Acessibilidade / Reportar erro

Degradation of the homologues of linear alkylbenzene sulfonate by dispersed anaerobic sludge

ABSTRACT:

The anaerobic degradation of linear alquibenzene sulfonate (LAS) and its homologues was evaluated in batch experiment. Dispersed sludge was used to minimize the effect of adsorption. Initially, the highest concentration of LAS (substrate) and the lowest concentration of ethanol (co-substrate) were determined to maintain the microorganisms active; the results were 25 and 200 mg.L-1, respectively. Afterwards, a 90-day period experiment was conducted with one reactor with only the addition of ethanol (control) and the other (test reactor in triplicate) with both substrates and the previous concentrations found. The microorganisms showed exponential growth in the first 48 h for both reactors; LAS toxicity has not occurred in the test reactor during the first 4 days, during which ethanol was consumed. After that, the microorganisms decreased, indicating possible toxicity due to LAS or intermediates; a decrease or absence of volatile organic acids and methane production was also observed. Therefore, with dispersed sludge the largest removal was due to biodegradation, but with formation of intermediates other than acetate or methane, indicating inhibition of acidogenesis and methanogenesis. At the end, the removal was 35% by biodegradation and only 0.35% by adsorption to the biomass. The preferential order of the biodegradation for the homologues was from C13 to C12, C11 and C10; and the removal in relation to the initial mass of each was 49, 31, 24 and 17%, respectively. The same order occurred to adsorption, from the higher to the lower alkyl chain, with removal of 0.86, 0.32, 0.13 and 0.01%, respectively.

Keywords:
adsorption; aerobic and anaerobic biodegradation; homologues; inhibition; surfactant

Associação Brasileira de Engenharia Sanitária e Ambiental - ABES Av. Beira Mar, 216 - 13º Andar - Castelo, 20021-060 Rio de Janeiro - RJ - Brasil - Rio de Janeiro - RJ - Brazil
E-mail: esa@abes-dn.org.br