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Abstract

The Subcortical Maternal Complex (SCMC) is composed of maternally encoded proteins required for the early stages 
of embryo development. Here we aimed to investigate the expression profile of the genes that encode the individual 
members of the SCMC in human reproductive failures. To accomplish that, we selected three datasets in the Gene 
Expression Omnibus repository for differential gene expression (DGE) analysis, comprising human endometrial and 
placental tissues of patients with recurrent implantation failure (RIF) or recurrent pregnancy loss (RPL). The SCMC 
genes KHDC3L, NLRP2, NLRP4, NLRP5, OOEP, PADI6, TLE6, and ZBED3 were included in the DGE analysis, as 
well as CFL1 and CFL2 that connect the SCMC with the actin cytoskeleton. Additionally, differential co-expression 
analysis and systems biology analysis of gene-gene co-expression were performed for KHDC3L, NLRP5, OOEP, 
and TLE6, demonstrating gene pairs differentially correlated under the two conditions, and the co-expression with 
genes involved in immune response, cell cycle, DNA damage repair, embryo development, and male reproduction. 
Compared to control groups, NLRP5 demonstrated upregulation in the endometrium of RIF patients, and KHDC3L 
was upregulated in the fetal placental tissue of RPL patients, shedding light on the importance of considering SCMC 
genes in reproductive failures.
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Introduction
Infertility is the failure to establish a clinical pregnancy 

after 12 months of regular and unprotected sexual intercourse, 
affecting 8-12% of reproductive-aged couples worldwide 
(Vander Borght and Wyns, 2018). Many factors may lead to 
infertility, being manifested in different ways, according to 
the impact on the processes related to human reproduction, 
whether of maternal, paternal, and/or embryonic origin (Carson 
and Kallen, 2021). Fertilization failure, embryo arrest, and 
embryonic implantation failure are some of the reasons for 
the inability to initiate gestation. However, even once the 
pregnancy is achieved, its maintenance depends on the correct 
communication between maternal and embryonic tissues, and 

abnormalities during this period can lead to pregnancy losses 
(Ashary et al., 2018). 

Recurrent implantation failure (RIF) is the lack of 
implantation after the transfer of several embryos through 
assisted reproductive technologies (Franasiak et al., 2021), 
whilst recurrent pregnancy loss (RPL) is the failure of two 
or more clinically recognized pregnancies before 20-24 
weeks of gestation (Dimitriadis et al., 2020). However, there 
is no consensus on the definition of RIF and RPL, varying 
according to the published guidelines. Both conditions may 
be related with disturbances in the maternal immune system, 
genetics of the embryo, anatomic factors, hematologic factors, 
reproductive tract microbiome, and endocrine environment, 
as well as endometrial-embryo asynchrony (Dimitriadis et 
al., 2020; Franasiak et al., 2021). 

The processes involved in early embryo development 
are regulated and coordinated simultaneously to ensure the 
generation of a competent embryo capable of sustaining the 

https://orcid.org/0000-0001-5799-2272
https://orcid.org/0000-0002-7404-2911


Rockenbach et al.2

 

implantation process and the maintenance of pregnancy (Conti 
and Franciosi, 2018). During this critical period, specific 
patterns of gene expression are paramount for regulating 
cellular proliferation and differentiation, being pivotal for the 
correct embryo development (Shahbazi and Zernicka-Goetz, 
2018). In addition, proper gene expression in the maternal 
tissues during the time of implantation and pregnancy is 
also necessary for the changes that this period requires in 
the maternal reproductive environment (Ashary et al., 2018).

Before the embryo genome activation, the initial 
development relies almost entirely upon maternal-effect-genes, 
which have important roles during embryogenesis, such as in 
the elimination of maternal mRNAs and proteins, epigenetic 
remodeling in oocytes and early embryos, as well as embryo 
genome activation (Conti and Franciosi, 2018). Recently, a 
Subcortical Maternal Complex (SCMC), comprising proteins 
encoded by maternal effect genes, was identified in mice (Li 
et al., 2008a) and humans (Zhu et al., 2014), demonstrating 
fundamental roles in early embryogenesis. Four proteins 
compose the SCMC: KHDC3L, NLRP5, OOEP, and TLE6. 
However, the sum of the four proteins (~255 kDa) is smaller 
than the estimated molecular weight of the SCMC (~669-
2000 kDa), hypothesizing that other proteins may be part 
of the complex, such as the candidates NLRP2, NLRP4F, 
PADI6, and ZBED3 (Bebbere et al., 2021). In addition, it 
was demonstrated that the SCMC interacts with the actin 
cytoskeleton through Cofilin (CFL), regulating symmetric 
cell divisions of mouse zygotes (Yu et al., 2014). 

The SCMC appears to work as a maternal functional 
module regulating mammalian early embryogenesis (Lu et 
al., 2017), however, we hypothesized the individual members 
of the SCMC could have other roles in human reproduction 
in addition to embryonic development. Although the SCMC 
is confirmedly present only in oocytes and early embryos 
(Li et al., 2008b; Zhu et al., 2014), it is not settled whether 
the proteins of the SCMC could act as single molecules 
in other tissues, not being aggregated to form the multi-
protein complex. Literature reports based on the evaluation 
of conditions such as male fertility (Rockenbach et al., 2023), 
and imprinting disorders (Eggermann et al., 2021), have helped 
to instigate this hypothesis. However, not limited to tissue 
variability, we speculate whether the individual members of 
the SCMC could have roles in processes such as embryonic 
implantation and even in later steps, such as the maintenance 
of pregnancy. 

It is well-defined that pregnancy initiation and 
continuation are regulated by different molecular mechanisms 
that must be correctly orchestrated between maternal and 
embryofetal tissues (Ashary et al., 2018). Since the SCMC 
expression is pivotal for the embryonic genome activation 
and other initial steps of the pregnancy initiation (Lu et 
al., 2017), it is coherent to hypothesize that its inactivation 
might result in an implantation failure (IF). Nevertheless, 
literature is scarce in regard to the effects of the SCMC in 
the later gestational period. If the SCMC proteins, acting as 
a complex or as single molecules, have a role in placentation 
and endometrial receptivity, it is also feasible to suggest they 
might be implicated in the recurrent pregnancy loss (RPL) 
etiology. Therefore, we analyzed the gene expression profile 

of the SCMC genes, as well as CFL1 and CFL2 in endometrial 
and placental tissues of patients with RIF or RPL through 
publicly available transcriptomes.

Material and Methods

Gene expression analysis

The expression profile of the SCMC genes in RIF 
or RPL patients was evaluated through differential gene 
expression (DGE) and differential co-expression analyses of 
transcriptome data available in the Gene Expression Omnibus 
(GEO) repository (Edgar et al., 2002; Barrett et al., 2013). For 
each pathological condition (RIF or RPL), the comparisons 
were performed against a control group, considering for DGE 
analysis the gene expression of KHDC3L, NLRP5, OOEP, 
TLE6, CFL1, CFL2, NLRP2, NLRP4, PADI6, and ZBED3, 
and for differential co-expression analysis the expression of 
KHDC3L, NLRP5, OOEP, and TLE6. 

Obtention of transcriptome data

For datasets search in the GEO, the keywords 
“implantation failure”, “pregnancy loss”, “endometrium”, 
“placenta”, “chorionic villus”, and “decidua” were used, 
filtering by Entry type (Series), Organism (Homo sapiens), 
and study type (Expression Profile by Array or Expression 
Profile by Throughput Sequencing). Only studies performed in 
consolidated platforms, containing the raw data, experimental 
design, and well-described sample groups were included. 

Following these criteria, three studies were selected, 
covering endometrium samples of patients with RPL or RIF, 
as well as placental tissue (chorionic villus or decidua) of 
RPL patients: GSE26787 (Lédée et al., 2011), GSE121950 
(Huang et al., 2018), and GSE113790 (Yu et al., 2018). In 
the studies selected, the RPL definition was: having at least 
three pregnancy losses between 6 and 12 weeks of gestations 
(GSE26787) or two or more consecutive pregnancy losses 
before 20 weeks of gestations (GSE121950 and GSE113790). 
RIF was defined as the absence of pregnancy despite the transfer 
of at least ten embryos over several assisted reproductive cycles 
(GSE26787). The Control group for endometrial sample of 
patients with RIF or RPL was fertile patients (successfully 
delivered after the first or second attempt of IUI or IVF/ICSI 
related to a male infertility diagnosis). The Control group for 
chorionic villus or decidua sample of RPL patients consisted 
of women who underwent legal termination of an apparently 
normal early pregnancy, without medical reasons, history of 
pregnancy loss or any pregnancy complication. Additional 
information about the datasets is available in the supplementary 
material (Table S1). 

Differential gene expression analysis

The DGE analysis was conducted in the R environment 
(v.3.6.3). For the studies comprising RNA-Seq data, sequence 
alignment was performed through the Galaxy Europe server 
(Jalili et al., 2020), using the HISAT2 (Kim et al., 2019) 
alignment tool against the human reference genome hg38 
and transcript count was performed through featureCount 
tool (Liao et al., 2014). The parameters for RNA-Seq data 
alignment and transcript count were the default ones, and the 
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alignment rate was above 80% for all the samples analyzed. The 
DGE was calculated in the aligned transcriptomes using the 
edgeR (v.3.28.1) (Robinson et al., 2010) package. Considering 
microarray data, the packages affy (v.1.64.0) (Gautier et al., 
2004) and limma (v.3.42.2) (Ritchie et al., 2015) were used 
to evaluate the DGE. RNA-Seq data was normalized through 
the trimmed mean of M values (TMM) and microarray data 
by robust multi-array average (RMA). The DGE results are 
demonstrated as values of log2 fold-change (logFC) and 
adjusted P-value for false discovery rate (FDR), being the DGE 
considered statistically significant when identified a gene with 
both log2 fold-change (logFC) ≥ |1.0| and adjusted P-value 
≤ 0.05. The heatmaps were generated in the R environment 
through the ggplot package (v.3.3.5). 

Differential co-expression analysis

Additional to the DGE analysis, a differential co-
expression analysis was performed considering the basal 
gene expression of KHDC3L, NLRP5, OOEP, and TLE6 in 
control and RIF or RPL patients. Gene-gene co-expression was 
evaluated using Pearson’s correlation coefficient (Pearson’s r) 
through the diffcoexp package (v.3.17) in the R environment. 
According to Pearson’s r, a negative correlation coefficient 
means one gene is upregulated and the other is downregulated; 
hence, there is an inverse expression between gene pairs. In 

contrast, positive correlation coefficients mean both genes 
are upregulated or downregulated. Gene-pairs co-expression 
was considered moderately correlated when Pearson’s r was 
≥ |0.5| and highly correlated when Pearson’s r was ≥ |0.8|. In 
this study, Pearson’s r was calculated for control samples and 
then for fertility issues samples (RIF or RPL). The differential 
correlation between control vs. affected group was calculated 
through Fisher’s Z transformation method and P-Values < 0.05 
was set as significant. Due to the small number of gene-pairs 
evaluated, no adjustment in the P-Values were performed, 
but q-Values are presented in Table 1. Hence, gene-pairs 
were considered differentially co-expressed when there was 
a significantly different correlation coefficient under the two 
conditions. As in DGE, the heatmaps for the differential co-
expression analyses were generated in the R environment 
through the ggplot package.

Systems biology analysis

To better elucidate the roles of the SCMC genes in 
multifactorial conditions such as RIF and RPL, a systems 
biology approach was conducted for the four validated 
components of the SCMC: KHDC3L, NLRP5, OOEP, 
and TLE6. A co-expression network was assembled in the 
Cytoscape (v. 3.8) using the GeneMania application (Montojo 
et al., 2010), considering only the co-expressed genes filter. 

Table 1 – Statistical analysis for the differential co-expression results. Cor (Pearson’s correlation coefficient); diff (differences between control and cases); 
RPL (recurrent pregnancy loss); RIF (recurrent implantation failure); P-Values ≤ 0.05 were statistically significant.

RECURRENT IMPLANTATION FAILURE VS. CONTROL (ENDOMETRIUM)

Gene pairs cor.Control cor.RIF cor.diff p.Control p.RIF p.diffcor q.Control q.RIF q.diffcor

NLRP5 and 
KHDC3L -0.723796175 0.298373579 1.022169754 0.166844543 0.625813633 0.221214199 0.333689086 0.914828318 0.485936692

OOEP and 
KHDC3L 0.524053513 -0.066943717 -0.59099723 0.364696684 0.914828318 0.51636701 0.436785483 0.914828318 0.619640412

TLE6 and 
KHDC3L 0.560272726 0.233327983 -0.326944744 0.325951115 0.705635663 0.692455908 0.436785483 0.914828318 0.692455908

OOEP and 
NLRP5 -0.835869437 0.748757795 1.584627232 0.07782624 0.145340872 0.029448694 0.333689086 0.872045231 0.176692164

TLE6 and 
NLRP5 -0.459018994 0.413211003 0.872229998 0.436785483 0.489264214 0.349507554 0.436785483 0.914828318 0.524261331

TLE6 and 
OOEP 0.753369236 -0.184752233 -0.93812147 0.14146437 0.766111309 0.242968346 0.333689086 0.914828318 0.485936692

RECURRENT PREGNANCY LOSS VS. CONTROL (ENDOMETRIUM)

Gene pairs cor.Control cor.RPL cor.diff p.Control p.RPL p.diffcor q.Control q.RPL q.diffcor

NLRP5 and 
KHDC3L -0.768283904 0.152667252 0.920951156 0.129141389 0.806375766 0.242002513 0.468437608 0.909887142 0.889762906

OOEP and 
KHDC3L 0.585454653 -0.070833752 -0.656288404 0.299672502 0.909887142 0.45828449 0.599345004 0.909887142 0.889762906

TLE6 and 
KHDC3L 0.277811088 0.400221583 0.122410495 0.65088408 0.504373014 0.889762906 0.781060896 0.909887142 0.889762906

OOEP and 
NLRP5 -0.73609005 -0.184501747 0.551588303 0.156145869 0.766424755 0.450097613 0.468437608 0.909887142 0.889762906

TLE6 and 
NLRP5 0.098918468 -0.336636046 -0.435554514 0.874258793 0.579620628 0.653044484 0.874258793 0.909887142 0.889762906

TLE6 and 
OOEP 0.385077984 0.533510827 0.148432843 0.522105678 0.354476506 0.85006775 0.781060896 0.909887142 0.889762906
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RECURRENT PREGNANCY LOSS VS. CONTROL (CHORIONIC VILLUS)

Gene pairs cor.Control cor.RPL cor.diff p.Control p.RPL p.diffcor q.Control q.RPL q.diffcor

NLRP5 and 
KHDC3L 0.977945255 -0.913894241 -1.891839495 0.000724254 0.0108021 3.28E-06 0.002172762 0.017799721 9.83E-06

OOEP and 
KHDC3L 0.199428479 0.90968646 0.710257981 0.704823088 0.01186648 0.105011012 0.704823088 0.017799721 0.105011012

TLE6 and 
KHDC3L -0.942535195 0.972483894 1.915019089 0.004858426 0.001125287 1.82E-06 0.009716851 0.003375862 9.83E-06

OOEP and 
NLRP5 0.389749943 -0.997796689 -1.387546632 0.444977572 7.28E-06 0.000180062 0.533973086 4.37E-05 0.000360123

TLE6 and 
NLRP5 -0.988582995 -0.848216272 0.140366723 0.000194778 0.032809031 0.103260108 0.001168667 0.039370837 0.105011012

TLE6 and 
OOEP -0.514000802 0.829849741 1.343850543 0.296897486 0.040963646 0.031522489 0.44534623 0.040963646 0.047283734

RECURRENT PREGNANCY LOSS VS. CONTROL (DECIDUA)

Gene pairs cor.Control cor.RPL cor.diff p.Control p.RPL p.diffcor q.Control q.RPL q.diffcor

NLRP5 and 
KHDC3L 0.060448613 -0.951645102 -1.012093715 0.961493743 0.198783852 1 0.961493743 0.669530442 1

OOEP and 
KHDC3L 0.638595927 -0.836823504 -1.475419431 0.559031102 0.368820066 1 0.746032173 0.669530442 1

TLE6 and 
KHDC3L -0.860901692 0.764113321 1.625015013 0.339800266 0.446353628 1 0.746032173 0.669530442 1

OOEP and 
NLRP5 0.806737213 0.628175571 -0.178561642 0.402462641 0.567603918 1 0.746032173 0.681124702 1

TLE6 and 
NLRP5 -0.559881268 -0.925333648 -0.36545238 0.621693477 0.247569776 1 0.746032173 0.669530442 1

TLE6 and 
OOEP -0.941289345 -0.286263143 0.655026202 0.219230836 0.815173694 1 0.746032173 0.815173694 1

Table 1 – Cont.

Results
An upregulation of NLRP5 was observed in the 

endometrium of patients with RIF compared to the control 
group (logFC = 3.025; adjusted P-Value = 0.014). Although 
it was not statistically significant in the other three analyses, 

NLRP5 was upregulated in the four scenarios evaluated. 
Considering the placental tissue, an upregulation of KHDC3L 
was demonstrated in the chorionic villus of RPL patients 
when compared to the control group (logFC = 3.008; adjusted 
P-Value = 0.003) (Figure 1). 

Figure 1 – Heatmap of the Subcortical Maternal Complex differential gene expression in endometrial and placental tissues in human reproductive 
failures. RIF (recurrent implantation failure); RPL (recurrent pregnancy loss); N/A (not available); LogFC (Log2 Fold Change); * means statistically 
significant differences between groups (p ≤ 0.05).
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Interestingly, no statistically significantly altered genes 
were observed in the placental samples of maternal origin 
(decidua) (Adjusted P-Value > 0.05); however, some logFC 
were increased, demonstrating a differential expression might 
be present, but without statistical power to confirm it. The 
values of logFC and adjusted P-Values for all the SCMC 
genes analyzed are available in Table 2. 

Pearson’s r was calculated to evaluate the co-expression 
between gene-pairs, considering the four genes of the SCMC 
complex. It was observed that the gene expression correlation 
between KHDC3L, NLRP5, OOEP, and TLE6 is lost in 
the endometrium of RIF patients compared to the control 
group (Figure 2A), although it was not statistically different 
when applying Fisher’s-Z transformation. Except for TLE6 

Table 2 – Statistical analysis for the differential gene expression results. LogFC (log2 fold-change); FDR (false-discovery rate); NA (not available); the 
DGE was considered statistically significant when both logFC ≥ |1.0| and adjusted P-Value ≤ 0.05.

Study Comparison Genes logFC Adjusted P-value (FDR)

GSE26787

Recurrent implantation 
failure vs. Control 
(Endometrium)

CFL1 0.1026367 0.5229698

CFL2 -0.498079897867953 0.251416316493106

KHDC3L -0.001182168 0.9962905

NLRP2 0.681588601771906 0.681588755422925

NLRP4 0.009650816 0.9714375

NLRP5 3.02522473023772 0.0141471070182118

OOEP 0.111747 0.8106413

PADI6 NA NA

TLE6 0.02474961 0.9497394

ZBED3 0.379691270618091 0.559698817131491

Recurrent pregnancy loss 
vs. Control (Endometrium)

CFL1 0.0786863159624627 0.59939475537244

CFL2 -0.582603971710068 0.277270727132137

KHDC3L 0.0811707017617804 0.75759904538884

NLRP2 0.457898306429951 0.696673633291216

NLRP4 0.0259633183126278 0.918007451161419

NLRP5 2.34493710842825 0.251792093808216

OOEP 0.117712311568029 0.787288812071011

PADI6 NA NA

TLE6 -0.148942627713211 0.485773545319927

ZBED3 0.259967817024501 0.549032896179686

GSE121950
Recurrent pregnancy loss 
vs. Control (Chorionic 
villus)

CFL1 0.207979556312718 0.39350378872339

CFL2 0.211804830319393 0.704923759930941

KHDC3L 3.00853375453727 0.00293672701411503

NLRP2 -0.00893939223730675 1

NLRP4 -2.02451760996167 0.370388208966524

NLRP5 0.858074625612382 0.575326063792963

OOEP 0.646653028452488 0.542039977168646

PADI6 -3.35312117601586 0.160290137066962

TLE6 -0.71115056497841 0.249818659395077

ZBED3 -0.541428483402332 0.605711244872257

GSE113790 Recurrent pregnancy loss 
vs. Control (Decidua)

CFL1 0.122166824419392 1

CFL2 -1.03283267355495 0.442221956087787

KHDC3L 1.09732315067292 0.954460730152779

NLRP2 1.97492180673471 0.831821230943147

NLRP4 -0.999040419492552 0.986849232233079

NLRP5 1.08159364196709 0.789621847412384

OOEP 0.182337399040928 1

PADI6 2.03571376974121 0.831795991373028

TLE6 0.69944683541296 0.815358493093605

ZBED3 0.00907890935220243 1
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Figure 2 – Differential co-expression analysis for the four validated Subcortical Maternal Complex genes in the endometrium of control and RIF 
patients (A), endometrium of control and RPL patients (B), chorionic villus of control and RPL patients (C), and decidua of control and RPL patients 
(D). Positive correlations represented in green; negative correlations in pink; absence of correlation in white. RIF (recurrent implantation failure); RPL 
(recurrent pregnancy loss).

and NLRP5 (Pearson’s r < 0.5), all the other gene-pairs 
demonstrated a moderate or high correlation in the control 
group. However, in RIF patients these correlations were lost, 
except for OOEP and NLRP5, which significantly inverted 
the correlation pattern, from a high inverse correlation to 
a moderate positive correlation (Control = -0.84 vs. RIF = 
0.75, P-Value = 0.03). Considering the endometrium of RPL 
patients, no statistically significant differences in SCMC 
genes’ co-expression were observed (Figure 2B). 

Comparing the chorionic villus of RPL and control 
patients, it was observed a statistically significant different 
correlation between NLRP5 and KHDC3L (Control = 0.98 
vs. RPL = -0.91, P-Value = 3,28E-06), TLE6 and KHDC3L 
(Control = -0.94 vs. RPL = 0.97, P-Value = 1.82E-06), OOEP 
and NLRP5 (Control = 0.39 vs. RPL = -0.99, P-Value = 0.0002), 
and TLE6 and OOEP (Control = -0.51 vs. RPL = 0.83, Adjusted 
P-Value = 0.03) (Figure 2C). Interestingly, in the placental 
maternal tissue (decidua) it was not observed statistically 
significant differences in gene expression correlation between 
RPL and control patients (Figure 2D). The statistical analysis 
results for differential co-expression analysis are available 
in Table 1. 

Gene-gene co-expression analysis for KHDC3L, NLRP5, 
OOEP, and TLE6 was also evaluated through systems biology 
strategy. It was demonstrated the SCMC genes interact with 
genes related to DNA damage response and repair, embryo 
development, immune response, cell division, chromosome 
segregation, and male reproduction (Figure 3). The four 
SCMC genes were co-expressed with genes related to male 
reproduction, especially OOEP which was also co-expressed 
with genes located in the Y chromosome. Additionally, except 

for OOEP, all the other genes were co-expressed with genes 
associated with immune response, and only KHDC3L was 
co-expressed with a gene related to DNA damage repair. 

Discussion
Embryo implantation and maintenance of pregnancy 

depend on a competent blastocyst, receptive endometrium, 
and successful cross-talk between the embryonic and maternal 
interfaces (Ashary et al., 2018). Here we demonstrated, through 
publicly available data, altered SCMC gene expression and co-
expression patterns in RIF and RPL patients. Compared to the 
control groups, an upregulation of NLRP5 was demonstrated 
in the endometrium of patients with RIF, as well as an 
upregulation of KHDC3L in the chorionic villus of RPL 
patients. Additionally, we demonstrated that KHDC3L, NLRP5, 
OOEP, and TLE6 are being co-expressed with genes involved 
in processes required for proper embryo development and 
gestational maintenance, such as immune response, cell 
proliferation, and DNA damage repair. 

The SCMC exerts several functions during early embryo 
development, being required for embryo progression beyond 
the first cell divisions (Li et al., 2008a; Zhu et al., 2014). 
However, studies have demonstrated alterations in SCMC 
genes associated with later reproductive problems, such as 
recurrent hydatidiform mole (Ji et al., 2019), RPL (Zhang 
et al., 2019), and multilocus imprinting disorders (Docherty 
et al., 2015). Although the molecular mechanisms behind 
reproductive disorders and SCMC genes remain poorly 
understood, it is feasible to suggest that SCMC gene expression 
is important not only during early embryogenesis but also 
later in pregnancy. 



Human reproductive failures 7

 

During the implantation process, the receptive endo-
metrium is modified by embryonic signals accompanied by 
substantial morphological, molecular, and immunological 
changes required for proper embryo implantation and fur-
ther maintenance of pregnancy (Ashary et al., 2018). We 
demonstrated an upregulation of NLRP5, a member of the 
SCMC, in the endometrium of RIF patients in comparison 
to the control group, as well as NLRP5 co-expression with 
genes related to immunological processes. Early pregnancy 
modulates the expression of the NLR family in ovine lymph 
nodes (Zhao et al., 2022), evidencing a role for this protein 
family in maternal immune regulation during pregnancy. Con-
sidering NLR family of proteins have a role in the activation 
of pro-inflammatory cytokines (Platnich and Muruve, 2019) 
and embryo implantation is considered a pro-inflammatory 
reaction characterized by increased endometrial vascular 
permeability and trophoblast invasion (Kim and Kim, 2017), 
we postulate NLRP5 upregulation in endometrial cells may 
affect embryo implantation through altered immunological 
regulation. 

Gene variants in NLRP5, as well as in other genes 
of the SCMC, are associated with embryo arrest (Mu et 
al., 2019; Xu et al., 2020). Additionally to this phenotype, 

alterations in NLRP5 have been associated with multilocus 
imprinting disorders in humans, a disturbance of multiple 
imprinting locus across the genome affecting metabolism, 
growth, and behavior (Docherty et al., 2015; Sparago et al., 
2019). Epigenetic regulation of gene expression has a role in 
embryo implantation and gestational maintenance by regulating 
both embryo development and endometrial changes required 
for successful implantation (Munro et al., 2010; Xu et al., 
2021). Although the mechanisms behind methylation defects 
associated with mutations in NLRP5 remain to be elucidated, 
this gene could be involved in the epigenetic regulation of 
endometrial gene expression during embryo implantation. 
Therefore, we hypothesized that upregulation of NLRP5 
could be associated with epigenetic deregulation of genes 
important during the pro-inflammatory scenario necessary for 
the trophoblast invasion and embryo implantation, thereby 
affecting the activation of pro-inflammatory cytokines. 

However, after embryo implantation and establishment 
of pregnancy, its maintenance depends not only on proper 
embryo development but also on the correct maternal-embryo 
communication (Ashary et al., 2018). In this context, the 
correct formation of the placenta, an extraembryonic organ 
crucial for normal development and long-term health, is pivotal 

Figure 3 – Co-expression network for the four validated Subcortical Maternal Complex genes. A) KHDC3L co-expression network; B) NLRP5 co-
expression network; C) OOEP co-expression network; D) TLE6 co-expression network. Nodes of different colors means distinct biological functions 
and edges connecting nodes represent genes that are co-expressed. Pink: genes related to immune response; yellow: male reproduction; green: embryonic 
development; purple: cytoskeleton organization; orange: DNA damage response; brown: cell cycle and chromosome segregation; red: meiosis; blue: 
located in Y chromosome; grey: other functions.
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for gestational maintenance (Knöfler et al., 2019). Around 5-6 
days after fertilization, the blastocyst develops and segregates 
into two cellular subtypes: the trophectoderm, which will 
differentiate to form the embryonic placental tissue – chorionic 
villus -, and the inner cell mass giving rise to the embryo 
proper (Knöfler et al., 2019). After blastocyst implantation, 
placental development is initiated and trophectoderm-derived 
cells give rise to all trophoblast cell types of the future 
placenta (Woods et al., 2018). In addition to the fetal-derived 
cells, the placental development is also dependent on the 
maternal uterine tissue into which the blastocyst is embedded 
after implantation (Woods et al., 2018). The cells of the 
endometrium undergo decidualization, which is pivotal for 
supporting normal placentation and providing the proper 
environment for embryonic growth and survival (Woods et 
al., 2018). Interestingly, we demonstrated an upregulation 
of KHDC3L in the chorionic villus of patients with RPL in 
comparison to the control group. Although KHDC3L mRNAs 
are rarely detected in human morulae, the transcript’s level 
increases dramatically in the blastocyst, and like the other 
members of the SCMC, its location in the blastocyst stage is 
exclusive of the outer layer formed by the trophectoderm (Li 
et al., 2008b; Zhu et al., 2014). The specific localization of the 
SCMC during early embryo development could be associated 
with a role in lineage cell decisions during development and, 
in this context, KHDC3L could be related to the trophoblast 
cells proliferation and differentiation involved in placental 
development. 

In addition, variants in KHDC3L have been associated 
with hydatidiform moles, an abnormal pregnancy characterized 
by abnormal trophectoderm proliferation and abnormal or no 
embryo development (Ji et al., 2019; Demond et al., 2019). 
This evidence demonstrates a possible role of KHDC3L in 
the trophectoderm proliferation and differentiation, which 
further could affect the placental development. Indeed, failures 
in placental formation can compromise embryonic growth 
and development, and abnormal placentation is a feature of 
diverse pregnancy complications such as pregnancy loss, 
stillbirth, intrauterine growth restriction, and preeclampsia 
(Knöfler et al., 2019). KHDC3L variants have also been 
related to imprinting disturbance and genomic instability 
of early embryonic cells leading to reproductive failures, 
including RPL (Zhang et al., 2019). Indeed, KHDC3L has a 
role in safeguarding genome integrity through homologous 
DNA repair (Zhang et al., 2019) and stalled replication 
fork restart (Zhao et al., 2018). Therefore, we hypothesized 
that upregulation of KHDC3L in chorionic villus could be 
associated with altered epigenetic regulation of genes related 
to DNA repair mechanisms, thereby disturbing trophoblast 
cell proliferation and differentiation, influencing the proper 
placental development. 

Interestingly, considering KHDC3L, NLRP5, OOEP, 
and TLE6, it was observed that except for TLE6 and NLRP5, 
all the other gene-pairs demonstrated a moderate or high 
correlation in the endometrium of control group. However, 
in RIF patients these correlations were lost. Furthermore, 
OOEP and NLRP5 significantly inverted the correlation 
pattern, from a high negative correlation to a moderate positive 
correlation, which could be related to the upregulation of 
NLRP5 demonstrated in the DGE results. Alterations in gene 

expression correlation were also observed between the gene-
pairs NLRP5 and KHDC3L, TLE6 and KHDC3L, OOEP and 
NLRP5, and TLE6 and OOEP in the chorionic villus of RPL 
patients. Considering the role of gene expression patterns 
during embryo development, the disrupted gene-gene co-
expression demonstrated in RIF and RPL patients could 
influence the proper embryo implantation and gestational 
maintenance. Although we cannot confirm a causal association 
between RIF and RPL with altered co-expression patterns in 
the four validated SCMC genes, a transcriptional deregulation 
of these genes is present in these conditions and even if it is 
not associated with RIF and RPL, tertiary factors could be 
influencing this deregulation. 

Additional to the differential co-expression analysis 
performed for KHDC3L, NLRP5, OOEP, and TLE6, we 
evaluated the co-expression of the SCMC members with other 
genes. Interestingly, the co-expression network demonstrated 
that the four validated SCMC genes are co-expressed with 
genes related to male reproduction. Interestingly, a previous 
work of our group evidenced OOEP downregulation in 
patients with teratozoospermia or non-obstructive azoospermia 
(Rockenbach et al., 2023), evidencing possible new roles for 
the SCMC genes in both embryonic development and in female 
and male reproduction. Moreover, the results presented here 
shed light on a possible role of SCMC gene expression profile 
in later reproductive conditions, such as in post-implantation 
gestational events.

This study has some limitations, such as the lack of 
validation of the data analyzed and the absence of single-
cell transcriptome studies. Functional analysis needs to be 
performed to demonstrate the mechanisms behind the gene 
expression alterations of NLRP5 and KHDC3L in RIF and RPL 
patients, respectively, as well as in the altered co-expression 
patterns observed for these conditions. It is also important to 
highlight the biases of clinical differences between the datasets 
used in this study, such as the different definitions for RPL. 
However, the results presented here shed light on possible 
molecular mechanisms associated with reproductive failures 
and demonstrate the importance of considering the roles of 
the SCMC genes in different scenarios, as well as the role 
of gene expression profiles in the beginning of pregnancy. 
Besides, the co-expression network performed for KHDC3L, 
NLRP5, OOEP, and TLE6 demonstrated their co-expression 
with genes related to different biological processes involved 
in human reproduction, such as DNA damage response and 
repair, embryo development, immune response, cell division, 
chromosome segregation, and male reproduction. Therefore, 
although the SCMC is confirmedly present in oocytes and 
early embryos, the components of this complex may exert 
different reproductive roles in different scenarios and may be 
considered in future studies aiming to understand reproductive 
failures of both embryonic, maternal and/or paternal origin. 
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