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INTRODUCTION

The evaluation of genotypes in crosses is a com-
mon practice in plant breeding. In maize (Zea mays L.),
after Jones (1918) suggested the use of double crosses for
commercial use, the evaluation of the genetic potential of
inbred lines to be used in hybrids was based on all pos-
sible combinations among them (Hallauer and Miranda
Filho, 1995). The use of the top-cross procedure (Davis,
1927; Jenkins and Brunson, 1932) allowed the evaluation
of a greater number of lines in crosses with a common
tester. Sprague and Tatum (1942) introduced the concept
of general combining ability (GCA) and specific combin-
ing ability (SCA) when genotypes are crossed in all pos-
sible combinations (diallel cross). In this sense, the top-
cross procedure allows the estimation of combining abil-
ity with the tester, but no information is provided on SCA
for specific crosses among the set of lines (genotypes). In
addition, the combining ability effect of a line is not a prop-
erty of the line alone but rather depends on the set of lines
to which it has been crossed (Kempthorne and Curnow,
1961). Therefore, the general combining ability of a line
in a diallel mating scheme should not be necessarily the
same as its combining ability in a cross with a common
tester (top-cross).

The diallel mating scheme is still used in plant
breeding and several methodologies are available (Singh

and Chaudhary, 1979). Griffing (1956) provided four meth-
ods, specified according to the nature of entries in the di-
allel table, under two models (fixed and random) for the
analysis of variance and estimation of GCA and SCA in
diallel tables. The constraint of the diallel scheme is the
number of crosses for a given set of genotypes, i.e., for n
lines there will be n(n - 1)/2 crosses. Therefore, the com-
plete diallel cross is feasible only for a relatively small num-
ber of genotypes or lines.

Kempthorne and Curnow (1961) suggested the par-
tial diallel cross to allow the evaluation of a greater num-
ber of inbred lines in crosses. According to this proce-
dure, each of the n lines in the set are crossed with s other
lines of the same set, instead of (n - 1) lines as in the com-
plete diallel. Thus, there will be ns/2 crosses in the whole
set, where s ≥ 2. It is clear that n and s cannot both be odd.
Crosses are made in such a way that all lines are involved
in the sample of crosses. Sampling of lines is based on a
reference number, k = (n + 1 - s)/2, so that the crosses are:
[1 x (k + 1)], [1 x (k + 2)], ..., [1 x (k + s)]; [2 x (k + 2], [2
x (k + 3)], ..., [2 x (k + s + 1)], and so on. The lines are
numbered at random.

In the partial diallel table, the model for the mean
(over r replications) of the cross between lines i and i’ is
Yii’

 
= m + gi + gi’  + sii’

 
+ eii’ , where m is the the overall

mean, gi is the GCA effect, sii’  is the SCA effect and eii’
 
is

the error of the cross mean.
The partial diallel cross, as proposed by Kempthorne

and Curnow (1961), assumes a random sample of lines
(genotypes) from one population. In addition to the estima-
tion of general and specific combining ability, the partial
diallel cross analysis of variance permits the estimation of
variance components at the intrapopulation level.
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The partial circulant diallel cross mating scheme of Kempthorne and Curnow (Biometrics 17: 229-250, 1961) was adapted for the
evaluation of genotypes in crosses at the interpopulation level. Considering a random sample of n lines from base population I,
and that each line is crossed with s lines from opposite population II, there will be ns sampled crosses that are evaluated
experimentally. The means of the ns sampled crosses and the remaining n(n - s) crosses can be predicted by the reduced model
Yij

 
= m + gi

 
+ gj, where Yij is the mean of the cross between line i (i = 1,2,...,n) of population I and line j (j = 1’,2’,...,n’) of population

II; µ is the general mean, and gi and gj refer to general combining ability effects of lines from populations I and II, respectively.
Specific combining ability (sij) is estimated by the difference (sij = Yij - m - gi

 
- gj). The sequence of crosses for each line (i) is [i x j],

[i x (j + 1)], [i x (j + 2)], ..., [i x (j + s -1)], starting with i = j = 1 for convenience. Any j + s -1 > n is reduced by subtracting n. A
prediction procedure is suggested by changing gi and gj by the contrasts τi = Yi. - Y.. and τj = Y.j - Y..; the correlation coefficient (r)
was used to compare the efficiency of g’s and τ’s for selection of lines and crosses. The analysis of variance is performed with the
complete model Yij

 
= µ + gi

 
+ gj + sij

 
+ eij, and the sum of squares due to general combining ability is considered for each population

separately. An alternative analysis of variance is proposed for estimation of the variance components at the interpopulation level.
An analysis of ear length of maize in a partial diallel cross with n = 10 and s = 3 was used for illustration. For the 30 interpopulation
crosses analyzed the coefficient of determination (R2), involving observed and estimated hybrid means, was high for the reduced
(g) model [R2 (Yij, Yij) = 0.960] and smaller for the simplified (τ) model [R2 (Yij, Yij) = 0.889]. Results indicated that the proposed
procedure may furnish reliable estimates of means of hybrids not available in the partial diallel.
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In modern maize breeding, it is a common proce-
dure to cross lines from two sources (populations) in an
attempt to maximize the genetic effects, including hetero-
sis, in the hybrid cross (Hallauer and Miranda Filho, 1995).
Therefore, for n lines from each source there would be n²
possible crosses; although n² is smaller than 2n(2n - 1)/2
(all possible crosses among 2n lines), there is still a large
number of crosses when 2n is large. Such a scheme should
be useful for evaluation of crosses between two fixed sets
of lines or varieties (Geraldi and Miranda Filho, 1988) but
the method is not feasible for a greater number (e.g., n =
100) of lines from each source. In the present study we
propose an adaptation of the circulant partial diallel cross
of Kempthorne and Curnow (1961) for the evaluation of
inbred lines in crosses at the interpopulation level.

MATERIAL AND METHODS

We consider two sets of n lines or genotypes, rep-
resenting two groups or populations (I and II). The lines
must be random samples of the respective populations of
lines and the crosses are arranged in such a way that all
lines enter in the cross schedule. Each line of population-
I is crossed with s lines of population-II, and vice-versa,
so that there will be ns sampled crosses out of n² possible
crosses. The cross arrangement is an adaptation of the par-
tial diallel of Kempthorne and Curnow (1961). The se-
quence of crosses of a line (i) is: i x j; i x (j + 1); i x (j + 2);
...; i x (j + s - 1). An example is given for n = 10 and s = 3,
where data refer to ear length (cm) in crosses between lines
from two maize populations (SUWAN and ESALQ-PB1)
evaluated in experiments conducted at Piracicaba, SP
(Table I).

The model for each cross mean is:

Yij = m + gi + gj + sij + eij

where m is the overall mean; gi and gj are the GCA effects
of lines from populations I and II, respectively; sij  is the

SCA effect, and eij  is the experimental error associated
with the hybrid mean.

The pertinent analysis of variance and estimation
of effects in the model is done following the least square
procedure, according to the matrix equation: Y = Xβββββ + εεεεε,
where Y is the vector of observed means (ns sampled
crosses), X is the matrix of coefficients, βββββ is the vector of
parameters and εεεεε is the vector representing the experimental
error.

For both the analysis of variance and estimation of
effects we considered the reduced model Yij = m + gi + gj + δij,
so that δ also includes the sij effects as deviations from the
reduced model. Because X is a singular matrix, the fol-
lowing restrictions must be imposed for solution:

∑ gi = ∑ gj = 0.

RESULTS AND DISCUSSION

Analysis of variance

For the analysis of variance and estimation of effects,
the ordinary least square procedure was used. Parameters in
the reduced model (mean and combining ability effects) are
estimated by solving normal equations [βββββ = (X’X) -1 X’Y ]
derived from Yij

 
= m + gi + gj + δ1ij.

The sums of squares for parameters in the com-
plete model (Model 1) and reduced models are represented
as shown in Table II.

The estimates of GCA effects (gi, gj) can also be
obtained from the reduced model (Model 1) and the SCA
(sij) is obtained by the differences from the observed means
which are explained by the complete model. For obtaining
the standard errors of the estimates, appropriate programs
of statistical analysis can be used. The sums of squares
due to variation among crosses is partitioned into general
and specific combining ability according to the complete
model (Table III).

Table I - Means (over three replications) of ear length (cm) of thirty single cross
maize hybrids in a partial diallel scheme.

I\II 1’ 2’ 3’ 4’ 5’ 6’ 7’ 8’ 9’ 10’

1 20.1 19.4 22.2
2 18.6 20.8 19.5
3 19.5 18.2 20.7
4 20.5 22.9 20.1
5 19.1 18.8 19.8
6 18.6 20.0 16.5
7 18.9 18.4 18.9
8 18.3 18.5 16.8
9 17.7 19.7 17.1
10 17.1 17.9 16.9

I - SUWAN; II - ESALQ-PB1.

Model (1)
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The expected values of mean squares in the analy-
sis of variance shown in Table II are not available, so that
unbiased estimates of the variance components are not pos-
sible from Table II. A relative measure of effectiveness is
the coefficient of determination (R²), which is the square
of the correlation between observed and predicted means.
It also measures the ratio between the sum of squares due
to the reduced model and the total sum of squares (com-
plete model). However, R2 is not always realistic due to
the difference between the number of degrees of freedom
(d.f.) for GCA and SCA. For s = 2, d.f. = 1 for SCA for

any value of n and, consequently, R2 ≈ 1. For s > 2, d.f. for
SCA is about (s - 2)/2 times d.f. for GCA, and they are
approximately equal for s = 4. Therefore, for s = 4 the
coefficient of determination should give a fairly good mea-
sure of efficiency of the reduced model. Obviously, for a
given n and s, R² tends to be higher for small or nonsig-
nificant SCA effects. Consequently, since SCA is due to
non-additive effects, R² will be higher for traits affected
primarily by additive effects.

For the diagonals in Table I, it is apparent that there
is a genetic covariance between diagonal elements; the co-
variance between each pair is a linear function of the vari-
ance due to general combining ability (σ²). There are two
variances for GCA, one for each population. For GCA-I,
the covariances between diagonals are obtained directly
from the scheme shown in Table I. For GCA-II, the diago-
nals must be rearranged. For n = 10 and s = 3 the diagonals
for obtaining the covariances are as shown in Table IV.

The two groups of diagonals (Table IV) can be ana-
lyzed as two-way tables, according to the factorial model
(Model 2):

Yik
 
= m + τi + δk + (τδ)ik + eik for group I, and

Yjk
 
= m + τj + δk + (τδ)jk + ejk for group II,

Table IV - Schematic presentation of the diagonals of Table I rearranged according to
the source population (I and II).

Lines I D1 D2 D3 Lines II D1’ D2’ D3’

1 1 x 1’ 1 x 2’ 1 x 3’ 1’ 1’ x 1 1’ x 1.0’ 1’ x 9
2 2 x 2’ 2 x 3’ 2 x 4’ 2’ 2’ x 2 2’ x 1 2’ x 1.0’
3 3 x 3’ 3 x 4’ 3 x 5’ 3’ 3’ x 3 3’ x 2 3’ x 1
4 4 x 4’ 4 x 5’ 4 x 6’ 4’ 4’ x 4 4’ x 3 4’ x 2
5 5 x 5’ 5 x 6’ 5 x 7’ 5’ 5’ x 5 5’ x 4 5’ x 3
6 6 x 6’ 6 x 7’ 6 x 8’ 6’ 6’ x 6 6’ x 5 6’ x 4
7 7 x 7’ 7 x 8’ 7 x 9’ 7’ 7’ x 7 7’ x 6 7’ x 5
8 8 x 8’ 8 x 9’ 8 x 1.0’ 8’ 8’ x 8 8’ x 7 8’ x 6
9 9 x 9’ 9 x 1.0’ 9 x 1’ 9’ 9’ x 9 9’ x 8 9’ x 7

10 10 x 1.0’ 10 x 1’ 10 x 2’ 10’ 10’ x 1.0’ 10’ x 9 10’ x 8

I, II: Lines from populations I and II that are common to all diagonals of the respective group. D
and D’ are diagonals representing crosses arranged for lines 1, 2, ..., 10 of population I and for
lines 1', 2', ..., 10' of population II.

Table III  - Analysis of variance for crosses in the partial circulant diallel scheme at the interpopulation level.

Source d.f. Sums of squares Mean squares

Crosses ns - 1 Ro = M1

 General combining ability (overall) 2n - 2 R11 - R14 M11

    GCA-I n - 1 R11 - R13 M111

    GCA-II n - 1 R11 - R12 M112

 Specific combining ability n(s - 2) + 1 R1
 
- R11 M12

Error# (r - 1)(ns - 1) — M2

# For a completely randomized block design.

∑Y2 -        Y2
..

1
nsij

ij

Table II  - Representation of the complete and reduced models
and their sums of squares.

Sums of squaresψ

Model 1 Yij
 
= m + gi + gj + sij  + eij R1 = ∑Y2 - Y2../ns

Model 11 Yij
 
= m + gi + gj + δ1ij R11 = R(m, gi , gj)

Model 12 Yij
 
= m + gi + δ2ij R12 = R(m, gi)

Model 13 Yij
 
= m + gj + δ3ij R13 = R(m, gj)

Model 14 Yij = m + δ4ij R14 = R(m)

ψR = β (X’Y) for each model.

ij ij

g

^
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where m is the overall mean and is common for both
groups; τi and τj are the constant effects of the parental
lines; δk is the random effects due to differences among
diagonals, and (τδ)ik and (τδ)jk are interaction effects of
lines with diagonals within the respective groups. The last
effect is the error term in both models.

Within each group the diagonals are represented
by crosses involving the same lines, so that the diagonal
means differ only for the average error and for a small
quantity represented by the average of the random sample

of SCA effects (   ∑sij  or    ∑sij). The expected values of the

squared effects are: E(δ²) = σ2

 
, E(τ²) = σ² = σ², E(τ²) =

σ² = σ²  , and E(e2 ) = E(e2 ) = σ². Components σ²  and σ²

are related to the genetic interpretation of the effects, i.e.,
they represent the variances due to GCA of lines within
groups; σ² is the variance due to SCA and σ² is the error
variance adjusted for analysis involving means over r rep-
lications.

The analysis of variance of the two-way tables is
as shown in Table IV. The analysis for group I and for
group II has a similar structure. In the expected value of
mean squares, the average variance within diagonals and
the error variance are the same for both groups.

The partition of the sum of squares is orthogonal
within groups but non-orthogonal between groups (Table
V). Because the estimates of the variance components are
based on both analyses, the estimates are correlated to some
extent. In this sense, we recognize that the properties of
the estimators must be better known.

The covariance between any two diagonals is esti-
mated by:

In terms of expectation the covariances are:

COVI = E [(Yij
 
- µ)(Yij’

 
- µ)] = E[(gi

 
+ gj

 
+ sij

 
+ eij)

(gi
 
+ gj’

 
+ sij’

 
+ eij’ )] = σ²gI

COVII = E[(Yij
 
- µ)(Yi’j

 
- µ)] = E[(gi + gj + sij

 
+ eij)

(gi’
 
+ gj

 
+ si’j

 
+ ei’j ) = σ²gII

Taking all the covariances between diagonals, there
will be s(s-1)/2 estimates of σ² for each population, and
the average estimate of the covariances is an average esti-
mate of the variance due to GCA. The estimates of the
variance components are obtained by:

COVI = COVgI = σ2 =    (Mt - Mtd), in the analysis

of group I, and

COVII = COVgII = σ2  =    (Mt - Mtd), in the analysis

of group II

σ2 =         Mtd +     Mt
 
- Me, and σ2 = Me

where σ2 stands for the variance due to combining ability
of lines of the respective group, and σ2

  
= σ2

 
 + σ2

 
  + σ2 is

the variance among crosses within diagonals. The latter
shows the variance component due to SCA (σ²), which is
estimated by

σ2 = σ2  - σ2  - σ2

It is clear that for obtaining the overall estimates,
the analysis of variance shown in Table IV must be per-
formed for both groups of diagonals. The estimates of the
variance components (σ2  , σ2  , σ2 ) are based on Model 1
and therefore the corresponding parameters are the same
as those defined for the analysis of variance in Table V.

 The translation of the variance components into
genetic variances is given by the functions:

σ2  =         σ2      ; σ2   =         σ2

     
; σ2

 
 = (        )2 σ2

 
    and

σ2

  
 =          (σ2

   
  + σ2

    
 ) + (        )2 σ2

    
 =         σ2

  
   +

+ (        )2 σ2

where F is the coefficient of inbreeding of the lines from
both non-inbred reference populations (Hallauer and
Miranda Filho, 1995), assuming the same F in both sets of
lines. For different inbreeding levels (FI ≠ FII), pertinent
adaptations must be introduced in the above formulas.

k d i τI gI j

τII gII ik jk gI gII

s

Table V - Analysis of variance of two-way tables representing
s diagonals of group I.

Source d.f. MS

Diagonals(D) s - 1 Md σ² + σ²δ

Lines(L) n - 1 Mt σ² + σ²τδΙ
 
+ σ²τΙ

 
= σ² +

 + (σ²H - COVgI ) + sCOVgI

L x D (n - 1)(s - 1) Mtd σ² + σ²τδΙ
 
= σ² + (σ²H - COVgI)

Error (r - 1)(ns - 1) Me σ²

Hybrids/D s(n - 1) MH/D σ² + σ²H

σ²H: Average of s variances within diagonals; COVgI : average of s(s - 1)/2
covariances between diagonals.

1
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=OVĈ II

,, ∑∑∑

-

-

g



253Partial circulant diallel cross

The genetic variance components are readily esti-
mated by:

σ2

      
=         (σ2   + σ2    ), and σ2   = (       )2 σ2

Estimation of cross means

The mean of sampled crosses in the diallel table can
be estimated by: 1) the observed mean of the given cross in
the experiment, and 2) ignoring SCA and then estimating
the mean based on the reduced model: Yij  = µ + gi + gj

(Model 3). The mean of the unsampled crosses can only
be estimated through (2) (Kempthorne and Curnow, 1961).

 Finally, for random samples of lines from two
populations, the following quantities are taken into account:

n: number of lines randomly sampled from each
population;

n2: number of possible crosses;
s: number of crosses for each line;
ns: number of observed means of the sampled

crosses, and
n(n-s): number of predicted means of the

unsampled crosses.
The number of sampled and unsampled crosses for

several values of n and s is shown in Table VI.
A third method (3) for estimating the mean of spe-

cific crosses is through Yij = m + τi + τj where τi and τj are
contrasts (random effects) obtained by:

τi = Yi.
 
- Y.. and τj = Y.j - Y..

so that ∑ τi = ∑ τj = 0. Their standard errors can be easily

estimated by the square root of V(τi) = V(τj) =        σ2

where σ² is the variance due to the experimental error ad-

justed for means over r replications. If the estimates ob-
tained by (3) do not depart very far from those obtained by
(2), or if the rank of the estimates does not change greatly,
the use of (3) should be advantageous in the sense that the
estimates can be obtained easily without the need of a spe-
cific computer program. In practical breeding programs,
where facilities of this sort are not always available, con-
clusions and decisions could be faster by method (3).

In terms of model (1), for s = 3, it can be shown
that:

τi = gi
 
+    (gj + gj’  + gj” ) +    ∑sij  +    ∑eij and

τj = gj +    (gi + gi’  + gi” ) +    ∑sij +    ∑eij

It is apparent that the differences between gi and τi

and between gj and τj tend to decrease for larger values of
s (number of crosses of each line); consequently, the cor-
relation between them tends to increase for increasing s.

Example: analysis of ear length in maize

The analysis of data (Table I) taken for illustration
led to the results shown in Table VII.

The analysis shows that a significant variation was
detected for GCA effects in both populations and that the
amount of genetic variability does not differ greatly be-

gI gII sD12A12 1 + F
2

1 + F
2^ ^ ^ ^ ^

^ ^ ^

Table VII  - Analysis of variance according to the partial
circulant diallel model.

Source d.f. M.S. F

Hybrids 29 2.3005 5.80**
 GCA/Populations 18 3.4125 7.10**
 GCA-I 9 2.1730 4.52**
 GCA-II 9 2.4456 5.09**
 SCA 11 0.4809 1.21
Error 58 0.3968

**  Significance level: P < 0.01.Table VI - Total number and percentage of sampled and unsampled
crosses for some value of n (number of lines) and s (number of

crosses for each line).

n 10 20 50 100 200

s Total 100 400 2500 10000 40000

Percentage

2 Sampled 20.0 10.0 4.0 2.0 1.0
Unsampled 80.0 90.0 96.0 98.0 99.0

3 Sampled 30.0 15.0 6.0 3.0 1.5
Unsampled 70.0 85.0 94.0 97.0 98.5

4 Sampled 40.0 20.0 8.0 4.0 2.0
Unsampled 60.0 80.0 92.0 96.0 98.0

5 Sampled 50.0 25.0 10.0 5.0 2.5
Unsampled 50.0 75.0 90.0 95.0 97.5

^ ^ ^ ^ ^ ^

^ ^

i j

^ ^

n - 1
ns

^ ^
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Table VIII  - Analysis of variance with partition of the total sum of squares
according to the factorial model. Ear length of 30 corn hybrids.

Source d.f. MS I MS II Estimates

Hybrids 29 2.30052 2.30052 σ²gI = 0.9556

Diagonals (D) 2 0.03700 0.03700 σ²gII
 
= 1.0919

Lines (L) 9 4.37944 4.65204 σ²S = 0.0238

L x D 18 1.51256 1.37626 σ²A12 = 2.0476

Error 58 0.39680 0.39680 σ²D12 = 0.0238

Hybrids/Diagonals 27 2.46819 2.46819

^

^

^

^

^
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tween populations. Specific combining ability was small
and non-significant.

The analysis of variance of sets of diagonals for
groups I and II, according to the two-way factorial model,
is shown in Table VIII.

Although the sample of data is too small to esti-
mate genetic parameters, the results are coherent with in-
formation from the literature for ear length. The interpopu-
lation additive genetic variance is within the range reported
by Hallauer and Miranda Filho (1995) for estimates within
(intra) populations. The dominance variance is very small,
suggesting that ear length of maize is primarily due to ad-
ditive effects. The estimates of effects (g and τ) for both
populations are listed in Table IX. The degree of agree-
ment between g and τ is given by the correlation coeffi-
cient (r), which showed a fairly good agreement between
the information based on g and τ for both populations. It is

seen that the three lines with highest values do not change
when considering g or τ, for both populations. It is clear
that the degree of confidence of that relation would be
best determined for larger samples of lines.

The predicted means of specific crosses were based
on the two reduced models differing by their estimators of
the combining ability effects namely: i) based on gi and gj

,and ii)  based on τi and τj. The predicted means are shown
in Table X.

The correlation between the predicted means based
on gi and gj and the observed means showed the high effi-
ciency of the reduced model for prediction purposes. A
lower correlation (0.889) was observed for prediction based
on τ effects. Nevertheless, the high correlation between
predictions based on g’s and τ’s indicates that the latter
can be nearly as efficient as the former for the identifica-
tion of desirable crosses for ear length.

Table IX - Estimates of the mean (m), GCA (gi, gj) and line combining ability (τi , τj)
effects for crosses between two maize populations.

SUWAN gi Rank τi Rank ESALQ-PB1 gj Rank τj Rank

1 2.069 (1) 1.517 (2) 1’ -1.387 (9) -0.750 (8)
2 0.743 (3) 0.583 (3) 2’ -1.276 (8) -0.417 (7)
3 -0.484 (6) 0.417 (4) 3’ 1.008 (3) 1.783 (2)
4 1.419 (2) 2.117 (1) 4’ -0.209 (6) 0.350 (4)
5 -1.097 (9) 0.183 (5) 5’ 1.904 (1) 1.850 (1)
6 -1.167 (10) -0.683 (7) 6’ 0.398 (5) 0.117 (5)
7 -0.801 (8) -0.317 (6) 7’ 1.538 (2) 0.517 (3)
8 -0.525 (7) -1.183 (9) 8’ -0.486 (7) -1.317 (9)
9 0.076 (4) -0.883 (8) 9’ 0.400 (4) -0.017 (6)

10 -0.232 (5) -1.750 (10) 10’ -1.889 (10) -2.117 (10)

Mean: M = 19.04 Correlation r(gi, τi) = 0.693 r(gj, τj) = 0.857

^ ^ ^ ^

^ ^ ^ ^

^ ^

^ ^ ^ ^ ^^

^ ^ ^ ^
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Table X - Estimates of specific combining ability effects (sij) and predicted means of
sampled single crosses based on two models#.

Crosses Yg Yτ Sij            Crosses Yg Yτ Sij

1 x 1’ 19.73 19.82 0.37 6 x 6’ 18.28 18.48 0.32
1 x 2’ 19.84 20.15 -0.44 6 x 7’ 19.42 18.88 0.58
1 x 3’ 22.13 22.35 0.07 6 x 8’ 17.40 17.05 -0.90
2 x 2’ 18.52 19.22 0.08 7 x 7’ 19.79 19.25 -0.89
2 x 3’ 20.80 21.42 0.00 7 x 8’ 17.76 17.42 0.64
2 x 4’ 19.58 19.98 -0.08 7 x 9’ 18.65 18.72 0.25
3 x 3’ 19.57 21.25 -0.07 8 x 8’ 18.04 16.55 0.26
3 x 4’ 18.36 19.82 -0.16 8 x 9’ 18.93 17.85 -0.43
3 x 5’ 20.47 21.32 0.23 8 x 1.0’ 16.64 15.75 0.16
4 x 4’ 20.26 21.52 0.24 9 x 9’ 19.53 18.15 0.17
4 x 5’ 22.37 23.02 0.53 9 x 1.0’ 17.24 16.05 -0.14
4 x 6’ 20.87 21.28 -0.77 9 x 1’ 17.74 17.42 -0.04
5 x 5’ 19.86 21.08 -0.76 10 x 1.0’ 16.93 15.18 -0.03
5 x 6’ 18.35 19.35 0.45 10 x 1’ 17.43 16.55 -0.33
5 x 7’ 19.49 19.75 0.31 10 x 2’ 17.54 16.88 0.36

Correlation: R(Yg.Yij) = 0.960; R(Yτ.Yij) = 0.889; R(Yg.Yτ ) = 0.926

# Model 1 for Yg; Model 2 for Yτ (see text); Yij: observed means.
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The correlations between g’s and τ’s (Table IX)
are much smaller than the correlation between the respec-
tive predicted means, indicating that selection based on
τ’s is less effective among lines than among crosses, when
compared with selection based on g’s. The trait (ear length)
and the sample of crosses were used herein merely to il-
lustrate the proposed procedure and the results were not
interpreted as conclusive.

The partial circulant diallel cross at the interpopu-
lation level, as proposed in this study, seems to be an alter-
native method for the evaluation of the genetic value of
lines or genotypes in crosses at the interpopulation level.
It seems to be advantageous over other methods when the
following points are considered:
1. It allows the evaluation of a greater number of lines rela-

tive to the complete diallel; this point was also empha-
sized by Kempthorne and Curnow (1961) for the intrapo-
pulation partial diallel.

2. The number of sampled crosses (ns) allows the prediction
of n(n - s) single crosses and the selection pressure on
crosses is greatly increased. For example, for n = 100
and s = 3, the selection of the 10 best crosses represents
a selection intensity of 0.1% .

3. The base populations are chosen on the basis of their
complementary gene structure, so that the population
cross combines alleles existing separately in the parents.
The heterosis of the population cross is explored in the
crosses between lines of divergent populations.

4. The tester of lines of each population is a sample of lines
of the opposite population, so that the combining ability
effects realistically reflect the potential of lines to be used
in crosses. In this sense, the topcross procedure should
give less realistic information on the combining ability
of lines, unless the same base populations are used as
testers of each other.

5. Information is also obtained on SCA of the sampled
crosses. Hypotheses about its variation can be tested in
the analysis of variance and desirable specific effects
can be eventually detected.

More experimental results and theoretical consid-
erations of the proposed methodology will be necessary
for a better understanding of its properties and its poten-
tial for prediction and selection. Special attention must
be given to comparisons with other methods. Of special
interest will be a comparison between results obtained
here and the BLUP predictions proposed by Bernardo
(1994).
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RESUMO

O esquema de cruzamento dialélico parcial de
Kempthorne e Curnow (Biometrics 17: 229-250, 1961) foi
adaptado para avaliação de linhagens ou genótipos em
cruzamento no nível interpopulacional. Considerando uma
amostra aleatória de n linhagens de cada população base e que
cada uma é cruzada com s linhagens da população contrastante,
resultarão ns cruzamentos amostrados que são avaliados
experimentalmente. As médias dos ns e dos demais n(n-s)
híbridos não amostrados podem ser preditas pelo modelo reduzido
Yij = m + gi

 
+ gj, onde Yij é a média do híbrido entre a linhagem i

(i = 1, 2,..., n) da população I e a linhagem j (j = 1', 2',..., n’) da
população II; m é a média geral e gi e gj referem-se aos efeitos de
capacidade geral de combinação das populações I e II,
respectivamente. A capacidade específica de combinação (sij) é
estimada por diferença (sij = Yij - m - gi

 
- gj). A seqüência de

cruzamentos para cada linhagem (i) é [i x j], [i x (j + 1)] , [i x (j
+ 2)], ..., [i x (j + s - 1)]. Qualquer (j + s - 1) > n é reduzido por
subtração de n. Um processo de predição é sugerido por
substituição de gi e gj pelos contrastes τi = Yi.- Y.. e τj = Y.j

 
- Y..;

o coeficiente de correlação foi utilizado para comparar g’s e τ’s
para a seleção de linhagens e híbridos. A análise de variância é
realizada com o modelo Yij = m + gi

 
+ gj

 
+ sij + eij , e a soma de

quadrados devida à capacidade geral de combinação é
considerada para cada população separadamente. Uma análise
de variância alternativa é proposta para estimativa dos
componentes da variância no nível interpopulacional. A análise
de dados de comprimento da espiga de milho em um cruzamento
dialélico parcial com n = 10 e s = 3 é dada para ilustração. Para
os 30 híbridos analisados, o coeficiente de determinação (R2)
envolvendo as médias observadas e estimadas dos híbridos foi
alto para o modelo reduzido [R2 (Yij, Yij) = 0.960] e menor para o
modelo simplificado (τ) [R2 (Yij, Yij) = 0.889]. Os resultados
indicaram que o procedimento proposto pode fornecer
estimativas confiáveis das médias de híbridos não disponíveis
no dialelo parcial.
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