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Abstract

Even though aluminum is the third most common element present in the earth’s crust, information regarding its toxic-
ity remains scarce. It is known that in certain cases, aluminum is neurotoxic, but its effect in other tissues is unknown.
The aim of this work was to analyze the genotoxic potential of aluminum sulfate in kidney tissue of the fish Rhamdia
quelen after trophic contamination for 60 days. Sixty four fish were subdivided into the following groups: negative
control, 5 mg, 50 mg and 500 mg of aluminum sulfate per kg of fish. Samples of the posterior kidney were taken and
prepared to obtain mitotic metaphase, as well as the comet assay. The three types of chromosomal abnormalities
(CA) found were categorized as chromatid breaks, decondensation of telomeric region, and early separation of sister
chromatids. The tests for CA showed that the 5 mg/kg and 50 mg/kg doses of aluminum sulfate had genotoxic poten-
tial. Under these treatments, early separation of the sister chromatids was observed more frequently and decon-
densation of the telomeric region tended to increase in frequency. We suggest that structural changes in the proteins
involved in DNA compaction may have led to the decondensation of the telomeric region, making the DNA suscepti-
ble to breaks. Moreover, early separation of the sister chromatids may have occurred due to changes in the mobility
of chromosomes or proteins that keep the sister chromatids together. The comet assay confirmed the genotoxicity of
aluminum sulfate in the kidney tissue of Rhamdia quelen at the three doses of exposure.
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Introduction

Aluminum is the third most common element in the
earth’s crust (Nayak, 2002) and can be found in small quan-
tities in several types of food (Koivistoinen, 1980). Small
amounts of aluminum are released from cooking utensils
and are dissolved in the food, particularly when the food is
acidic. Furthermore, aluminum compounds are often used
in water purification (Lione, 1983), as catalysts in the
chemical and paper industries, in the dyeing of textiles, and
in other applications (Ganrot, 1986). Despite the extensive
use of aluminum, the information related to its toxicity is
scarce (Lankoff et al., 2006).

The toxicity of metals, including aluminum, is an ex-
tremely complex matter (Guthrie and Perry, 1980; Hamond
and Beliles, 1980) that is related to at least three types of in-
fluences: blocking of functional groups that are essential to
the performance of a biomolecule, displacing other metals
found in the system, and changing the conformation of ac-
tive sites and the quaternary structures of proteins. In at

least some ways or under some environmental conditions,
many metals are capable of inducing tumors or interacting
with genetic materials (Costa et al., 1984; Kazantsis and
Lilly, 1986; Norseth, 1988; Woo et al., 1988).

The interaction of a xenobiotic with DNA can dam-
age the chromosomes, cause single- or double-stranded
breaks, form DNA adducts, or interfere with the mecha-
nisms involved in repairing these damages. Some of those
substances are called aneugenics because they cause
changes in the distribution of chromosomes during cell di-
vision, leading to numerous chromosomal changes. Some
others, called clastogenics, induce breaks and changes in
the chromosome structure. For both of these types, it is pos-
sible to assess the effects of a certain compound through
genotoxicity tests (Rabello-Gay et al., 1991).

The formation of chromosomal abnormalities (CA) is
a complex cellular process that is not fully understood, nei-
ther at the molecular genetic level nor at the ultrastructural
level (Palitti, 1998), despite the fact that CAs are micro-
scopically visible and represent part of a wide range of
DNA alterations caused by different mechanisms (Obe et

al., 2002). In fish, the hematopoietic tissue found in the kid-
ney is customarily used to obtain mitotic chromosomes
(Bertollo et al., 1978) and also to assess chromosomal ab-
normalities when evaluating genotoxicity (Ale et al., 2004;
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Cestari et al., 2004; Ferraro et al., 2004; Ramsdorf et al.,
2009a).

The comet assay is a fast, sensitive and relatively in-
expensive testing tool for the genotoxic potential of chemi-
cal substances (Provost et al., 1993; Singh and Stephens,
1997; Belpaeme et al., 1998). In fish, the blood, liver,
branchial and renal tissues have been evaluated for geno-
toxicity using the comet assay (Balpaeme et al., 1998;
Ferraro et al., 2004; Ramsdorf et al., 2009, 2012; Ghisi et

al., 2011; Benincá et al., 2012; Vicari et al., 2012).

The use of fish as bioindicators allows for the early
detection of pollutants in the environment (Frenzilli et al.,
2004; Domingos et al., 2009; Katsumiti et al., 2009; Benin-
cá et al., 2012). Fish present several advantages in ecotoxi-
cological studies because they comprise the most diverse
group of vertebrates and have a high ecological relevance
when exposed to toxic substances. Moreover, fish may
present similar results to other vertebrates, humans in-
cluded (Al-Sabti and Metcalfe, 1995), and are also useful as
human food sources (De Camargo and Pouey, 2005; FAO,
2010). The fish species Rhamdia quelen (Jundiá) has been
used by several researchers as an efficient model for testing
the genotoxicity of several classes of xenobiotics (Ghisi et

al., 2011; Pamplona et al., 2011). Furthermore, this species
is extremely useful and of economic interest in pisciculture
in Brazil (Marchioro and Baldisserotto, 1999; Piaia and
Baldisseroto, 2000).

The main objective of this study was to evaluate the
genotoxic potential of aluminum sulfate in the kidney tis-
sue of Rhamdia quelen through subchronic trophic contam-
ination. This method of exposure is considered a realistic
model for assessing the effects of xenobiotic contamination
of predatory and omnivorous species (Cestari et al., 2004).

Material and Methods

Animal maintenance and tissue sampling

Rhamdia quelen specimens were obtained from fish-
eries without any record of contamination and were divided
into four groups of 16 fish each (n = 64). The fish were ac-
climated for approximately 30 days in 250-liter tanks and
were later divided into pairs that were kept in 18-liter
aquariums for ease of individual feeding. The fish were
kept at a temperature of 28°-29° with constant aeration and
controlled luminosity (12 h light and 12 h dark). At first, the
fish were conditioned for 20 days with single, individual
doses of food prepared in blisters using commercial crumb
feed and unflavored gelatin (Dr. Oetker). To induce con-
tamination, 5 mg, 50 mg and 500 mg of aluminum sulfate
were added to the feed according to the weights of the fish.
The fish were fed every three days for 60 days, receiving a
total of 20 doses of the does corresponding to each treat-
ment group. The negative control group received only the
feed with gelatin in the same way as the groups receiving

contaminated feed and the experiments for each group were
conducted at the same time.

For tissue sampling, each specimen was anesthetized
with 150 mg of benzocaine per L of water (Gontijo et al.,
2003), and weighed before and after the bioassays. Further-
more, the fish were measured and sexed. Then, an incision
was made from the urogenital pore to the pectoral fin and
two 3 mm3 piece of the posterior kidney were obtained us-
ing tweezers. One was immediately placed in a Petri dish
containing 5 mL of culture medium (RPMI solution with
20% of fetal bovine serum and 0.1% of antibiotic-anti-
mycotic) for assessing mitotic metaphases. The second was
placed into a microtube filled with 1 mL of fetal bovine se-
rum, which had been kept in ice and in the absence of light,
for applying the comet assay technique.

Tests of chromosomal abnormalities

Metaphases were obtained according to the indirect
method described by Fenocchio et al. (1991), with some
changes as explained here. An approximately 3 mm3 piece
of the posterior kidney was taken and placed in a Petri dish
with 5 mL of culture medium (10.40 g/L RPMI medium
1640, 0.1% of penicillin/streptomycin and the antimycotic
Cultilab, and 20% fetal bovine serum, at pH 7.4). The tissue
portion was teased apart with tweezers and a glass syringe
without a needle to obtain a cell suspension, which was then
transferred to tissue culture flasks. The samples were incu-
bated at 29 °C for six hours. Next, 34 �L of colchicine
(0.025%) was added to the culture and the samples were in-
cubated for 45 min at 29 °C. The samples were made
hypotonic by adding KCl (0.075 M) for 45 min before fix-
ing with a 3:1 methanol/acetic acid solution. Two to three
drops of the sample were dropped onto a histological slide
that was pre-heated at 54 °C. The slides were air dried and
then stained with Giemsa (5% diluted in phosphate buffer,
pH 6.8), for 10 min. For each sample, 50 metaphases were
analyzed and the chromosomes were visually inspected for
possible chromosomal abnormalities.

The comet assay technique was previously described
by Speit and Hartmann (1995) and modified by Ramsdorf
et al. (2009a). The kidney tissue was homogenized at
1500 rpm (homogenizer Potter type) in fetal bovine serum
to obtain a cell suspension. Fetal bovine serum is the most
appropriate solution for maintaining cell viability for up to
48 h (Ramsdorf et al., 2009b). Moreover, this type of tissue
homogenization has been successfully used in several stud-
ies (Ramsdorf et al., 2009, 2012; Ghisi et al., 2011; Benin-
cá et al., 2012; Vicari et al., 2012). 40 �L of the cell suspen-
sion were mixed with 120 �L of a low melting point (LMP)
agarose, and the samples were placed on slides previously
covered with a normal agarose layer. The slides were sub-
merged in a lysis solution [Lysis stock solution: NaCl
(2.5 M), EDTA (100 mM), Tris (10 mM), NaOH (0.8%),
N-lauryl-sarcocinate (1%); Lysis reaction solution: Triton
X100 (1%), DMSO (10%), Lysis stock (89%)] for 72 h at
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4 °C. Subsequently, the slides were immersed in an alkaline
buffer [NaOH (10 N) and EDTA (200 mM), pH 13], for
25 min to induce DNA denaturation. The samples were
then submitted to electrophoresis at 300 mA per V/cm for
25 min. The reaction was neutralized using Tris-HCl
(0.4 M, pH 7.5, 4 °C) and the samples were fixed in abso-
lute ethanol for 10 min. The slides were stained with
2 �g/mL of ethidium bromide. One hundred nucleoids of
each slide were visually categorized using a Leica epi-
fluorescence microscope according to damage rating from
0 (no apparent damage) to 4 (maximum damage) (Collins et

al., 1997). The scores were calculated by multiplying the
number of nucleoids found in each category and adding the
resultant values.

Statistical analysis

The Kruskal-Wallis non-parametrical test was used
with the Student-Newman-Keuls post-hoc test. Values of
p < 0.05 were considered to be significant.

Ethical issues

The experiments conducted in this study were ap-
proved by the Ethics Committee for Animal Experimenta-
tion (CEEA) of the Federal University of Paraná Protocol
#23075.053046/2010-33.

Results

From the 64 specimens of Rhamdia quelen used in the
bioassay, only 44 (11 specimens from each group) pre-
sented mitotic metaphases of sufficient quality for analysis.
They showed structural type chromosomal abnormalities
(CA) that were categorized as chromatid breaks, DNA
decondensation, and early separation of sister chromatids
(Figure 1). Abnormal chromosome numbers were not
found in any of the groups.

A total of 1,966 metaphases were analyzed, which in-
cluded 561 in the negative control group, 531 in the
5 mg/kg group, 470 in the 50 mg/kg group and 404 in the
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Figure 1 - Mitotic chromosomes of Rhamdia quelen (2N = 58) submitted to contamination with aluminum sulfate. (a) Metaphase of a specimen from the
negative control group without chromosomal abnormalities. (b-d) Metaphases of specimens subjected to 5 mg/kg (b), 50 mg/kg (c) and 500 mg/kg (d).
Letter “B” indicates chromatid breaks, “D” indicates decondensation, and “S” the early separation of sister chromatids. Scale bar: 5 �m.



500 mg/kg group. The total frequency of CAs was signifi-
cantly higher in the groups contaminated with 5 mg/kg
(p = 0.0154) and 50 mg/kg (p = 0.0245) of aluminum sul-
fate compared to the negative control group. The frequen-
cies of CAs were similar in the 500 mg/kg group and the
negative control (p > 0.05) (Figure 2).

With regard to the types of CAs found in each treat-
ment, the negative control group showed a higher fre-
quency of chromatid breaks and decondensation relative to
the early separation of sister chromatids (p = 0.0055,
p < 0.0001, respectively) (Figure 3A). In the group contam-
inated with 5 mg/kg of aluminum sulfate, the frequency of
decondensation was significantly higher than the frequency
of either chromatid breaks or separations (p = 0.0206,
p = 0.0023, respectively) (Figure 3B). The group contami-
nated with 50 mg/kg showed differences between the fre-
quencies of decondensation and chromatid separation
(p = 0.0014) (Figure 3C). There was no difference among
the types of CA in the group contaminated with 500 mg/kg
(p > 0.05).

The analysis of each type of CA showed that, relative
to the control group, only the early separation of sister
chromatids was significantly higher in the groups treated
with 5 mg/kg and 50 mg/kg aluminum sulfate (p = 0.0099,
p = 0.0329, respectively) (Figure 4A). However, the groups
contaminated with 5 mg/kg and 50 mg/kg tended to present
differences in the decondensation frequency (p = 0.0570)
(Figure 4B).

The comet assay showed significantly higher damage
scores in the groups treated with 5 mg/kg, 50 mg/kg and
500 mg/kg compared to the negative control group
(p = 0.001, p < 0.0001, p < 0.0001, respectively). This find-
ing confirms how sensible and easy it is to obtain the results
through this genotoxic technique when compared to the CA
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Figure 2 - Comparison of the total frequency of chromosomal abnormali-
ties (CA) between the treatments. The box and whisker plots show the me-
dian and the first and third quartiles. Different letters indicate statistically
significant differences (p < 0.05).

Figure 3 - Comparison of the frequency of the types of chromosomal ab-
normalities (CA). (A) Negative control group; (B) group contaminated
with 5 mg/kg of aluminum sulfate; and (C) group contaminated with
50 mg/kg. The box and whisker plots show the median and the first and
third quartiles. Different letters indicate statistically significant differ-
ences (p < 0.05). Types of CA: B = breaks; D = decondensation; S = early
separation of the sister chromatids.



technique. Nonetheless, no dose-response relationship was
observed because the comet assay showed no increase in
the amount of DNA damage with increasing doses (Figu-
re 5).

Discussion

There is prior evidence that aluminum leads to chro-
mosomal abnormalities, micronuclei and the exchange of
sister chromatids in human lymphocytes (Roy et al., 1990;
Migliore et al., 1999; Banasik et al., 2005), and contamina-
tion by aluminum and fluoride has been shown to cause
telomeric damage in cultured human lymphocytes. Dam-
age in the telomeric region caused by toxic compounds
leads to chromosomal instability, resulting in cell death as a
consequence (Patel et al., 2009).

In fish, different CA types have been described fol-
lowing exposure to metal contaminants, such as lead and
tributyltin (Cestari et al., 2004; Ferraro et al., 2004., Ale et

al., 2004; Ramsdorf et al., 2009a), leading us to suggest
that the decondensation of the telomeric regions of the
chromosomes may have occurred due to structural modifi-
cations to the proteins involved in DNA compaction, thus
making the DNA more susceptible to breaks. This may
have also caused the chromatid breaks. Telomeric decon-
densation and chromatid breaks have been described for
contaminations with lead in trophic bioassays conducted
for 60 days in the fish species Hoplias malabaricus

(Erythrinidae) (Ferraro et al., 2004; Cestari et al., 2004).
The centromere is a region of the chromosome with com-
pact heterochromatin, in which the histones are responsible
for the compaction process (Hagele, 1977; Michailova et

al., 1997). In the species Chironomus riparius (Diptera,
Chironomidae), decondensation of the centromeric region
observed in response to to aluminum contamination was at-
tributed to the inhibition of histone synthesis (Michailova
et al., 2003).

The early separation of sister chromatids observed in
this work may have occurred due to changes to the proteins
that keep the sister chromatids in cohesion, or that facilitate
the mobility of the chromosomes. Using yeast, Michaelis et

al. (1997) showed that cohesins are responsible for the co-
hesion of sister chromatids during the cell cycle. In cells
containing mutant forms of the proteins SCC1, SCC2,
SMC1 and SMC3, the sister chromatids undergo an early
separation. The SCC1 protein connects to the chromosome
in the final stage of the G1 phase and remains connected to
the sister chromatids until metaphase. Moreover, other re-
ports have shown that aluminum affects chromosomal mo-
bility during the cell division process (Lukiw and
Mclachlan, 1995).
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Figure 4 - Effect of the aluminium sulfate concentrations on sister chromatid separation and chromatin decondensation. (A) Comparison of the frequency
of the early separation of the sister chromatids across the treatments. (B) Comparison of the frequency of the decondensation across the treatments. The
box and whisker plots show the median and the first and third quartiles. Different letters indicate statistically significant differences (p < 0.05).

Figure 5 - Comparison of the DNA damage scores (comet assay) in the
kidney tissue cells between the treatments. The box and whisker plots
show the median and the first and third quartiles. Different letters indicate
statistically significant differences (p < 0.05).



Several studies discussed by Durante et al. (2013)
have shown that chromosomal abnormalities, such as chro-
matid breaks, chromosomal breaks or rearrangements, are
caused by failures in the repair system when there is a dou-
ble-stranded break in the DNA. Nonetheless, the exact
mechanisms are not yet clear.

The comet assay showed the genotoxicity of alumi-
num, even though the damage detected may have been sub-
jected to DNA repair mechanisms. Aluminum toxicity has
been studied in the mononuclear leukocytes of people who
used aluminum utensils on a daily basis to cook or store
food. In that study, high levels of DNA damage were re-
lated to the generation of oxidative stress (Celik et al.,
2012). In another study, the comet assay was used to check
the genotoxic potential of aluminum in the fish Prochilodus

lineatus contaminated by acute, subchronic exposure in
water. An increase in the DNA damage in erythrocytes was
observed after 6 h and 96 h of exposure, whereas there were
no differences relative to the negative control after 24 h and
15 days. These results indicated that the DNA underwent a
damage repair process (Galindo et al., 2010).

In the present work, the comet assay was used to con-
firm the genotoxic effects observed in the CA test.
Ramsdorf et al. (2009a) used the comet assay to verify the
DNA damage seen in Hoplias malabaricus subjected to in-
organic lead contamination by intraperitoneal injection.
Benincá et al. (2012) also demonstrated DNA damage in
this tissue by monitoring the Santa Marta and Camacho
Lakes (Santa Catarina Coast-Southern of Brazil). It is
known that the comet assay can detect DNA damage, in-
cluding both single- and double-stranded breaks, in indi-
vidual cells (Singh et al., 1988; Fairbairn et al., 1995;
Sazaki et al., 1999). This property makes it a very useful as-
say for several tissues. In line with observations from other
genotoxicity studies (Ghisi et al., 2011; Pamplona et al.,
2011), we could confirm this in the present study, showing
that Rhamdia quelen appears to be a good test organism for
genotoxicity assays.

In conclusion, we demonstrated that aluminum sul-
fate was genotoxic in the kidney tissue cells of Rhamdia

quelen. The test for chromosomal abnormalities showed
clastogenic effects, whereas the comet assay confirmed the
genotoxic potential of aluminum sulfate. Even at very low
doses, the comet assay was highly effective at showing
DNA damage, and the CA test was shown to be an efficient
biomarker in sub-chronic bioassays. In our future works,
we will evaluate the damage to other tissues of Rhamdia

quelen and Hoplias intermedius subjected to trophic alumi-
num sulfate contamination. Also, additional studies must
be conducted to investigate the mechanisms that cause the
chromosomal abnormalities.
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