherent to the 
acquisition process and chemical composition of 
the underlying tissues. The pre-processing stage is 
responsible for reducing such artifacts to improve the 
segmentation results. 

Field inhomogeneity is one of the most know MRI 
artifacts. It is caused by small magnetic fluctuations 
in the main static field, poor radio frequency (RF) 
coil performance, eddy currents, motion blur, 
among other causes. Inhomogeneity manifests itself 
as a smooth intensity variation field that spans the 
entire image. The scanner calibration alone is not 
enough to correct this artifact; so image-enhancing 
techniques must be applied to reduce inhomogeneity 
effects. Intensity inhomogeneity is corrected in the 
first step of the pre-processing stage (Figure 1) using 
the N3 algorithm(10). The algorithm creates estimated 
distributions for the real image intensities and 
corruptive field, which causes the inhomogeneity, 
based on the underlying image. These estimates are 
then used to correct the original image.

Noise is another well-known MRI artifact that 
corrupts image information and degrades computer 
analysis results. The main noise causes are poor RF 

shielding, which causes external RF interference to 
reach the scanner, and thermal effects that occurs 
inside the patient’s body. The second step of the pre-
processing stage is responsible for noise reduction, 
which is performed by the anisotropic diffusion(11). 
This algorithm is a well-known general-purpose noise 
filtering method, which smooths homogeneous areas of 
the image whereas enhancing the borders.

After the two previous steps, T1, T1c and FLAIR 
MRI must be transformed to the same coordinate 
system, so that the same anatomical structures present 
in all images are aligned. This allowed the pipeline 
to operate simultaneously over all “channels”. Our 
pipeline currently uses a semi-automatic algorithm 
based on local means(12), which requires the manual 
selection of control points. Nevertheless, due to the 
modular formulation of the pipeline this can be easily 
replaced by an automated method.

The brain segmentation step is responsible for 
separating the brain from adjacent regions, such as 
meninges and skull bones; and from background 
noise. The disposal of unnecessary pixels speeds up the 
overall pipeline performance and keeps the process 
focused on the pieces of image that have important 
information. Our pipeline uses a method adapted 
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from the studies of Brummer et al.(13) and Shen et  
al.(14), which creates a gross segmentation of the 
brain area. This mask initializes an active-contours 
segmentation algorithm(15) that performs the final 
segmentation.

Unlike other medical imaging techniques, such 
as X-ray and computerized tomography, the MRI 
pixel intensities have no fixed value on the imaged 
tissue. So, pixels depicting the same tissue can have 
different intensities in adjacent slices, what degrades 
computational analyses that are performed directly 
on the intensity values. This artifact is called intensity 
non-standardization and we attempt to reduce it 
applying a normalization procedure(16,17) in our last 
pre-processing step.

Feature calculation
In image processing studies, texture can be characterized 
as the spatial distribution and spatial dependency 
between pixels of an image. Texture analysis is a set 
of techniques that aim to mathematically characterize 
these distributions and dependencies. Texture features 
can be roughly separated in four different groups: 
statistical, structural, model-based and transform-based. 

Structural methods are commonly used in image 
synthesis but seldom in image analysis, thus are not 
further discussed. Statistical texture analysis methods 
use elements from probability and statistics theory, 
such as histogram and probability density functions, 
to quantify the texture present in an image. Model-
based methods rely on existing mathematical models, 
which are assumed to rule texture shaping; and their 
parameters are regarded as image features. Finally, 
transform-based methods rely on the assumption that 
image spectra carries important information about the 
texture content, thus spectral coefficients are used as 
texture features(18) for an in-depth overview of texture 
analysis. 

This pipeline stage calculates statistical features 
as co-occurrence texture features(19,20) (angular second 
moment, contrast, correlation, variance, inverse difference 
moment, sum average, sum variance, entropy, sum 
entropy, difference variance, difference entropy) and 
run-length features(21,22) (SRE, LRE, GLN, RLN, RP, 
LGRE, HGRE, SRLGE, SRHGE, LRLGE, LRHGE). 
All these features are calculated for 0°, 45°, 90° and 
135° occurrence angles. It also calculates model-based 
features (fractal dimension(23) and Markov random 
fields)(24) and transform-based features (LH, HH and 
HL channels for two levels of Daubechies 4, coiflets 
3, symlets 2 and biortogonais 5.5 wavelets and a bank 

with six different Gabor filters(25)). These features 
are calculated for each MRI modality (T1, T1c and 
FLAIR), yielding a total of 477 features. 

The resulting feature set is large and may carry 
useless information that can degrade the segmentation 
process and increase computational time. Thus, a 
feature selection algorithm(26) is applied to select the 
most informative features. Only the ten most important 
features were taken into account. 

Segmentation
Brain MRI have a complex structure for which basic 
image processing segmentation techniques hardly 
produces good results. To improve performance 
more “clever” algorithms are needed for analyzing 
information derived from these images. 

We chose to use a machine learning technique 
called Support Vector Machine (SVM)(27) to classify 
pixels in either tumor or normal, based solely on the 
texture feature calculated in the previous stage. The 
SVM is a supervised learning method, meaning that 
the algorithm needs to be trained. Training takes 
place by presenting a set of manually labeled data (a 
pair (X,y), where X is the vector of texture features 
calculated over one pixel and y its respective class – 
1 for tumor and 0 for normal) to the classifier that 
“learns” from this set how a tumor/normal pixel 
should behave (mathematically speaking, the SVM 
calculates a separating hyperplane over the feature 
space and uses this information to classify unknown 
data). Segmentation per se is done by applying the 
trained classifier on the information calculated from 
each non-background pixel of the MRI images (the 
aforementioned texture features). This process results 
in a mask of the tumor area.

Post-processing
The classifier may assign wrong labels to some pixels, 
creating spurious connected regions in the segmented 
area and leading to an imperfect segmentation. 
To refine the final result, a morphological erosion 
operation is applied to segmented region obtained 
in the previous stage. This removes small lumps and 
smooths the result, creating a big connected region 
(mask) corresponding to the tumor area, but it might 
also create unwanted holes in the mask. Any existing 
hole inside this region is closed and morphological 
dilation is applied for further refinement. The final 
result is a smooth roundish mask corresponding to the 
tumor area.
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System development and result assessment
The pipeline used was developed in MATLAB 
(Mathworks, USA), which allowed faster system 
prototyping. The inhomogeneity correction in the 
preprocessing stage was done with the MIPAV tool(28). 
The system was tested with image sets from 11 patients 
(numbered from #1 to #11). Images were obtained 
from the PACS system in anonymized DICOM format 
at medical school of the Universidade de São Paulo 
(USP). Tests were conducted using tree adjacent slices 
from each modality (T1, T1c and FLAIR) of each 
patient. The patient set contained image examples 
of several tumor types. Patient details can be seen in 
table 1. 

(CR) defined as follow(29): FP is the set of false positive 
pixels. Higher percent match (PM) values indicate the 
existence of a greater number of true positive pixels 
inside the segmented area. The CR value assesses how 
far the segmentation is from the ground truth. The ideal 
CR value is 1, which indicates a PM between ground 
truth and segmentation. CR values closer to 1 indicates 
that the segmentation holds more true positives than 
false positives, while negative CR values indicates the 
existence of more false positives than true positives in 
the segmentation. 

Table 1. Patient information. Tumor types were histopathologically confirmed

Patient Gender Tumor type Age (years)

#1 Female Meningioma 36

#2 Female GBM 64

#3 Female Medulloblastoma 26

#4 Male GBM 63

#5 Female Meta-carcinoma 73

#6 Male Pnet 3

#7 Male Astrocytoma grade II 79

#8 Male GBM 63

#9 Male GBM 56

#10 Female Ependymoma 17

#11 Male Astrocytoma grade II 52

Table 2. Case indicates the patient number inside

Case
GT #1 GT #2 Mean

PM CR PM CR PM CR

#1 99.05 0.82 99.39 0.82 99.22 0.82

#2 88.66 0.75 89.40 0.78 89.03 0.76

#3 91.03 0.11 96.74 0.25 93.88 0.18

#4 99.93 -1.41 99.84 -1.33 99.89 -1.26

#5 99.34 -2.54 99.28 -1.38 99.31 -1.96

#6 99.91 0.71 99.44 0.72 99.67 0.72

#7 96.04 0.59 80.43 0.66 88.23 0.62

#8 99.76 0.80 99.54 0.80 99.65 0.79

#9 95.03 0.82 88.79 0.80 91.91 0.81

#10 98.58 -0.06 99.49 -0.83 99.03 -0.44

#11 58.57 -1.07 89.82 -1.94 74.20 -1.51

Total mean 94.00 -0.04

GT#1 and GT#2 indicates dado test with masks drawn by physician #1 and #2 respectively. PM stands for the percent-
age match measure and CR for the correspondence ratio.

Figure 2. Pre-processed T1c MRI slices of five different cases can be seen in the 
first row of the image. The second row displays their respective segmentation 
results before post-processing. The third row shows the final segmentation 
results and the last row shows the ground truth (green) drawn by physician #1 
on top of the original magnetic resonance imaging

RESULTS
Two experienced radiologists (here called GT#1 and 
GT#2) manually segmented the tumor masses in 
the MRI images used for testing. These masks were 
considered the ground truth and were used for assessing 
the system efficiency. The classifier was trained in the 
leave-one-out scheme, in which to each iteration a case 
was left out of the training phase, that was performed 
with the remaining data. This process was repeated 
until all cases were used. The ground truth masks were 
used in the SVM training process. The leave-one-out 
process was repeated twice by each physician. Some 
of the segmentation and results physician masks are 
illustrated in figure 2.	

The quantitative results were calculated using a 
measure of percentage match between ground truth 
and the segmentation result(29). Therefore, TP is the 
set of true positive pixels and GT is the set of ground 
truth pixels. The symbol #(.) stands for the number of 
elements in the set. We also used a correspondence ratio 
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Results of individual tests of each case can be 
seen in table 2. Our tests achieved 94% mean PM and 
-0.04 mean CR. The high PM value indicated good 
classification accuracy but the mean negative CR 
indicated the existence of overestimation of the tumor 
areas (greater number of false positives).

DISCUSSION 
This study aimed to design, implement and evaluate 
a system for brain tumor segmentation in clinical 
practice MRI. Our system was formulated as a pipeline 
composed of four main stages and texture information 
was in its core. Our results suggested that the proposed 
system is able to handle the complexity inherent to 
brain MRI.

The lack of a trustworthy ground truth was 
the main obstacle faced in this study. Only 
histopathological analysis can fully assess the borders 
of a tumor mass, especially for infiltrating types 
like the astrocytoma. Nevertheless, by the time we 
performed our investigation, there were no publicly 
available databases, which contained both MRI and 
histological information. Hence, we had to compare 
our segmentation results against masks manually 
drawn by experienced radiologists. Such problem 
may have introduced some uncertainty in our results, 
because it is impossible to make a true evaluation 
without knowledge about the real tumor borders. 

Nonetheless, our system did remarkably well, 
achieving 94% mean percent match between automatic 
segmented areas and ground truth. However, the 
negative mean CR value indicated the existence of 
overestimated tumor area. A look at the individual result 
showed that most of the cases had a good segmentation 
performance (high PM and high positive CR values) but 
four cases presented severe overestimation of the tumor 
area. Since we did not verify histologically the ground 
truth, we could not assert whether it was a imperfection 
in our system method or if the system actually captured 
invisible tissue differences in the tumor adjacencies. 

CONCLUSION
These results showed that the proposed system was able 
to locate and delimit tumor areas without requiring any 
user interaction. 
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