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Abstract

The Black Bridged Leaf Turtle, Cyclemys atripons (Testudines; Cryptodira; Geoemydidae), is a poorly known spe-
cies within the genus Cyclemys. We determined the complete nucleotide sequence of the Cyclemys atripons mito-
chondrial genome (mtDNA) and found it to be 16,500 base pairs (bp) in length, with the genome organization, gene
order and base composition being identical to that of the typical vertebrate. However, unlike for most turtle mtDNA so
far reported, an extra base was not found in the NADH3 gene. The C. atripons control region of mtDNA was 981 bp
long. Comparisons with three other geoemydids showed that the C. atripons control region contained a highly vari-
able region at the 3’ end composed of AT enriched tandem repeats containing a fifteen-unit 5’-A (AT)3-3’ variable
number of tandem repeats (VNTRs).
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Vertebrate mitochondrial (mt) DNA forms a dou-

ble-stranded circular molecule of about 15-20 kb which

generally contain 37 genes encoding 13 proteins, 22

tRNAs, 2 rRNAs and a major noncoding region bearing

signals for mitochondrial replication and transcription

(Wolstenholme, 1992). Due to its maternal inheritance and

relative lack of recombination, the mitochondrial genome

has been widely employed as a marker in vertebrate phylo-

genetic analyses, and have been often used in turtle science.

Turtles are easily recognizable by the public, with approxi-

mately 270 species in the world (Iverson, 1992) and have

been widely studied, with many earlier studies of mtDNA

having concentrated on polymorphism analysis using re-

striction fragment length polymorphism (RFLP) and deter-

mining partial sequences (Lamb et al., 1989; 1994).

However, the trend in more and more studies is to move to

direct sequencing of the complete mtDNA (Peng et al.,

2005, 2006; Parham et al., 2006). As of March 2007, com-

plete mitochondrial genomes have been released from Gen-

Bank for only 17 turtle species, including 16 cryptodiran

turtles and one side-necked turtle, which is far from being

sufficient for reliable turtle studies.

The Black Bridged Leaf Turtle, Cyclemys atripons

(Testudines; Cryptodira; Geoemydidae) is a poorly under-

stood cryptodiran turtle species within the genus Cyclemys

(Guicking et al., 2002). Previously, only the cytochrome b

(Cyt b) gene of C. atripons mtDNA has been published

(Spinks et al., 2004), clearly, further studies on this species

are necessary. In our study, described in this paper, we se-

quenced and characterized the complete mitochondrial ge-

nome of C. atripons, which has laid the foundation for the

further comparative analyses between C. atripons and other

turtles.

In 2005 a C. atripons specimen was obtained from the

suburbia of Longzhou city in the Chinese region of

Guangxi, after natural death frozen at -80 °C for preserva-

tion. Total DNA was extracted from the liver and muscle

tissue using the proteinase K method (Sambrook and Rus-

sell, 2001) and kept at -20 °C until needed for polymerase

chain reaction (PCR) amplification.

Based on partial sequences reported by Spinks et al.

(2004) and the similarity of mtDNA sequences of the

painted turtle (Chrysemys picta; GenBank NC_002073)

and Reeve’s Turtle (Chinemys reevesii; GenBank

AY676201) we designed 16 pairs of primers for PCR am-

plification (Table 1). The PCR was carried out in a total

volume of 25 µL containing 100 ng of sample genomic

DNA, 2.5 µL of 10×Buffer (TaKaRa, Japan), 2 µL of

2.5 mol L-1 of MgCl2 , 1.5 µL of each dNTP, 0.25 µL of

each primer (25 µmol L-1) and 1 unit of Taq DNA polymer-

ase (TaKaRa). The thermal cycles were 95 °C pre-dena-

turing for 2 min, followed by 35 cycles of 94 °C for 40 s,

51 °C to 58 °C for 45 s and 72 °C for 1 min, plus a final ex-

Genetics and Molecular Biology, 31, 3, 783-788 (2008)

Copyright © 2008, Sociedade Brasileira de Genética. Printed in Brazil

www.sbg.org.br

Send correspondence to Prof. Liu-wang Nie. Life Science College,
Anhui Normal University, 1 East Beijing Road, Wuhu, 241000,
Anhui, China. E-mail: lwnie@mail.ahnu.edu.cn.

Short Communication



tension at 72 °C for 10 min. The resultant PCR fragments

were first resolved on 1% (w/v) agarose gel (Promega,

USA). After electrophoreses, gels were stained with

ethidium bromide and bands were visualized under ultravi-

olet. Bands of intended size were excised and recovered

with Gel Extract Purification Kit (TaKaRa, Japan). The

cleaned PCR products were sequenced in both directions

on an ABI3730 automated sequencer (Invitrogen Biotech-

nology). The sequences obtained from each sequencing re-

action averaged 1000 bp in length and each segment

overlapped the next contig by roughly 150 bp. The whole

mtDNA genome sequence was read at least twice.

Sequence data were analyzed with the EditSeq

(DNASTAR) and ClustalX1.8 (Thompson et al., 1997)

programs. The locations of protein-coding, rRNA and

tRNA genes were identified by the tRNA Scan-SE1.21 and

SQUEIN v. 5.35 programs, which were also used for the

comparisons with the corresponding sequences from the

other turtles cited above. The analysis of the control region

sequence was carried out with the DNAsis and BioEdit pro-

grams. The resultant complete mitochondrial genome of C.

atripons (16,500 bp) was deposited in GenBank under ac-

cession number EF067858.

The structural organization (Table 2) and gene order

(Figure 1) of the complete C. atripons mitochondrial ge-

nome was identical that of other typical vertebrates, with

the genome containing the following: 13 protein-coding

genes, all of which except NADH6 being encoded on the

H-strand; 22 tRNA genes, 14 on the H-strand and 8 on the

L-strand; 2 rRNA genes, 12S and 16S, both on the H-

strand; and one control region. There were few, or small,

noncoding intergenic spacer nucleotides, with intervening

sequences of 8 bp between cytochrome c oxidase mito-

chondrial subunit II gene (COII) and tRNALys plus 13 bp

between NADH4 and tRNAHis (Table 2). We found that the

base composition of the major coding strand of C. atripons

mtDNA was A = 34.42%, G = 13.01%, C = 25.36% and

T = 27.20%, demonstrating the low G and high A+T bias

seen in most other turtles (Pu et al., 2005; Peng et al., 2005,

2006). We also found that in C. atripons mtDNA three pro-

tein genes (COIII, NADH6 and Cyt b) have an incomplete

stop codon such as T, while the cytochrome c oxidase mito-

chondrial subunit I gene (COI) has GTG instead of ATG as

a start codon. As in other vertebrate mitochondrial

genomes, we found three instances of reading frame over-

lap, 10 nucleotides for ATP8 and ATP6, 7 for NADH4L and

NADH4, and 5 for NADH5 and NADH6 (Table 2).

However, in C. atripons our analysis did not find the

extra base usually found at a specific position in NADH3 of

most other turtles (Mindell et al., 1998, 1999; Pu et al.,

2005; Parham et al., 2006). Such an insertion in the

NADH3 gene has been reported in most turtles with the ex-

ception of Pelodiscus sinensis and Kinosternon flavescens

(Peng et al., 2005; Pu et al., 2005; Parham et al., 2006). It is

generally thought the base could be related to a TAA stop

codon frameshift prematurely terminating protein transla-

tion if not corrected by RNA editing or other mechanisms

(Mindell et al., 1998, 1999). However, since the additional

base is apparently absent from C. atripons more studies are

needed to ascertain whether or not the extra base in NADH3

is a common characteristic of turtles or is specific to certain

species and genera.
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Table 1 - Polymerase chain reaction primers used in the determination of the complete mitochondrial genome of Cyclemys atripons.

Primer Primers (Y = C/T, R = A /g, W = A /T, M = A/C, H = A/C /T) Approximate product

length (bp)
Upper light strand (L) 5’→3’ sequence Upper heavy strand (H) 5’→3’ sequence

1 L1 = AAGCATGGCACTGAAGTTGC H1 = TTTCATCTTTCCTTGCGGTAC 1,116

2 L2 = AAAGCATTCAGCTTACACCTGA H2 = AAGTTCCACAGGGTCTTCTCG 1,065

3 L3 = TAATGCCTGCCCAGTGACA H3 = TGATTCCGAGGGTTACTTC 1,104

4 L4 = TCAGGGTGAGCTTCAAACTC H4 GTAGTTGGGTTTGGTTTARTCC 1,200

5 L5 = ACCTGACAAAAACTAGCCCCA H5 = ACTATTCCTGCTCAGGCHCCG 1,174

6 L6 = THTTCTCYACTAACCATAAAG H6 = AAATCYTGCTATGATGGCGAA 1,052

7 L7 = GCTATTCCCACAGGAGTAAAAG H7 = GCTATCCTGTTTAGCTTCTATAG 1,300

8 L8 = AAGTGGATGCARTCCCAGGACG H8 = GTTATTAGTAGTGCTGCTGYTGC 1,180

9 L9 = GCCTCTATCTACAAGAAAAC H9 = GAARAATCGAATTGAGAATGG 960

10 L10 = AGTACAAGTGACTTCCAATCA H10 = TTTGRTTWCCTCATCGTGTG 1,300

11 L11 = GAACCAACCTCACGAAAACG H11 = GCTGTTTTTACGGCTGTTTTTG 1,200

12 L12 = AGGATAGAAGTAATCCAGTGG H12 = TATCTTTCGRATGTCTTGTTC 1,000

13 L13 = CATACACGCMTTCTTYAAAGC H13 = CTAATAGTGATCCGAAGTTTCAT 1,300

14 L14 = AACCACCGTTGTATTCAACTA H14 = CAATCTTTGGTTTACAAGACC 1,124

15 L15 = AGCAGCCTCCATTCTWTATTT H15 = CAGTCTCATTGAGTYGGCAG 800

16 L16 = TTTTACTCTCCCGTGCCCA H16 = GTCACATTTTACGCCGATT 980



We found that the C. atripons mitochondrial genome

contained 22 tRNA genes, ranging in size from 66 nucleo-

tides to 76 nucleotides (Table 2), interspersed between the

rRNA and protein-coding genes, which is typical of the

mtDNAs of other vertebrates. Most of the tRNA genes

could be folded into the canonical cloverleaf secondary

structure, the exception being the tRNASer (AGY) gene which

lacks the dihydrouridine arm (D arm). The length of the C.

atripons 12S rRNA gene was 969 nucleotides and the 16S

rRNA gene was 1,601 nucleotides long, these genes, as in

other vertebrates, being separated by the tRNAVal gene and

positioned between the of tRNAPhe and tRNALeu (UUR) genes

(Table 2).

In the C. atripons mitochondrial DNA, we also found

that the light-strand replication origin (31 nucleotides) was

located between the tRNAAsn and tRNACys genes inside the

WANCY tRNA gene cluster (Figure 1). This region has

also been discovered in mtDNAs of all other cryptodiran

turtles investigated (Pu et al., 2005; Peng et al., 2006), con-

trasting with its apparent disappearance from Pelomedusa

subrufa (Zardoya and Meyer, 1998b). This C. atripons se-

quence may potentially fold into a stable stem-loop second-
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Figure 1 - Circular gene order of the mitochondrial genome of Cyclemys

atripons. NADH1-6, and NADH4L: subunits 1-6 and 4L of nicotinamide

adenine dinucleotide dehydrogenase; ATP6 and 8: subunits 6 and 8 of ade-

nine triphosphatase; COI-III: cytochrome c oxidase subunits 1-3; Cyt b:

cytochrome b; 12S and 16S: 12 and 16S rRNA; D-loop: Control region.

Each tRNA gene is identified by the single-letter amino acid code. OL rep-

resent the replication origin of L-strand.

Table 2 - Organization of the Cyclemys atripons mitochondrial genome (16,500 bp)*.

Gene/elements Position

from-to

Size

(bp)

Strand

(sense)

Codon 5’ intergenic

spacea

Start Stop

tRNAPhe 1-70 70 H 0

12S rRNA 71-1,035 965 H 0

tRNAVal 1,036-1,105 70 H 0

16S rRNA 1,106-2,701 1,596 H 0

tRNALeu (UUR) 2,702-2,777 76 H 0

NADH1 2,778-3,749 972 H ATG TAG -1

tRNAIle 3,749-3,818 70 H -1

tRNAGln 3,818-3,888 71 L -1

tRNAMet 3,888-3,956 69 H 0

NADH2 3,957-4,997 1,041 H ATG TAG -2

tRNATrp 4,996-5,071 76 H 1

tRNAAla 5,073-5,141 69 L 1

tRNAAsn 5,143-5,215 73 L 1

OL 5,217-5,246 30 - -3

tRNACys 5,244-5,309 66 L 0

tRNATyr 5,310-5,380 71 L 1

COI 5,382-6,929 1,548 H GTG AGG -9

tRNASer(UCN) 6,921-6,991 71 L 2

tRNAAsp 6,994-7,063 70 H 0

COII 7,064-7,750 687 H ATG TAG 8

tRNALys 7,759-7,831 73 H 1

ATP8 7,833-8,000 168 H ATG TAA -10

ATP6 7,991-8,674 684 H ATG TAA -1

COIII 8,674-9,457 784 H ATG T 0

tRNAGly 9,458-9,526 69 H 0



ary structure with a stem comprised of 10 bp and a loop of

10 bp. The secondary structures of the origin of light strand

replication (OL) for 19 cryptodiran turtles (Figure 2) shows

that the OL sequence nucleotides are rather conserved and

the secondary structures of these sequences are also similar

because 9 bp are identical in the stems, possibly a common

characteristic of cryptodiran turtles.

We found that the C. atripons D-loop control region

was 981 bp long, 69.52% A+T rich and flanked by tRNAPro

and tRNAPhe genes (Table 2). A comparison of the com-

plete control region sequences of four geoemydid turtles is

given in the online edition of this paper (Figure S1), Similar

to three other geoemydid turtles, three conserved sequence

blocks (CSBs) 1-3 (Walberg and Clayton, 1981) were identi-

fied in the C. atripons control region. The whole lengths of

four control region sequences ranged from 981 bp in C.

atripons to 1,379 bp in Cuora aurocapitata, mainly result-

ing from sequences positioned at the 3’ end. Interestingly, a

large number of AT enriched tandem repeats containing

variable number tandem repeats (VNTRs) were revealed at

the 3’ end (right domain) of the control regions. Further-

more, the composition and number of these tandem units

were different for the different species, with the C. atripons

VNTR being composed of fifteen 5’-A (AT) 3-3’ units (Fig-

ure S1).

The control region is usually considered to be the

most variable parts of mtDNAs in terms of nucleotide sub-

stitutions, short insertions/deletions and VNTRs dynamics.

However, these variations are not distributed randomly

across the whole region but occur in particular hyper-

variable sites and domains at the 5’ and 3’ ends (Su, 2005).

Previous studies of turtles utilizing control region se-

quences were primarily focused on the 5’ end adjacent to

tRNAPro and several regulatory motifs (Lamb et al., 1994;

Walker et al., 1997; Walker and Avise, 1998). However, at

present most work focuses on the 3’ end close to tRNAPhe,

especially tandemly repeated sequences, including VNTRs

(Serb et al., 2001). The length difference between mito-

chondrial genomes among species is caused mainly by the

divergent tandem repeats, which are thought to be gener-

ated by strand slippage and mispairing during replication

(Fumagalli et al., 1996).

Tandemly repeated control region DNA has been re-

ported from an ever-growing number of taxa. Zardoya and

Meyer (1998a) characterized six tandem repeats (contain-

ing VNTRs) in the 3’ domain of the P. subrufa control re-

gion and suggested that this sequence might be a potentially

informative molecular marker for population studies by its

unique localization in the maternally inherited mitochon-

drial molecule. What is remarkable is that the tandem re-

peats are present in the four geoemydid turtles discussed in

our present paper. The repeat consists of two different re-

peat cores, “ATTATATC” followed by “AT” in Pyxidea

mouhtii (DQ659152) than the one “A (AT) 3” in C.

atripons; in C. reevesii (AY676201) it is over ten

5’-ATATATC-3’ units succeeded by AT-rich repeat;

whereas in C. aurocapitata (AY874540) an approximately

490 bp AT-rich repeat is in the 3’ of the CR , with only a

few “G” nucleotides and no “C” nucleotide.

In the mitochondrial genomes of C. atripons and

other turtles, AT enriched tandem repeats (containing

VNTRs) reflect heteroplasmy, suggesting interspecies
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Table 2 (cont.)

Gene/elements Position

from-to

Size

(bp)

Strand

(sense)

Codon 5’ intergenic

spacea

Start Stop

NADH3 9,527-9,877 351 H ATG TAG -2

tRNAArg 9,876-9,945 70 H 0

NADH4L 9,946-10,245 300 H ATG TAA -7

NADH4 10,239-11,615 1,377 H ATG TAA 13

tRNAHis 11,629-11,698 70 H 0

tRNASer(AGY) 11,699-11,764 66 H -1

tRNALeu(CUN) 11,764-11,835 72 H 0

NADH5 11,836-13,641 1,806 H ATG TAA -5

NADH6 13,637-14,161 525 L ATG T 0

tRNAGlu 14,162-14,229 68 L 4

Cyt b 14,234-15,377 1,144 H ATG T 0

tRNAThr 15,378-15,449 72 H 1

tRNAPro 15,451-15,519 69 L 0

Control region 15,520-16,500 981 -

*NADH1-6 and NADH4L: NADH dehydrogenase subunits 1-6 and 4L; COI-III: cytochrome c oxidase subunits I-III; ATP6 and ATP8: ATPase subunit 6

and 8; Cyt b: cytochrome b. T: incomplete stop codon.
aNumbers correspond to the nucleotides separating adjacent genes. Negative numbers indicate overlapping nucleotides.



turtle genetic diversity. The occurrence of tandemly re-

peated mtDNA in the control region could be regarded as a

special molecular marker in turtle species researches.

However, to confirm this issue and the presence or ab-

sence of variation between specimens of the same species

(intraspecies polymorphism) more informative characters

need to be obtained from more turtle species and speci-

mens. Taken as a whole, our study highlights the need for

further work focusing on the 3’ domain of the mitochon-

drial control region.
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