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Abstract

The karyotype of the big-headed Amazon River turtle, Peltocephalus dumerilianus, is characterized based on a sam-
ple of seven juveniles from Reserva Biológica do Rio Trombetas, Pará State, Brazil (1°30’ S, 56°34’ W). Here we
present the first results on GTG and CBG-banding patterns, Ag-NOR staining and FISH, with telomeric and 45S
rDNA sequences as probes. A cytogenetic comparison with related Podocnemidae is also provided.
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The big-headed side-neck river turtle, Peltocephalus

dumerilianus (Schweigger, 1812), occurs in the Amazon

region and belongs to the superfamily Pelomedusoides (ap-

proximately 24 living species), which comprises the fami-

lies Pelomedusidae, with two living genera: Pelomedusa

and Pelusios represented by one, and at least 15 species, re-

spectively; and Podocnemididae, with three living genera:

the monotypic Erymnochelys and Peltocephalus, and

Podocnemis comprising six species (Ayres et al., 1969;

Vitt and Caldwell, 2009). In Podocnemididae cytogenetic

data are scarce and based mostly on conventional staining.

The Podocnemis and Erymnochelys species (P. erythro-

cephala, P. expansa, P. lewyana, P. sextuberculata, P.

unifilis, P. vogli and E. madagascariensis) present a diploid

number (2n) of 28, with a karyotype composed of five

macrochromosomes (M) and nine microchromosomes (m)

(Ayres et al., 1969; Huang and Fred Clark 1969; Rhodin et

al., 1978; Bull and Legler, 1980; Fantin and Monjeló, 2011;

Gunski et al., 2013). The exception is Peltocephalus

dumerilianus that presents 2n = 26 (FN = 52) with 4 M and

9 m, the lowest diploid number in Testudines (ranging from

2n = 26 to 2n = 96) (Ayres et al., 1969; Bull and Legler,

1980). The available cytogenetic data for this species report

a karyotype that is similar to those of other Podocne-

mididae, in which differentiated sex chromosomes are ab-

sent and a conspicuous secondary constriction is observed

on the proximal region of chromosome 1p (Ortiz et al.,

2005; Fantin and Monjeló, 2011).

Herein, based on a sample of seven juveniles from

Reserva Biológica do Rio Trombetas (1°30’ S, 56°34’ W),

Amazonian forest of Pará State, Brazil, the karyotype of P.

dumerillianus was characterized for the first time using

routine differential techniques, such as GTG, CBG-

banding and Ag-NOR staining (Seabright, 1971; Sumner,

1972; Howell and Black, 1980, with modifications) and

molecular tools employing FISH with telomeric and 45S

rDNA sequences as probes in metaphases obtained from in

vivo bone marrow preparations (Ford and Hamerton, 1956).

Briefly, FISH with telomeric probes was performed

using a Telomere PNA FISH Kit/FITC (K 5325, Dako) fol-

lowing the manufacturer’s protocol. The FISH procedures

for the 45S rDNA were followed the method adapted by

Cabral-de-Mello et al. (2010). The 45S rDNA probes were

biotinylated by nick-translation (Invitrogen, San Diego,

CA, USA) and detected with avidin-Cy3 (Life-Tech-

nologies). All slides were counterstained with DAPI di-

luted in Vectashield (Vector) and analyzed using a fluores-

cence microscope (Zeiss Axiophot) equipped with software

for image capture Isis karyotyping system, MetaSystems).

For all individuals, at least 20 metaphases were ana-

lyzed for determining the 2n = 26 and FN = 52 karyotype,

as described by Ayres et al., 1969, with a conspicuous sec-

ondary constriction on pair 1 (Figure 1A). GTG-banding

patterns allowed the identification and the pairing of all

chromosomes (Figure 1B). CBG-bands were tenuous at the

pericentromeric region of most pairs, except for pair 1
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which exhibited a large block of constitutive heterochro-

matin at the secondary constriction region. Ag-NOR stain-

ing also showed positive NORs at the same region on

chromosome 1p (Figure 1C). The FISH analysis showed

telomeric signals restricted to the ends of the chromosomes

(Figure 1D), and 45S rDNA sites were localized exclu-

sively at the secondary constriction region of pair 1 (Figu-

re 1E).

In Podocnemididae, the NOR-bearing pair was iden-

tified in three of the six living species of Podocnemis (P.

expansa, P. sextuberculata and P. vogli) (Ortiz et al., 2005;

Fantin and Monjeló, 2011) and the staining region corre-

sponds, as in Peltocephalus, to the secondary constriction

of chromosome 1, characterizing until now a conserved

condition for the family. On the other hand, CBG-banding

patterns are quite specific when compared to the chromo-

somes of Podocnemis vogli which present larger amount of

heterochromatin distributed at pericentromeric and intersti-

tial regions of the chromosomes, as described by Ortiz et al.

(2005). Both data suggest that despite the similar diploid

number, chromosomal morphology and the NOR-bearing

pair, the CBG-banding pattern allows to identify species-

specific karyotypes, revealing chromosomal differences

that accumulated during karyotype evolution. At present, a

more adequate interspecific chromosomal comparison is

not possible, as the differences in chromosomes condensa-

tion presented in the published data render unreliable the

establishment of similarities in banding patterns. Future

chromosomal comparisons using CBG and GTG-banding

patterns, as well as mapping of the 45S rDNA and telomeric

sites in other representatives, could be useful to identify the

rearrangements involved in karyotypic differentiation of

Podocnemididae.
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Figure 1 - Karyotype (A and B) and metaphases (C-E) of Peltocephalus

dumerilianus, 2n = 26 and FN = 52. (A) Conventional staining. Inset, pair

1 from other metaphase showing the conspicuous secondary constriction.

(B) GTG-banding pattern. (C) CBG-banding pattern. Note the conspicu-

ous C-positive bands on pair 1. Inset, pair 1 bearing positive Ag-NORs.

Scale bar = 10 �m. (D) FISH with telomeric probes. Positive signals

(green) are seen at the termini of all chromosomes. (E) Mapping of 45S

rDNA. Positive FISH signals (red) are at the secondary constriction region

of pair 1.
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