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Abstract

Observations by Dobzhansky’s group in the 1940s suggesting that the presence of recessive genotypes could ac-
count for lower larval developmental rates in Drosophila melanogaster were not confirmed at the time and all subse-
quent investigations on this subject focused on the analysis of ecological models based on competition among
pre-adult individuals. However, a paper published in this journal in 1991 eventually confirmed the finding made by
Dobzhansky and his co-workers. In this report, we provide a theoretical analysis of the population genetic effects of a
delay in the rate of larval development produced by such a genetic mechanism.
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Introduction

Based on an analysis of samples from natural popula-

tions of Drosophila pseudoobscura collected from three lo-

calities on Mount San Jacinto (California), Dobzhansky et

al. (1942) showed that homozygotes for genes located on

the second and third chromosomes in this species had a

lower developmental rate than expected. These authors

suggested that, under controlled culture conditions, the via-

bility and developmental rates were dependent on the de-

mographic density of the larvae. In contrast to the genetic

finding, the latter observation was subsequently confirmed

by several authors (Bakker, 1959, 1969; De Witt, 1960;

Robertson, 1963, 1964; Barker and Podger, 1970; Huang et

al., 1971; Tosic and Ayala, 1981; Mather and Caligari,

1981; Ménsua and Moya, 1983; Adell et al., 1988), not only

for drosophilid populations but for other insects as well. As

a result, all subsequent research on this subject has centered

on the analysis of ecological models based on competition

among pre-adult individuals. Oliveira and Cordeiro (1981)

detected a major gene effect on delayed development in

Drosophila melanogaster that was later associated with a

recessive gene located on the second chromosome of this

fly (Oliveira et al., 1991).

Since the development of molecular genetics in the

early 1990s many authors have examined the role of genes

involved in the regulation of developmental timing and

body size determination in Drosophila. Most of these stud-

ies focused on genes related to apoptosis and to the produc-

tion or release of ecdysone and other ecdysteroids (molting

hormones). The results of some relevant articles (all deal-

ing with this hormone in D. melanogaster) are summarized

below. Other authors described the importance of addi-

tional gene-controlled systems, such as those involved in

the regulation of adenosine deaminase-related growth fac-

tor ADGF-A, in developmental timing (Dolezal et al.,

2005) and in the regulation of the activities of oxidative

phosphorylation complexes through nuclear-encoded mito-

chondrial tyrosyl-tRNA synthetases (Meiklejohn et al.,

2013). Oldham et al. (2000) and Quinn et al. (2012) provide

appropriate reviews of this subject.

Sliter and Gilbert (1992) showed that loss of function

mutations at the dre4 gene caused ecdysteroid deficiency

and developmental delay or arrest. Later, Bialecki et al.

(2002) showed that isoform-specific null mutants for the

orphan member E75A gene had a reduced ecdysteroid titer

that resulted in developmental delay. McBrayer et al.

(2007) showed that prothoracicotropic (PTTH) hormone

production was not essential for molting or metamorphosis

but that its lack resulted in significantly delayed larval de-

velopment. Ghosh et al. (2010) showed that the gap gene

giant (gt) regulated ecdysone production through specifica-

tion of PTTH and that mutants for this gene exhibited de-

layed larval development (in addition to other effects).

The purpose of the present theoretical investigation

was to analyze the population genetic effects of a delay in

the larval developmental rate produced by an autosomal re-

cessive mode of inheritance.

Genetics and Molecular Biology, 36, 3, 430-437 (2013)

Copyright © 2013, Sociedade Brasileira de Genética. Printed in Brazil

www.sbg.org.br

Send correspondence to Paulo A. Otto. Departamento de Genética
e Biologia Evolutiva, Instituto de Biociências, Universidade de São
Paulo, Caixa Postal 11461, 05422-970 São Paulo, SP, Brazil.
E-mail: otto@usp.br.

Research Article



Using elements from the theory of finite differences,

difference and differential equations, and dynamic systems,

we examined the problem based on a model with discrete

generations and with the total number of individuals (adults

plus larvae) kept constant. We also summarize the results

obtained with alternative models involving an increase or

decrease in the total population number. The case of contin-

uous generations (to be presented in detail elsewhere) is

also briefly discussed.

Description of the main model in which the total
number of individuals is kept constant over
discrete generations

The central principle of this model is that the total

number of individuals (adults + larvae) is kept constant in a

population with discrete generations. For this, let A and a

be a pair of segregating alleles at an autosomal locus. In the

homozygous state the recessive gene a induces a delay in

larval development (increase in the diapause phase), mea-

sured in an integer number of generations: crosses therefore

take place randomly (panmixia) only among individuals

belonging to the same generation. The population size, kept

rigorously constant throughout generations, is assumed to

be so large that the effects of random sampling genetic drift

are negligible. Consequently, the mathematical treatment is

deterministic and gene frequencies are interpreted as proba-

bilities. The effects of differential migrations, selection

pressure and mutation are also considered negligible.

In the equations describing the model we will use the

following parameters: N0 = number of adults in the initial

population at generation 0; this number equals the total

number of individuals (adults plus larvae) at any time or

generation K � 0; q0 = initial frequency of the recessive al-

lele a [q0 = f0(a)]; p0 = initial frequency of the normal allele

A [p0 = f0(A) = 1-q0]; T = delay in larval development de-

termined by the genotype aa, measured in an integer num-

ber of generations; K = index corresponding to an integer

number of generations; NK = number of adult individuals in

the population at the K-th generation; N’K = number of lar-

vae in the population at the K-th generation; qK = frequency

of the recessive gene a among adults at the K-th generation;

pK = frequency of the normal allele, also among adults be-

longing to the K-th generation; QK = frequency of the re-

cessive gene in the total population (adults plus larvae) at

the K-th generation; PK = frequency of the normal allele,

also in the total population, at the K-th generation (PK = 1 -

QK).

Derivation of pertinent equations

Based on the foregoing definitions:

(a) the total number of adults at generation K is given

by

NK = NK-1(1-qK-1
2
) if K � T or

NK = NK-1(1-qK-1
2
) + NK-1-TqK-1-T

2 if K > T;

(b) the genotypic proportions among AA, Aa and aa

adult individuals at generation K are, respectively:

(NK-1/NK)pK-1
2
, (NK-1/NK)2pK-1qK-1, and 0 if K � T

or

(NK-1/NK)pK-1
2
, (NK-1/NK)2pK-1qK-1, and

(NK-1-T/NK)qK-1-T
2 if K > T;

(c) the number of larvae aa present at generation K

after the maturation of normal individuals is given by

N’K = N0q0
2

+ N1q1
2

+ ... + NK-1qK-1
2 if K � T or

N’K = NK-TqK-T
2

+ NK-T+1qK-T+1
2

+...+ NK-1qK-1
2 if

K > T.

Using the foregoing equations, it is not difficult to

show that NK+1 + N’K+1 = NK + N’K = ... = N0 + 0 = N0 and

that, if PK = f(A) in the total population, then PK =

(NK/N0)pK = (NK/N0)(N0p0/NK) = p0, i.e., allele frequencies

and the number of individuals remain constant when the

whole population (adults plus larvae) is considered, as as-

sumed by the model.

For K � T, we have, among adults of the population, a

mechanism similar to the classic model of total selection

against homozygous recessive individuals aa, despite the

absence of selection against any individual of the popula-

tion (when adults and larvae are considered together), as

shown by the equations derived in the previous paragraph.

This results in qK+1 = qK/(1+qK), a recurrence equation that

has the general solution in simple analytical form qK =

q0/(1+Kq0).

For K > T, we have

NK+1 = NK(1-qK
2
) + NK-TqK-T

2
=

NK(1-qK)(1+qK) + NK-TqK-T
2

=

NKpK(2-pK) + NK-T(1-pK-T)2.

Since pK+1 = (NKpK
2
+NKpKqK)/NK+1 = NKpK/NK+1

and, hence, NK = N0p0/pK, it follows that N0p0/pK+1 =

N0p0(2-pK) + N0p0(1-pK-T)
2
/pK-T and

1/pK+1 = 1/pK-T + pK-T - pK,

pK + 1/pK+1 = pK-T + 1/pK-T,

or, since pK = N0p0/NK, we also obtain

NK+1 = NK-T + (N0p0)
2
(1/NK-T - 1/NK).

Dynamic behavior of allele frequencies

Below, we analyze the behavior of allele frequencies

pK and qK.

For K � T, pK = (p0 + Kq0)/(1 + Kq0), i.e., pK is a

monotonically increasing function of K, whereas for K > T,

1/pK+1 = pK-T + 1/pK-T - pK.
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Analysis of the function f(x) = x + 1/x in the interval 0

< x < 1 shows that f’(x) = 1 - 1/x
2 < 0; f(x) is therefore a

monotonically decreasing function of x in this interval.

If pK > pK-T, then we have pK + 1/pK < pK-T + 1/pK-T =

pK + 1/pK+1 and, therefore, pK+1 < pK; similarly, pK < pK-T

implies that pK+1 > pK, and pK = pK-T implies that pK+1 = pK.

In the interval 0 < K � T, pK increases such that when

K surpasses T, we have pK > pK-T; pK then decreases to a

new point where pK < pK-T is reached and we will then have

another increase in pK, and so on. Thus, there will be an os-

cillation in gene frequencies among adults of the popula-

tion. With the passing of generations, i.e., when K in-

creases, the variations become smaller. In the limit case,

when K tends to infinity, the gene frequencies reach an

equilibrium (pinf = pe, qinf = qe).

Figures 1-3 show numerical examples of oscillatory

convergence to equilibrium points (pe) over 10 generations

of random crosses, for populations starting with initial gene

frequencies p0 = 0.1, ... , 0.9 and T values of T = 1, 2, and 3.

These graphs and others shown in this paper were prepared

using routines and packages from Mathematica� v.8.0

(Wolfram Research).

The preliminary global analysis presented above al-

ready shows a point of real theoretical interest, namely, that

despite intense selective pressure among adult individuals

(but not among the total population of adults plus larvae),

the recessive allele is never eliminated from the population,

but rather is kept in equilibrium at a point qe > 0. This is true

except when the number of generations involved in the de-

velopmental delay is very large or tends to infinity such that

allele a is practically eliminated from the adult population

and all larvae fail to develop.

Equilibrium gene frequencies

In a generic instant we have the following population

composition (Figure 4).

If we consider an equilibrium situation where

NK+1 = NK = NK-1 = NK-2 = ... = NK-T = Ne

qK+1 = qK = qK-1 = qK-2 = ... = qK-T = qe = 1-pe,

from NK + N’K = N0 it follows that Ne + TNeqe
2

= N0.

Since Ne = N0p0/pe, it follows that

N0p0(1+Tqe
2
)/(1-qe) = N0, and, hence, p0 + Tp0qe

2
= 1-qe

and, finally,

qe = [(1+4Tp0q0)
1/2

-1]/(2Tp0) =

2q0/[(1+4Tp0q0)
1/2

+1].
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Figure 1 - Oscillatory convergence of allele frequencies (ordinate axis) to

equilibrium points for populations starting with initial allele frequencies

of p0 = 0.1, ..., 0.9 and T = 1 generation of delayed larval development over

a period of 10 discrete generations (abscissa axis).

Figure 2 - Oscillatory convergence of allele frequencies (ordinate axis) to

equilibrium points for populations starting with initial allele frequencies

of p0 = 0.1, ..., 0.9 and T = 2 generations of delayed larval development

over a period of 10 discrete generations (abscissa axis).

Figure 3 - Oscillatory convergence of allele frequencies (ordinate axis) to

equilibrium points for populations starting with initial frequencies of

p0 = 0.1, ..., 0.9 and T = 3 generations of delayed larval development over a

period of 10 discrete generations (abscissa axis).

Figure 4 - Genotypic composition of the population in the generic genera-

tion K > T in the model with discrete generations and delayed larval devel-

opmental measured in T integer units.



As expected, qe = q0 if T = 0 (simple case of panmixia

without selection) and qe = 0 if T = � (special case of com-

plete selection against recessive individuals aa).

Considering that:

pK = NK-1pK-1/NK = N0p0/NK for any K,

NK = NK-1(1-qK-1
2
) for any K � T,

and

NK = NK-1(1-qK-1
2
) + NK-T-1qK-T-1

2 for any K > T,

it is not difficult to show that the recurrence equation 1/pK+1

= pK-T + 1/pK-T - pK can be rewritten in the more convenient

form

1/pK = 1/p0 - �[j = 1, T]{(1-pK-j)
2
/pK-j}.

This recurrence equation allows straightforward deri-

vation of the equilibrium point pe. Indeed, when K tends to

infinity, the limit for the right-hand side of the above equa-

tion is 1/p0 - T(1-pe)
2
/pe and it follows that pe = p0(1+Tqe

2
)

and pe = 1 - qe = 1 - [(1+4Tp0q0)
1/2

-1]/(2Tp0).

Table 1 shows the sets of equilibrium points qe for

several values of T, as a function of the initial values q0 =

0.0, 0.1, ..., 0.9, 1.0.

Figure 5 shows the sets of equilibrium values qe as a

function of the initial frequency values q0 and T varying

from 0 to 15.
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Table 1 - Equilibrium points (qe) as a function of T and of the initial allele frequency (q0).

q0

T 0.0000 0.1000 0.2000 0.3000 0.4000 0.5000 0.6000 0.7000 0.8000 0.9000 1.0000

0 0.0000 0.1000 0.2000 0.3000 0.4000 0.5000 0.6000 0.7000 0.8000 0.9000 1.0000

1 0.0000 0.0923 0.1754 0.2546 0.3333 0.4142 0.5000 0.5941 0.7016 0.8310 1.0000

2 0.0000 0.0865 0.1594 0.2275 0.2953 0.3660 0.4430 0.5309 0.6375 0.7787 1.0000

3 0.0000 0.0819 0.1477 0.2086 0.2694 0.3333 0.4041 0.4868 0.5907 0.7370 1.0000

4 0.0000 0.0781 0.1386 0.1943 0.2500 0.3090 0.3750 0.4534 0.5542 0.7026 1.0000

5 0.0000 0.0748 0.1312 0.1829 0.2347 0.2899 0.3521 0.4268 0.5247 0.6733 1.0000

6 0.0000 0.0720 0.1250 0.1735 0.2222 0.2743 0.3333 0.4049 0.5000 0.6480 1.0000

7 0.0000 0.0695 0.1197 0.1656 0.2117 0.2612 0.3176 0.3864 0.4789 0.6258 1.0000

8 0.0000 0.0673 0.1151 0.1588 0.2027 0.2500 0.3041 0.3705 0.4606 0.6061 1.0000

9 0.0000 0.0654 0.1111 0.1528 0.1949 0.2403 0.2923 0.3566 0.4444 0.5884 1.0000

10 0.0000 0.0636 0.1075 0.1476 0.1880 0.2317 0.2820 0.3443 0.4301 0.5724 1.0000

11 0.0000 0.0620 0.1043 0.1429 0.1818 0.2240 0.2727 0.3333 0.4172 0.5578 1.0000

12 0.0000 0.0605 0.1014 0.1386 0.1763 0.2171 0.2644 0.3234 0.4055 0.5444 1.0000

13 0.0000 0.0591 0.0987 0.1348 0.1713 0.2109 0.2569 0.3144 0.3948 0.5320 1.0000

14 0.0000 0.0578 0.0962 0.1312 0.1667 0.2052 0.2500 0.3062 0.3850 0.5206 1.0000

15 0.0000 0.0567 0.0940 0.1280 0.1625 0.2000 0.2437 0.2986 0.3760 0.5099 1.0000

16 0.0000 0.0556 0.0919 0.1250 0.1586 0.1952 0.2379 0.2917 0.3676 0.5000 1.0000

17 0.0000 0.0545 0.0900 0.1222 0.1550 0.1907 0.2325 0.2852 0.3598 0.4907 1.0000

18 0.0000 0.0535 0.0881 0.1196 0.1516 0.1866 0.2275 0.2792 0.3526 0.4819 1.0000

19 0.0000 0.0526 0.0864 0.1172 0.1485 0.1827 0.2228 0.2735 0.3457 0.4737 1.0000

20 0.0000 0.0518 0.0848 0.1150 0.1456 0.1791 0.2184 0.2683 0.3394 0.4659 1.0000

25 0.0000 0.0481 0.0781 0.1054 0.1333 0.1640 0.2000 0.2460 0.3123 0.4325 1.0000

30 0.0000 0.0451 0.0728 0.0981 0.1239 0.1523 0.1858 0.2288 0.2912 0.4059 1.0000

35 0.0000 0.0427 0.0685 0.0921 0.1162 0.1429 0.1744 0.2149 0.2741 0.3840 1.0000

40 0.0000 0.0406 0.0650 0.0872 0.1099 0.1351 0.1649 0.2034 0.2598 0.3655 1.0000

45 0.0000 0.0389 0.0619 0.0830 0.1046 0.1285 0.1569 0.1937 0.2477 0.3497 1.0000

50 0.0000 0.0373 0.0593 0.0794 0.1000 0.1228 0.1500 0.1852 0.2372 0.3359 1.0000

55 0.0000 0.0360 0.0570 0.0762 0.0960 0.1179 0.1440 0.1779 0.2280 0.3237 1.0000

60 0.0000 0.0348 0.0550 0.0734 0.0924 0.1135 0.1386 0.1714 0.2199 0.3128 1.0000

65 0.0000 0.0337 0.0531 0.0710 0.0893 0.1096 0.1339 0.1656 0.2126 0.3030 1.0000

70 0.0000 0.0327 0.0515 0.0687 0.0864 0.1061 0.1296 0.1603 0.2060 0.2942 1.0000

75 0.0000 0.0318 0.0500 0.0667 0.0838 0.1029 0.1257 0.1556 0.2000 0.2861 1.0000



For the case T = 1, the recurrence equation above can

be rewritten as

1/pK+1 = 1/p0 - (1-pK)
2
/pK or pK+1 =

p0pK/[pK-p0(1-pK)
2
].

The eigenvalue r responsible for the convergence of

the series {p0, ..., pe} is obtained by directly differentiating

pK+1 = f(pK) at equilibrium point pe:

r = dpK+1/dpK|pK=pe =

-p0
2
(qe

2
-2qe)/(pe-p0qe

2
)

2
= pe

2
-1.

Since |r| = |pe
2
-1| < 1 for any value of pe in the interval

0 < pe < 1, the equilibrium point pe is asymptotically stable

and convergence to this point occurs at a geometric rate.

Since r is always smaller than zero in this interval, conver-

gence to equilibrium is oscillatory.

Figure 6 shows the values of r and qe as functions of

the initial gene frequency q0 for the case T = 1.

For a generic value of T the method that follows is

used for determining convergence rates as well as equilib-

rium properties.
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q0

80 0.0000 0.0310 0.0486 0.0648 0.0815 0.1000 0.1222 0.1512 0.1945 0.2787 1.0000

85 0.0000 0.0302 0.0474 0.0631 0.0793 0.0973 0.1189 0.1472 0.1895 0.2718 1.0000

90 0.0000 0.0295 0.0462 0.0615 0.0773 0.0949 0.1160 0.1436 0.1849 0.2655 1.0000

95 0.0000 0.0288 0.0451 0.0601 0.0755 0.0926 0.1132 0.1402 0.1806 0.2596 1.0000

100 0.0000 0.0282 0.0441 0.0587 0.0737 0.0905 0.1106 0.1370 0.1766 0.2541 1.0000

105 0.0000 0.0277 0.0432 0.0574 0.0721 0.0885 0.1082 0.1340 0.1728 0.2490 1.0000

110 0.0000 0.0271 0.0423 0.0563 0.0706 0.0867 0.1060 0.1313 0.1693 0.2442 1.0000

115 0.0000 0.0266 0.0415 0.0552 0.0692 0.0850 0.1039 0.1287 0.1660 0.2396 1.0000

120 0.0000 0.0261 0.0407 0.0541 0.0679 0.0833 0.1019 0.1262 0.1629 0.2353 1.0000

125 0.0000 0.0257 0.0400 0.0531 0.0667 0.0818 0.1000 0.1239 0.1600 0.2313 1.0000

130 0.0000 0.0253 0.0393 0.0522 0.0655 0.0804 0.0982 0.1218 0.1572 0.2275 1.0000

135 0.0000 0.0249 0.0387 0.0513 0.0644 0.0790 0.0966 0.1197 0.1546 0.2238 1.0000

140 0.0000 0.0245 0.0380 0.0505 0.0633 0.0777 0.0950 0.1177 0.1521 0.2203 1.0000

145 0.0000 0.0241 0.0374 0.0497 0.0623 0.0764 0.0935 0.1159 0.1497 0.2170 1.0000

150 0.0000 0.0238 0.0369 0.0489 0.0613 0.0753 0.0920 0.1141 0.1475 0.2139 1.0000

inf 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000

Table 1 (cont.)

Figure 5 - Sets of stable equilibrium values qe (ordinate axis) as a function

of initial q0 values (abscissa aixs) for T values varying from 0 to 15.

Figure 6 - Case T = 1: values of r (0 > r > -1) and qe (0 < qe < 1) as func-

tions of the initial gene frequency q0 (abscissa axis).



Equilibrium dynamics

As shown above, for any K > T,

1/pK = 1/p0 - �[j = 1,T]{(1-pK-j)
2
/pK-j} or

pK = 1/[1/p0 - �[j = 1,T]{(1-pK-j)
2
/pK-j}].

We then define a set of T variables as follows:

x1(K) pK

x2(K) pK-1

. .

XK = ( . ) = ( . ).

. .

. .

xT(K) pK-T+1

Since

pK+1 = [1/p0 - �[j = 1,T]{(1-pK-j+1)
2
/pK-j+1}] - 1

we have:

x1(K+1) = f[x1(K), x2(K), x3(K+1), x4(K), ... , xT(K)]

x2(K+1) = x1(K)

x3(K+1) = x2(K)

x4(K+1) = x3(K)

....................................................................................

xT(K+1) = xT-1(K).

Considering the equilibrium point, at which

x1(K) pe

x2(K) pe

. .

Xe = ( . ) = ( . ),

. .

. .

xT(K) pe

we have, in an infinitesimal neighborhood of this point,

DX(K+1) = A.DX(K), or, in expanded form,

Dx1 a a a ... a a Dx1

Dx2 1 0 0 ... 0 0 Dx2

Dx3 0 1 0 ... 0 0 Dx3

(.)K+1 = (............................................................................) (.)K

. ............................................................................ .

. ............................................................................ .

DxT 0 0 0 ... 1 0 DxT

where

a = df/dx1(K) |x=xe = df/dx2(K) |x=xe = ... =

= df/dxj(K) |x=xe =

= pe
2

- 1.

The eigenvalues r1, r2, ... , rT are the solutions of the

characteristic equation

det(A-rI) = (-1)
T
(1+r+r

2
+ … +r

T-1
- r

T
/a) = 0

or

r
T
/a = 1 + r + r

2
+ r

3
+ ... + r

T-2
+ r

T-1,

which can also be rewritten as r
T
/a = (1-r

T
)/(1-r), r � 1.

Based on the function f(r) = r
T+1

- (a+1)r
T

+ a, r � 1,

-1 < a < 0, it can be shown that f(0) = a < 0, f(1) = 0 and

df(r)/dr = f’(r) = (T+1)r
T

- T(a+1)r
T-1. Also, as r tends to

+�, f(r) tends to +inf and as r tends to -�, f(r) tends to +� if

T is odd, and to -� if T is even. When T is even, f’(r) is an

increasing function of r in the open interval (-�, 0), de-

creasing in the open interval (0, (a+1)T/(T+1)) and again

increasing for r > 0. Therefore, r = 0 is a relative maximum

and r = (a+1)T/(T+1) a relative minimum. When T is odd,

f’(r) is a decreasing function of r in the open interval (-inf,

(a+1)T/(T+1)) and an increasing function of r for r >

(a+1)T/(T+1). Therefore, r = 0 in the case when T is odd is

an inflection point, whereas r = (a+1)T/(T+1) is a relative

minimum (as in the case when T is even). Hence, we con-

clude that when T is even, the equation rT+1 - (a+1)rT + a =

0, r � 1, -1 < a < 0 does not have any real root since f(r)

tends to -� as r tends to -�; when T is odd, the above equa-

tion has just one real negative root since f(r) tends to +� as

r tends to -�.

For the cases T = 1 to 4 it is possible to obtain explicit

solutions in simple analytical form for the values of the

eigenvalues r; for T > 4 the eigenvalues can be determined

using numerical methods. Analytical procedures applied in

the case T < 5 and extensive numerical analysis of the equa-

tion for any values of T > 4 have shown that (a) when T is

odd, there is always one real eigenvalue, with |ri| < 1 and

-1 < ri < 0, and (T-1)/2 pairs of complex conjugates rj,k = A

� iB, with (A
2
+B

2
)

1/2
< 1 for any initial gene frequency p0;

(b) when T is even, there are always only T/2 pairs of com-

plex conjugates with the same properties as stated before.

We therefore conclude that the set of equilibrium points

pe = f(p0, T) is a stable one, with convergence always oc-

curring to it for any initial value p0 in the open interval

(0, 1) and for any integer value of T.

Description of the model in which there are
fluctuations in the total number of individuals

In order to study the effect of an increase or decrease

in population size, it is enough to introduce the additional

parameter c: N1p1 = cN0p0 into equation N1p1 = N0p0 of the

previous section. Consideration of this parameter leads

straightforwardly the equation pK+1 = 1/[2-pK+(1-pK-T)
2
/

(cTpK-T)], K > T. This is the same equation obtained in the

analysis of the constant population size model if c = 1.

At equilibrium, pK+1 = pK = pK-T = pe and the above

equation reduces to pe(1-pe)
2
(1-cT) = 0, c � 1. When c � 1,

the only possible solutions for the foregoing equation are

pe = 0 and pe = 1, i.e., the normal allele is completely lost or

fixed. Intuitively, it is easy to show that pe = 0 when c < 1

(decreasing population size). Thus, for any K > T, the pro-

portion of recessive genes introduced by larvae ending their

diapause period will become increasingly greater as gener-

ations go by, in relation to the normal allele present in the

adult population, the size of which is decreasing. The in-
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verse, i.e., when c > 1 (population increasing in size), is also

obviously true since proportionally fewer recessive genes

will be introduced into the adult population by emerging

larvae. Clearly, then, pe tends to 1 as generations go by.

Brief remarks on a model with continuous
generations

Let P(t), R(t), Q(t) and L(t) be the normalized pro-

portions {P(t) + R(t) + Q(t) + L(t) = 1} of adults AA, Aa

and aa, and larvae aa in generation t. Among adults, the

normalized genotypic proportions are given by:

f(AA) = P’ = P/(1-L)

f(Aa) = R’ = R/(1-L)

f(aa) = Q’ = Q/(1-L)

and the corresponding allelic frequencies f(A) and f(a) by

f(A) = p(t) = P’ + R’/2

f(a) = q(t) = Q’ + R’/2.

In the total population (adults + larvae), the allelic fre-

quencies are given by

p(t) = P + R/2

and

q(t) = Q + L + R/2, p(t) + q(t) = 1.

After a time interval Dt, the frequency of allele A

among adults of the population is given by

p(t+Dt) = [N(t).p
2
(t) + N(t).2p(t)q(t)/2]/N(t+Dt) =

= {N(t).p(t)[p(t)+q(t)]}/N(t+Dt) =

= N(t).p(t)/N(t+Dt),

with the restriction N(t+Dt).p(t+Dt) = N(t).p(t) = N0p0 =

constant, as in the discrete model.

The expression for p(t+Dt) can be used for quantita-

tive analysis (to be presented elsewhere) in the case of con-

tinuous generations. One expects that equilibrium values

for any fraction 0 < � < 1 in T < T+� < T+1 would interpo-

late between the equilibrium curves that represent the set of

equilibrium points for the integer cases of T and T+1 gener-

ations in delayed larval development.
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