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Abstract

We used a mixed model approach and computer simulation to evaluate the inclusion of parentage information as de-
termined by the genealogy established in the pedigree method. The simulations were based on a purely additive ge-
netic model for one quantitative trait of 20 unlinked segregating loci with equal effects and an allelic frequency of 0.5
for heritability values of 10%, 25%, 50% and 75% for selection based on an F4:5 progeny mean. We simulated 1000
experiments for each heritability value, corresponding to the evaluation of 256 F4:5 progenies. The phenotypic values
of the progenies were analyzed according to two models, one ignoring and one considering the additive genetic par-
entage among the progenies. The additive relationship coefficients among F4:5 progenies ranged from 0.0 to 1.75.
The evaluated selection procedures were the phenotypic progeny mean (M) and the best linear unbiased predictor
including parentage (BLUPA). The inclusion of parentage among progenies using the BLUPA procedure resulted in
higher selection gains than when the relationship information was ignored, which possibly recompenses the addi-
tional work invested to obtain these records, above all in the case of low - heritability traits.
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Introduction

The pedigree method, proposed towards the end of

the 19th century, is widely applied to improvement pro-

grams of self-fertilized plants and is mainly based on re-

cording the genealogies among progenies over the selfing

generations (Ramalho et al., 2001). However, not only is

does this procedure require time and dedication from the

breeder but the usefulness of this method for the selection

process is somewhat restricted. One possibility of using this

parentage information in support of the selection process

would be in progeny evaluations in experiments with repli-

cations. Such an approach could be useful since breeders of

autogamous species are primarily interested in selecting

progenies that, during homozygosis, accumulate a higher

quantity of favorable alleles that associate the best additive

genetic values (AGV), bearing in mind that the ultimate aim

is the establishment of lines (Fehr, 1987). For quantitative

traits, however, the phenotype does not always reflect the

associated AGV. In this case, it would be important to use

methodologies that optimize the use of the available infor-

mation, in order to classify the progenies as closely as pos-

sible to the ranking given by the true AGV (White and

Hodge, 1989). Several fixed model and mixed model pro-

cedures have been proposed to predict the AGV of proge-

nies, including the best linear unbiased estimator (BLUE)

method, the best linear predictor (BLP) technique and the

best linear unbiased predictor (BLUP) approach (White and

Hodge, 1989; Mrode, 1996; Lynch and Walsh, 1998; Re-

sende, 2002).

The BLUP procedure has been the most widely used

in the prediction of the genetic merit in animals (Mrode,

1996) and, more recently, it has been widely applied in

plant improvement (Bernardo, 2002; Resende, 2002). Un-

der unbalanced conditions this procedure not only has the

advantage of making predictions more reliable compared to

those obtained by the ordinary least square method but also

incorporates information on related plants and thus

optimizes the use of the available data in progeny compari-

sons (Bernardo, 2002).

Since we found no reports on the use of genealogy es-

tablished by the pedigree method in progeny selection in
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self-pollinated crops and field experiments produce unreli-

able information (Wang et al., 2003) we evaluated the effi-

ciency of selection incorporating this genetic relationship

using a mixed model computer simulation.

Methodology

The program was implemented in the Delphi 6.0 en-

vironment (Cantú, 2002). A simplified genetic model was

assumed for any quantitative trait considering 20 loci of in-

dependent segregation, with equal and additive effects and

an allelic frequency of 0.5 without dominance. The simula-

tions considered heritability values of 10%, 25%, 50% and

75% for selection based on an F4:5 progeny mean (hp

2). For

each hp

2 heritability we simulated 1000 F2 populations with

20 segregating loci consisting of 64 plants each. The plant

multiplication rates were assumed to be equal, with each

plant generated 40 offspring.

Initially, the generations were advanced by the pedi-

gree method with no visual selection. A segregating F2 pop-

ulation of 64 simulated plants gave rise to the 64 F2:3

progenies with 40 plants each. Two plants were randomly

selected from each F2:3 progeny, resulting in 128 F3:4 proge-

nies and the process repeated in the following generation to

finally obtain 256 F4:5 progenies with 40 plants each (Fig-

ure 1).

The phenotypic values for the plants of each F4:5

progeny (yi) were simulated by adding normally distributed

random errors to the genotypic values (GV), by the follow-

ing model:

y g wi i i= + +μ ,

where μ is a constant (100 in the present case), gi is the

genotypic effect of plant i (i = 1, 2, ..., 40) and wi is the envi-

ronmental deviation associated to yi.

The gi effect result from the cumulative effect of the

20 loci as already described in the genetic model. The addi-

tive effect (al) of the lth locus was assumed equal to 1.0,

where l = 1, 2, ..., 20. The value of gi taking locus B with

two alleles (B1 and B2) as reference is given by:
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case, an allelic frequency of 0.5 σA l
l

a2 2

1

20

2=
=
∑ / , and since al

was assumed equal to 1.0 for all loci, then σA L2 2= / , σD

2 is

the F2 variance dominance and since dominance was as-

sumed to be absent, thenσD

2 0= , and hF2

2 is the F2 generation

individual heritability.

The 40 simulated genotypes or plants per F4:5 progeny

were divided into two virtual plots of 20 plants (n = 20) to

produce two replications (r = 2) for each progeny. In the

following equations, random errors were considered to be

normally distributed among plots, with e N e~ ( , )0 2σ in rela-

tion to the mean phenotypic values of the plots. Theσe

2 vari-

ance component is the environmental variance among

plots.

In the simulation the relation σ / σw e

2 2 was considered

fixed at eight (c = 8). The error terms varied according to

values assumed for hp

2 heritability:
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2 is the genetic variance within
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F2 heritability (hF2

2 ) was determined as a function of the
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2 heritability values as:

h

n

c

nr h

h

n

c

F

Gd

p p

p

Gd Gd

2

2

2

2 2

2

2 2

1

1
1

=
+

⎛
⎝
⎜ ⎞

⎠
⎟

−
− + +

⎛
⎝

σ

σ
σ σ

( )
⎜ ⎞

⎠
⎟
.

We analyzed 1000 experiments corresponding to the

evaluation of 256 simulated F4:5 progenies, derived from

the pedigree method. The analysis was based on the mean

phenotypic data of the plots, using a completely random-

ized experimental design with two replications.

According to the description of the conduction by

pedigree method, each F2 plant generated four F4:5 proge-

nies (Figure 1). Based on this detailed pedigree, the matrix
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Figure 1 - Scheme of conduction by pedigree method.



of the additive genetic parentages among the related proge-

nies was determined, considering the F2 population as non-

inbred. The phenotypic progeny data were then analyzed

according to two models:

Model GI

The genetic relationship among progenies was ig-

nored. The mean phenotypic data of the plots of the 256 F4:5

progenies were analyzed using a linear mixed model (Hen-

derson et al., 1959) y X Za e= + +β , where y is a 512 x 1

vector of the mean phenotypic data of the plots, X is a 512 x

1 fixed effect design matrix, β is a scalar fixed effect of the

constant, Z is a 512 x 256 random effects of progenies de-

sign matrix, a is a 256 x 1 progeny random effects vector

with a N G~ ( , )0 and G A a= σ2 , while e is a 512 x 1 vector of

errors with e N R~ ( , )0 and R I e= σ2 . The G matrix was des-

ignated by I pσ2 (i.e., A = I), indicating that the progenies

were assumed to be unrelated. In this case, the σa

2 compo-

nent is equal to the genetic variance among F4:5 progenies

(σp

2 ).

Model GA

In this model the genetic relationship among proge-

nies was considered by the inclusion of parentage among

progenies. The mixed model for analysis was identical to

model GI, except that the G matrix was designated by AσA

2 ,

with A containing the additive relationship coefficients

among F4:5 progenies, corresponding to twice the Malecot’s

coancestry coefficient (Bernardo, 2002: section 2.3.5.2),

and σa

2 refers directly to the F2 additive variance among

plants (σA

2 ). In animal breeding the A matrix is referred to as

the numerator relationship matrix (Mrode, 1996) and, in

this case, it was given by:

A I= ⊗
64

175 150 100 100

150 175 100 100

100 100 175

, , , ,

, , , ,

, , , 150

100 100 150 175

,

, , , ,

⎡

⎣

⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
,

where ⊗ is the Kronecker product.

The solutions for the random (�a) and fixed effects ( � )β
for both models were obtained by solving the following

equation (Henderson et al., 1959):
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To obtain the previous solutions, the components of

genetic and non-genetic variances were assumed to be un-

known. These variance components were estimated using

the restricted maximum likelihood (REML) method (Pat-

terson and Thompson, 1971). Since the REML method em-

ploys an iterative process, the expectation-maximization

(EM) numeric algorithm was applied (Dempster et al.,

1977).

The predictions of the progeny random effects (�a)

based on the overall adjusted mixed model are BLUP pre-

dictions (Henderson, 1975). After an adjustment of the GI

model the predictions were denoted as BLUPI, while for the

GA model the predictions were designated BLUPA. Addi-

tionally, the phenotypic progeny means (M) for each simu-

lated experiment were also obtained.

It should be noted that due to the balancing conditions

under which the simulation were conducted and the use of

an orthogonal experimental design with no missing data the

BLUPI predictions do not have selective advantage in rela-

tion to the phenotypic means of the progenies (M) (Ken-

nedy and Sorensen, 1988). Thus, only the results using the

mean M will be shown, and these should be understood as

being equal to BLUPI.

For each pre-fixed hp

2 heritability, corresponding to

1000 simulated experiments, we obtained the mean esti-

mates of the genetic variance among the F4:5 progenies (�σp

2 )

and heritability on an F4:5 progeny mean basis ( �hp

2) for both

models (GI and GA). The selection procedures of the F4:5

progenies (mean M and BLUPA) were evaluated and com-

pared based on the true genotypic values (GV) so for both

procedures we estimated the Spearman correlations (rS),

proportions of coincidence in the 5%, 10% and 25% selec-

tion fractions for lower and upper extremes on the ranking

of progenies, and the mean GV for different percentages

(0.4% (best progeny), 5%, 10% and 25%) of the superior

selected progenies.

The relative efficiency (RE) of BLUPA in relation to

the mean M was determined by RE = {[rS(BLUPA, GV) -

rS(M, GV)] / rS(M, GV)} x 100, where rS(BLUPA, GV) is the Spearman

correlation between BLUPA and GV of the selected proge-

nies, and rS(M, GV) is the Spearman correlation between the

mean M and GV of the selected progenies. The relative effi-

ciency was obtained also using proportions of coincidence.

We also calculated the relative gain (RG) of BLUPA in rela-

tion to the mean M using RG = {[MGVBLUPA - MGVM] /

MGVM} x 100, where MGVBLUPA is the mean genotypic val-

ues of the selected progenies calculated by BLUPA while

MGVM is the mean genotypic values of the selected proge-

nies calculated by the mean M method.

Results

For both models, the mean estimates of the genetic

parameters associated with the F4:5 progenies were close to

the pre-fixed parametric values for all the hp

2 heritabilities

studied (Table 1). Nevertheless in all the evaluations the ge-

netic parameter estimates by the GA model, which includes

parentage among progenies, were more accurate than those

produced by the GI model. For instance, for 25% hp

2 herita-

bility the standard error associated with the �σp

2 estimate in

the GA model was 33.5% but was 44.4% for the GI model.

However, when 50% hp

2 heritability was considered the

same percentages were very similar at 21.3% for the GA
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model and 22.4% for the GI model (Table 1). This demon-

strates that it is advantageous to take into account geneal-

ogy (as normally occurs when using the pedigree method),

although this advantage decreases as the character

heritability increases (hp

2 50≥ %).

The selection units (mean M and BLUPA) were evalu-

ated regarding the correct ranking of F4:5 progenies using

the true associated genotypic values (GV) as reference. As

expected, the mean correlation estimates rS of the evaluated

procedures were directly proportional to the hp

2 heritability

values (Table 2). The hp

2 heritability represents a determi-

nation coefficient between the M and GV means, so that the

mean values of the correlation estimates (rS(M, GV)) can be

used to verify the quality of the simulations, since they are

approximate estimators of hp

2 (Falconer and Mackay,

1996). The rS(M, GV) correlation values were near the expec-

ted ( )hp

2 values for all the hp

2 heritabilities studied

(Table 2), e.g. for 25% hp

2 heritability the mean rS(M, GV) cor-

relation estimate was 0.48 and therefore close to the popu-

lation value of 0.5.

The rS(BLUPA, GV) mean correlations between BLUPA

and GV were superior to the rS(M,GV) mean correlation val-

ues for all the hp

2 heritability values studied (Table 2),

demonstrating that the incorporation of genetic relation-

ships results in greater efficiency regarding the correct

classification of progenies, particularly in situations

where hp

2 heritability was less than 50%. For example, for

10% hp

2 heritability the relative efficiency (RE) of BLUPA

to mean M was 43.33% while for 50% hp

2 heritability the

RE dropped to only 14.5%, this being confirmed by the

high rS(M, BLUPA) correlation (0.87) between BLUPA and

mean M (Table 2).

The identification of the progenies in the extremes on

their ranking is of greater relevance for breeders than the

classification of all the progenies evaluated. For this we es-

timated the coincidence proportions (C(BLUPA, GV)) of se-

lected progenies using the BLUPA and mean M methods

and compared the results with selected progenies based on

the real GV (Table 3) and found that for a fixed selection

fraction (s) value the corresponding proportions of esti-

mated coincidences in the lower and upper selected

extremes were identical.

For all hp

2 heritability and selection fractions s values

the C(BLUPA, GV) between BLUPA and GV were higher than

the C(M, GV) between the mean M and GV, (Table 3), support-

ing our rS estimates (Table 2). As mentioned above, the RE

of the BLUPA in relation to mean M in the coincidences

with GV was proportionally greater for lower hp

2 heritability

values and selected fractions (s). For example, for 10% hp

2

heritability and s = 5% C(BLUPA, GV) was 0.21 and C(M, GV)

0.15 (an RE of 40%), while at the same hp

2 heritability but

with s = 25% RE and was only 15.4%. When hp

2 heritability

was 50% RE dropped to 26.3% for s = 5% and 13.3% for

s = 25% (Table 3). This indicates that the efficiency of

BLUPA could possibly be higher when breeders work with a

trait of low heritability and apply high selection intensity.

Breeders want the selected progenies to have the

highest possible genetic values, which ultimately reflect the

gain achieved with selection, disregarding the progeny by

environment interaction. In the selected fractions (s) com-

paring the GV means of the BLUPA-selected progenies with

the mean M for the pedigree method it can be seen verify
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Table 1 - Mean estimates of the genetic variance among F4:5 progenies

(�σ p

2 ) and heritability on a F4:5 progeny mean basis ( �hp

2) and standard errors

(values in brackets) according to model GI (ignoring the pedigree informa-

tion) and model GA (considering the pedigree information) for different

values of heritability hp

2 .

hp

2 (%) Model GI Model GA

�σ p

2
�hp

2 (%) �σ p

2
�hp

2 (%)

10 20.48(17.90) 11.12(9.22) 18.04(12.55) 10.02(6.58)

25 17.31(7.68) 24.23(9.43) 17.59(5.90) 24.78(6.85)

50 17.35(3.88) 49.25(6.96) 17.45(3.71) 49.46(6.30)

75 17.48(2.80) 74.65(3.75) 17.45(2.63) 74.72(3.60)

Table 2 - Mean estimates of the Spearman correlation (rS) and standard er-

rors (in parentheses) between genotypic values (GV), phenotypic means

(M) and BLUP predictions considering the additive parentage (BLUPA)

among F4:5 progenies, conducted by the pedigree method for different val-

ues of heritability on a F4:5 progeny mean basis (hp

2).

hp

2 (%) rS(M , GV) rS(BLUPA , GV) rS(BLUPA , M)

10 0.30(0.06) 0.43(0.09) 0.69(0.04)

25 0.48(0.05) 0.62(0.06) 0.76(0.04)

50 0.69(0.04) 0.79(0.04) 0.87(0.03)

75 0.85(0.02) 0.89(0.02) 0.95(0.01)

Table 3 - Mean values of the proportions of coincidences (C) and standard

errors (values in brackets) in the selection proportions (s) of 5%, 10% and

25% of the superior or inferior F4:5 progenies, conducted by the pedigree

method, ranked by the parametric genotypic values (GV), phenotypic

means (M) and BLUP considering the additive parentage (BLUPA) for dif-

ferent values of heritability on a F4:5 progeny mean basis (hp

2).

s (%) hp

2 (%) C(M , GV) C(BLUPA, GV) C(BLUPA, M)

5

10 0.15(0.09) 0.21(0.13) 0.40(0.11)

25 0.24(0.11) 0.33(0.14) 0.48(0.11)

50 0.38(0.12) 0.48(0.14) 0.60(0.10)

75 0.57(0.12) 0.63(0.13) 0.75(0.09)

10

10 0.22(0.07) 0.29(0.11) 0.47(0.08)

25 0.33(0.08) 0.42(0.11) 0.54(0.07)

50 0.46(0.09) 0.56(0.10) 0.66(0.07)

75 0.63(0.08) 0.69(0.08) 0.79(0.06)

25

10 0.39(0.05) 0.45(0.07) 0.60(0.05)

25 0.48(0.05) 0.56(0.06) 0.66(0.04)

50 0.60(0.05) 0.68(0.06) 0.75(0.04)

75 0.74(0.04) 0.78(0.04) 0.85(0.03)



that the BLUPA procedure offers an advantage at all the hp

2

heritabilities studied, although with lower relative gains

(RG). The RG increased continuously as hp

2 heritability and

s decreased (Table 4), e.g., for 10% hp

2 heritability and

s = 0.4% the RG for BLUPA was 0.77%, while for s = 25% it

was 0.59%. With higher hp

2 heritabilities RG and at

hp

2 = 50% RG = 0.65% for s = 0.4% and 0.48% for s = 25%.

Discussion

The fact that the dominance effect is not included in

our genetic model does not constitute a severe restriction

because the simulation involved F4:5 progenies that repre-

sent only 7/64 of the dominance variance (Ramalho et al.,

2001). Furthermore, most of the characters of self-fertilized

plants, including grain yield, usually show a non-expres-

sive dominance effect (Souza and Ramalho, 1995; Novo-

selovic et al., 2004). Van Oeveren and Stam (1992) have

also verified that the dominance has little importance in

computer simulations of autogamous crops.

A restriction of the simulation was the lack of visual

selection, normally occurring in the pedigree method, dur-

ing the conduction stages (Fehr, 1987). However, there are

many literature reports on the inefficiency of visual selec-

tion for characters with low (< 50%) heritability, which is

the case for most characters of economic importance (Silva

et al., 1994; Cutrim et al., 1997). Thus, taking two random

plants to generate subsequent progenies probably causes no

expressive effect on the results, especially for hp

2 herita-

bilities lower than 50%.

It is worth mentioning that the BLUPA and mean M

estimators are phenotypic data functions that both predict

additive genetic values (AGV) associated with progenies.

The best estimator is therefore the one that results in the

AGV ranked closest to the ranking by the true AGV (White

and Hodge, 1989). It should be noted that, with the adop-

tion of the GA model, the predictions of the random effect of

progenies (�a) or BLUPA correspond to the predictions of the

additive genetic value (AGV) of the progenies (Lynch and

Walsh, 1998), indicating the theoretical superiority of the

BLUPA procedure in relation to mean M.

An important aspect must be mentioned concerning

the meaning of unbiasedness for BLUP, more specifically

for BLUPA. As mentioned above, in the present context

BLUPA is a predictor of the AGV of progenies (a) derived

from the same breeding population, whose expectation, by

definition, is zero [ ( ) ]E a = 0 (Falconer and Mackay, 1996).

In this context, BLUPA is unbiased in the sense that

E E( � ) ( )a a= (Robinson, 1991), where �a denotes the AGV

predictors. The conclusion that can be drawn is, differently

from the concept of unbiasedness for estimators of fixed ef-

fects, that the unbiasedness property for BLUP does not re-

fer to predictions of individual random effects [ ( � ) ]E a a=
but to the expected value of these effects. Summing up,

when hp

2 100→ %, � ( / )a a y a= →E , while with hp

2 0→ we

have � ( / )a a y= →E 0, demonstrating that the shrinkage ef-

fect in BLUPA predictions is more marked when the hp

2

values are low, resulting in lower rS(M, BLUPA) correlation es-

timates. Thus the results of simulation showed in a concor-

dant way that when hp

2 heritability diminishes information

on parentage becomes more important, so that with higher

heritability hp

2 (> 50%) the genotypic values are already

well-determined by the mean phenotypic values (M) (Duar-

te and Vencovsky, 2001).

In general, our simulation showed that the inclusion

of parentage among the progenies of the pedigree method

using the BLUPA procedure resulted in slightly higher se-

lections gains and more accurate estimates of genetic para-

meters than when this relationship information was

ignored. This possibly compensates for the additional work

invested in obtaining these records, especially when inves-

tigating low-heritability traits. Our results are supported by

other published research showing that higher selection

gains can be reached when using the G-A model or BLUPA

procedure (Durel et al., 1998; Bromley et al., 2000). A

study by Panter and Allen (1995) comparing two BLUP

models (with and without the inclusion of information

about genetic parentage between lines) for prediction of

soybean crossings showed no marked differences between

the BLUP models, yet the model which takes parentage into

consideration performed better.
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Table 4 - Mean genotypic values and standard errors (values in brackets)

in the selection proportions (s) of 0.4% (best progeny), 5%, 10% and 25%

of the superior F4:5 progenies, conducted by the pedigree method, ranked

by the phenotypic means (M) and BLUP considering the additive parent-

age (BLUPA) for different values of heritability on a F4:5 progeny mean ba-

sis ( )hp

2 .

s (%) hp

2 (%) Selection procedure

Phenotypic mean BLUPA

0.4

10 103.9(3.8) 104.7(3.7)

25 105.5(3.4) 106.9(3.3)

50 108.0(2.9) 108.7(2.7)

75 109.6(2.4) 109.9(2.3)

5

10 102.6(1.2) 103.7(1.5)

25 104.2(1.2) 105.4(1.4)

50 105.9(1.1) 106.7(1.2)

75 107.3(1.1) 107.6(1.1)

10

10 102.3(0.9) 103.2(1.1)

25 103.6(0.9) 104.7(1.1)

50 105.1(0.9) 105.8(1.0)

75 106.2(0.9) 106.5(0.9)

25

10 101.7(0.6) 102.3(0.8)

25 102.6(0.7) 103.4(0.7)

50 103.7(0.7) 104.2(0.7)

75 104.6(0.6) 104.8(0.6)
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