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Abstract

Statistical methods for mapping quantitative trait loci (QTLs) in full-sib forest trees, in which the number of alleles and
linkage phase can vary from locus to locus, are still not well established. Previous studies assumed that the QTL seg-
regation pattern was fixed throughout the genome in a full-sib family, despite the fact that this pattern can vary among
regions of the genome. In this paper, we propose a method for selecting the appropriate model for QTL mapping
based on the segregation of different types of markers and QTLs in a full-sib family. The QTL segregation patterns
were classified into three types: test cross (1:1 segregation), F2 cross (1:2:1 segregation) and full cross (1:1:1:1 seg-
regation). Akaike’s information criterion (AIC), the Bayesian information criterion (BIC) and the Laplace-empirical cri-
terion (LEC) were used to select the most likely QTL segregation pattern. Simulations were used to evaluate the
power of these criteria and the precision of parameter estimates. A Windows-based software was developed to run
the selected QTL mapping method. A real example is presented to illustrate QTL mapping in forest trees based on an
integrated linkage map with various segregation markers. The implications of this method for accurate QTL mapping
in outbred species are discussed.
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Introduction

Genetic mapping of quantitative trait loci (QTLs)

based on genetic linkage maps is a powerful tool for unrav-

eling the genetic architecture of quantitative trait variation

in plants, animals and humans. Since the seminal publica-

tion on interval mapping by Lander and Botstein (1989)

there has been a tremendous development of statistical

methods and algorithms for QTL mapping. To make inter-

val mapping more useful, Zeng (1993, 1994) and Jansen

and Stam (1994) independently proposed so-called com-

posite interval mapping in which partial regression analysis

is used to separate the effects of multiple linked QTLs.

Zeng and collaborators constructed the framework for mul-

tiple interval mapping to simultaneously characterize the

underlying QTLs (their number, locations, and main and

epistatic effects) for a quantitative trait (Kao et al., 1999;

Zeng et al., 1999). Xu and colleagues extended interval

mapping to map qualitatively inherited traits, such as bi-

nary and categorical traits (Xu and Atchley, 1996; Yi and

Xu, 2000; Xu et al., 2005). The principle of interval map-

ping was established for a pedigree, initiated with two in-

bred lines, such as the F2, backcross and recombinant

inbred lines. For any two inbred lines, there are only two al-

leles at each locus and in the F1 hybrids that transmit ga-

metes to the next generation there is a fixed linkage phase

between any two loci. These two features of inbred lines

greatly facilitate statistical inference about the QTL loca-

tion and effects.

In practice, it is difficult or impossible to generate in-

bred lines for outcrossing species such as forest trees be-

cause of their high heterozygosity and long generation

intervals. For any two heterozygous individuals, the num-

ber of alleles per locus can differ from gene to gene, leading

to different segregation patterns when the two individuals

are crossed. Wu et al. (2002) listed all possible types of

marker segregation in a full-sib family derived from two

heterozygous lines. For a given heterozygous line, there is

uncertainty about the linkage phase between any pair of

loci, i.e., diplotype when the two homozygous chromo-

somes are considered together. Despite these difficulties,

various models and methods for linkage analysis in out-

crossing species have been developed through the collec-

tive efforts of statisticians and geneticists (Grattapaglia and

Sederoff, 1994; Maliepaard et al., 1997; Wu et al., 2002).

Lu et al. (2004) derived a general framework that covers all

these approaches and allows for linkage analysis between

any types of markers by simultaneously estimating the re-

combination fraction, parental diplotype and gene order.

More recently, Tong et al. (2010) described a hidden
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Markov model approach for multilocus linkage analysis

and developed a Windows-based software to construct ge-

netic linkage maps with different segregation markers in a

full-sib family.

Nevertheless, despite these advances, there has been

limited exploration of the modeling and analysis of QTL

mapping in outcrossing species. Haley et al. (1994) pro-

posed an approach for mapping outcrossing QTLs in an ex-

perimental cross with the F2 type markers. Although this

approach was used to detect QTLs in pigs (Andersson et al.,

1994), it did not receive widespread acceptance because of

its failure to incorporate the linkage phase of the parents

and any type of marker segregation. Lin et al. (2003) subse-

quently proposed a general statistical model for simulta-

neously estimating the QTL-marker linkage phase, QTL

location and QTL effects in an outcrossed family. Although

some key statistical issues of the latter model have been in-

vestigated, there has been no systematic modeling of QTL

segregation patterns.

In this article, we propose a method for selecting the

appropriate model for mapping QTL intervals in a full-sib

family derived from two outcrossing parents by consider-

ing all possible patterns of QTL segregation, i.e., test cross

(1:1 segregation), F2 cross (1:2:1 segregation) and full cross

(1:1:1:1 segregation). The most likely QTL segregation

pattern for a sample was chosen based on model selection

criteria such as Akaike’s information criterion (AIC;

Akaike, 1974), the Bayesian information criterion (BIC;

Schwarz, 1978) and the Laplace-empirical criterion (LEC;

McLachlan and Pell, 2000). The method capitalizes on all

types of marker segregation and provides simultaneous es-

timates of the QTL segregation pattern, QTL location and

QTL effects. Simulations were used to investigate the sta-

tistical behavior of this QTL mapping approach. A Win-

dows-based software was developed to implement the

statistical model for QTL mapping in outbred species and

the usefulness of the method was validated by using an out-

crossing forest tree as an example.

Materials and Methods

Segregation pattern

Suppose that two outcrossing lines, P1 and P2, are

crossed to generate a full-sib family. The number of differ-

ent alleles at an informative marker locus in the two parents

may be 2, 3 or 4. Maliepaard et al. (1997) showed that the

possible combinations of two parental genotypes at an in-

formative marker locus, i.e., segregation types, were ab �
aa, aa � ab, ab � ab, ab � cd, ao � ao, ab � ao or ao � ab,

where a, b, c and d denote different alleles at a marker locus

and o denotes the null allele, with the two characters to the

left of the crossing symbol representing the marker geno-

type of P1 and the two characters on the right representing

the marker genotype of P2. The linkage analysis used to es-

timate recombination and linkage phase inference between

any two markers is well-defined (Wu et al., 2002, 2007; Lu

et al., 2004; Tong et al., 2010) and allows the construction

of an integrated linkage map that can contain any type of

segregation markers. Similarly, a QTL may also have up to

four alleles and present different segregation types. How-

ever, some of the segregation types, such as q1q1 � q1q2 and

q1q1 � q2q3, cannot be distinguished from each other be-

cause of inadequate information about allelic configura-

tions.

The QTL segregation patterns are generally classified

into three types: (1) test cross, in which the segregation type

is q1q1 � q1q2 or q1q2 � q1q1 that can generate two genotypes,

q1q1 and q1q2 (1:1 segregation), (2) F2 cross, in which the

segregation type is q1q2 � q1q2 that can generate three geno-

types, q1q1, q1q2 and q2q2 (1:2:1 segregation) and (3) full

cross, in which the segregation type is q1q2 � q3q4 that can

generate four genotypes, q1q3, q1q4, q2q3, and q2q4 (1:1:1:1

segregation). Each of these QTL segregation types reflects

different degrees of information and can be discriminated

from the others by using appropriate model selection crite-

ria.

Conditional probability

Consider two molecular markers and a putative QTL

in the interval of two markers on a chromosome in a diploid

full-sib family. We initially assume that there are four al-

leles for each molecular marker loci or QTL and that the

combined genotypes of the two parents at two markers and

a QTL are denoted by a1q1a2 / b1q2b2 and c1q3c2 / d1q4d2,

where the slash is used to segregate the two haplotypes of a

genotype. If r is the recombination fraction between the

markers, r1 the recombination fraction between marker 1

and the QTL, and r2 the recombination fraction between the

QTL and marker 2, then we have the relationship r = r1 + r2

- 2r1r2, assuming that there is no interference between two

intervals on chromosomes. The frequencies or probabilities

of the combined genotypes in the progeny can be easily de-

rived, as shown in Table 1, in which the elements were mul-

tiplied by 4. For the other marker and QTL segregation

patterns, the probability of marker and QTL genotype can

be obtained by first merging the rows of the same marker

genotype and then the columns of the same QTL genotype

in Table 1. Once the probabilities of all the marker and QTL

genotypes have been obtained, the conditional probability

of a QTL genotype given the combined genotype of the two

markers can be obtained by dividing the probability of the

corresponding marker and QTL genotype by the sum of all

the probabilities with the same given marker genotype.

Mixed model

For a given QTL segregation pattern, let J be the num-

ber of QTL genotypes (J = 2, 3 or 4). Assume that a quanti-

tative trait is distributed as a normal distribution with mean

�j and variance �2 within the jth QTL genotype (j = 1,..., J).
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The phenotypic value of the ith individual, yi, will then have

a mixture of normal distributions:

p N
j i j
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where pj|i is the conditional probability of the jth QTL geno-

type given the marker genotype of the ith individual.

For a sample of n individuals in the full-sib family,

the likelihood of the parameter vector, � = (�1,..., �J, �2), for

a specific position on the chromosome, can be written as
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is the density function of a normal distribution.

EM algorithm

Under the full model, the maximum-likelihood esti-

mates of the parameters can be obtained with a form of the

expectation-maximization (EM) algorithm (Dempster et

al., 1977). For iteration s + 1, assume that we have esti-

mates of the parameter � ( )� s
. In the E-step, we calculate the

conditional mean of the complete data log likelihood,

which involves calculating the posterior probability of indi-

vidual i having the jth QTL genotype, as
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In the M-step, we maximize the log likelihood by up-

dating the estimates of �j and �2 as
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The EM algorithm is then initiated by taking
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until the estimates converge, where y is the empirical mean

of observations.

Hypothesis testing

The null hypothesis of no QTL segregating at the spe-

cific position of the chromosome is

H0:�j = �0 for all j

implying that the distribution of the quantitative phenotype

does not depend on the genotype of the putative QTL. The

corresponding likelihood function is
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Table 1 - Probabilities (multiplied by 4) of marker and QTL genotypes in the progeny generated by hybridization: a1q1a2/b1q2b2 � c1q3c2/d1q4d2.

Marker genotype QTL genotype

q1q3 q2q3 q1q4 q2q4

a1c1 a2c2 (1 - r1)
2 (1 - r2)

2 r1(1 - r1) r2 (1 - r2) r1(1 - r1) r2 (1 - r2) r1
2 r2

2

a1c1 b2c2 (1 - r1)
2 r2 (1 - r2) r1(1 - r1) (1 - r2)

2 r1(1 - r1) r2
2 r1

2r2(1 - r2)

a1c1 a2d2 (1 - r1)
2 r2 (1 - r2) r1(1 - r1) r2

2 r1(1 - r1) (1 - r2)
2 r1

2r2(1 - r2)

a1c1 b2d2 (1 - r1)
2 r2

2 r1(1 - r1) r2 (1 - r2) r1(1 - r1) r2 (1 - r2) r1
2(1 - r2)

2

b1c1 a2c2 r1(1 - r1) (1 - r2)
2 (1 - r1)

2 r2 (1 - r2) r1
2r2(1 - r2) r1(1 - r1) r2

2

b1c1 b2c2 r1(1 - r1) r2 (1 - r2) (1 - r1)
2 (1 - r2)

2 r1
2 r2

2 r1(1 - r1) r2 (1 - r2)

b1c1 a2d2 r1(1 - r1) r2 (1 - r2) (1 - r1)
2 r2

2 r1
2(1 - r2)

2 r1(1 - r1) r2 (1 - r2)

b1c1 b2d2 r1(1 - r1) r2
2 (1 - r1)

2 r2 (1 - r2) r1
2r2(1 - r2) r1(1 - r1) (1 - r2)

2

a1d1 a2c2 r1(1 - r1) (1 - r2)
2 r1

2r2(1 - r2) (1 - r1)
2 r2 (1 - r2) r1(1 - r1) r2

2

a1d1 b2c2 r1(1 - r1) r2 (1 - r2) r1
2(1 - r2)

2 (1 - r1)
2 r2

2 r1(1 - r1) r2 (1 - r2)

a1d1 a2d2 r1(1 - r1) r2 (1 - r2) r1
2 r2

2 (1 - r1)
2 (1 - r2)

2 r1(1 - r1) r2 (1 - r2)

a1d1 b2d2 r1(1 - r1) r2
2 r1

2r2(1 - r2) (1 - r1)
2 r2 (1 - r2) r1(1 - r1) (1 - r2)

2

b1d1 a2c2 r1
2(1 - r2)

2 r1(1 - r1) r2 (1 - r2) r1(1 - r1) r2 (1 - r2) (1 - r1)
2 r2

2

b1d1 b2c2 r1
2r2(1 - r2) r1(1 - r1) (1 - r2)

2 r1(1 - r1) r2
2 (1 - r1)

2 r2 (1 - r2)

b1d1 a2d2 r1
2r2(1 - r2) r1(1 - r1) r2

2 r1(1 - r1) (1 - r2)
2 (1 - r1)

2 r2 (1 - r2)

b1d1 b2d2 r1
2 r2

2 r1(1 - r1) r2 (1 - r2) r1(1 - r1) r2 (1 - r2) (1 - r1)
2 (1 - r2)

2
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The test statistic for the above hypothesis can be ex-

pressed as the log-likelihood ratio of the full model over the

null model:

LR
L

L
�

�

�
�

�

�
�2

0 0

log
( � )

( � )

�

�
(6)

where � ( � , , � , � )� � � ��
1

2
� J and � ( � , � )� � ��

0 0 0
� are two vec-

tors of the maximum likelihood estimates under the full

model and null model, respectively. If a high peak of the LR

profile exceeds a critical threshold then a QTL that controls

the trait is asserted to exist in a marker interval. Because LR

may not be asymptotically distributed as a chi-square distri-

bution an empirical method for determining the genome-

wide threshold can be used by performing permutation tests

(Churchill and Doerge, 1994).

Model selection

The purpose of model selection is to identify a model

that has a balance between the goodness-of-fit of the data

and the complexity of the model. Fisher’s maximum likeli-

hood cannot be used as a criterion for model selection be-

cause a simpler model has to be a subset of a more compli-

cated model and, hence, the maximum likelihood of the

former is always less than that of the latter. Akaike’s infor-

mation criterion (AIC; Akaike, 1974) and the Bayesian in-

formation criterion (BIC; Schwarz, 1978) are commonly

used for model selection. AIC and BIC are defined as

AIC � 
 �2 2log ( � )L d� (7)

and

BIC � 
 �2log ( � ) log( )L n d� (8)

where L( � )� is the maximum likelihood, d the number of pa-

rameters to be estimated in the model, and n the sample

size. AIC is derived in terms of Kullback and Leibler

(1951) information for the true model with respect to the

fitted model while BIC is based on an integrated likelihood

within a Bayesian framework.

In addition to the above two criteria, the Laplace-

Empirical criterion (LEC; McLachlan and Pell, 2000) was

expected to be a good choice for model selection. LEC not

only contains information on the number of parameters and

sample size in a model but also provides a priori informa-

tion on the parameters and information matrix of the log

likelihood function. LEC is defined as

LEC � 
 
 �




2 2
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where p( � )� is the prior probability density of the estimated

parameters and I e ( � )� is the observed information matrix,

i.e., the negative Hessian matrix of the log likelihood, both

evaluated at the maximum likelihood estimate vector ��. We

assumed, as did Roberts et al. (1998), that the estimated pa-

rameter �j was uniformly distributed over the interval of

length 2
0

�� for j = 1,..., J, that �2 was uniformly distributed

in the interval ( , � )0
0

2� and that all are independent. The LEC

for our QTL mapping model can therefore be written as
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I Je
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where J is the number of QTL genotypes for a certain QTL

segregation pattern. The appendix (in Supplementary Ma-

terial) provides the details of each element of the matrix

used to calculate the determinant of I e ( � )� .

The approach described above allowed us to choose

the model that was most likely to provide the minimum

AIC, BIC or LEC among the three QTL segregation pat-

terns for a specific position on a chromosome. The power of

AIC, BIC and LEC was assessed through Monte Carlo sim-

ulations.

Monte Carlo simulations

To assess the usefulness of the QTL mapping method

and model selection in different QTL segregation patterns

in a full-sib family we simulated a 100 cM-long chromo-

some with six markers evenly spaced along the chromo-

some. As indicated by Maliepaard et al. (1997), the segre-

gation patterns of the six markers were aa � ab, ab � cd, aa

� ab, ab � cd, ab � ab and aa � ab, and the linkage phase be-

tween two adjacent markers were r, r, r, c � r and c, respec-

tively. One QTL was simulated at position 50 cM and the

QTL segregation patterns were assumed to be: (1) q1q1 �
q1q2, (2) q1q2 � q1q2 or (3) q1q2 � q3q4, corresponding to the

three different QTL segregation patterns.

In the simulation, the effects of the QTL genotypes

were set to be �1 = 15 and �2 = 10 for the test cross segrega-

tion pattern, �1 = 20, �2 = 16 and �3 = 10 for the F2 segrega-

tion pattern, and �1 = 20, �2 = 18, �3 = 14 and �4 = 10 for the

full cross segregation pattern. The heritability of the QTL

was set at values of h2 = 0.10, 0.15, 0.20, 0.30 and 0.50. The

variance of the environment effect, �2, was therefore deter-

mined by the variance and the heritability of the assumed

QTL and was defined by the relationship

Tong et al. 625



� �2 2 2 21� 
q h h( ) / . For example, in the test cross segrega-

tion pattern, if h2 = 0.30, then �2 = 14.6 because in this case

�q

2 625� . . For each case of the simulation, we sampled 500

individuals from a full-sib family with 1000 replicates.

Model selection criteria such as LEC, AIC and BIC were

used to select the best model among the three competing

models in this study and the power of these criteria was cal-

culated based on 1000 replicates. The statistical power for

each model was obtained by counting the number of runs

out of 1000 replicates in which the model selection was cor-

rect and the LR value was greater than an empirical thresh-

old. The threshold of the LR for each model was estimated

by an additional 1000 simulations with no QTL segrega-

tion. Generally, the 0.95 or 0.99 quantile of the 1000 LR

values under the null model was used as the empirical

threshold.

Software development

We developed a Windows-based software, desig-

nated as FsQtlMap, to implement the statistical methods for

QTL mapping in a full-sib family. FsQtlMap is written in

VC++ 6.0 and runs on Microsoft Windows operating sys-

tems, including Windows 2000, 2003, XP, Vista and 7. The

software assumes that the segregation pattern in a QTL may

be test cross (1:1 segregation), F2 cross (1:2:1 segregation)

or full cross (1:1:1:1 segregation) in a full-sib family and

uses LEC as a model selection criterion to determine the

QTL segregation ratio. The summary of QTL detection and

a series of intermediate results are generated and saved in

the corresponding files associated with QTL mapping.

FsQtlMap uses the free software gnuplot to plot LOD (the

logarithm of the odds based on 10) profiles along the link-

age groups; the plots are generated in enhanced metafile

format (EMF) and postscript (PS) format. FsQtlMap also

provides a function that runs permutation tests to yield the

genome-wide LOD threshold for asserting that a given

peak of the profile is a QTL for each of the three QTL mod-

els. Further details on the data format and operational pro-

cedures are provided in the FsQtlMap manual. The

software and its manual can be freely downloaded from

http://fgbio.njfu.edu.cn/tong/FsQtlMap/FsQtlMap.htm.

A real example

The applicability of our statistical method for map-

ping QTLs in a full-sib family was demonstrated for a for-

est tree, specifically an interspecific F1 hybrid population

between Populus deltoides and Populus euramericana in

Xuchou, Jiangsu Province, China. Ninety-three genotypes

randomly selected from the population were used to con-

struct the genetic linkage map based on molecular markers

detected by RAPD, AFLP, ISSR, SSR and SNP analysis

(Zhang, 2005). The linkage map contained 19 linkage

groups and 314 markers, of which 252 segregated in a 1:1

ratio, 7 in a 1:2:1 ratio and 55 in a 1:1:1:1 ratio. The linkage

phases of the two parents between any two adjacent mark-

ers on the map were also predicted. Our analysis identified

QTLs that affected the root number, an adventitious root

trait, in all of the 19 linkage groups in the integrated map of

P. deltoides and P. euramericana.

Results

Figure 1 compares the powers for selecting the true

model among the three candidate models based on LEC,

AIC and BIC. Figure 1a,b indicates that the power of LEC

and BIC for selecting the QTL segregation model of test

cross and F2 cross was higher than that of AIC for all the

heritabilities, whereas Figure 1c shows the opposite, i.e.,

that the power of AIC for selecting the QTL segregation

model of full cross was higher than that of LEC and BIC.

Although BIC showed a slight advantage over LEC for se-

lecting the model of test cross and F2 cross, it had drasti-

cally lower power than LEC for selecting the model of full

cross, especially when the heritability of the QTL

was � 0.20. Overall, the powers of LEC and BIC were

626 Model selection for QTL mapping

Figure 1 - Comparison of the powers for model selection using different

criteria and the QTL segregation pattern associated with (a) test cross, (b)

F2 cross and (c) full cross. Power was estimated as the number of runs out

of 1000 replicates in which the correct model was chosen using LEC, AIC

and BIC.



almost similar in finding the correct model, probably be-

cause these criteria are derived from a Bayesian framework

for model selection (McLachlan and Pell, 2000). However,

the LEC provides more information of the true model than

BIC in that the former not only has a priori information of

the parameters in the model but also contains information

on the negative Hessian matrix of the log likelihood. The

result of these simulations suggest that the LEC is the first

choice for model selection in mapping QTLs in a full-sib

family, a conclusion that agrees well with the findings of

model selection theory.

Table 2 provides detailed results on the estimated

QTL position, genotypic effects, heritability, and power of

model selection using LEC for the three QTL segregation

models. The power of model selection increased as the

QTL heritability increased and was generally > 90%, ex-

cept in the case of h2 = 0.10 and 0.15 for the full cross

model. The levels of QTL heritability had a strong effect on

the precision of the estimates of the QTL position but had a

small effect on the estimates of QTL genotypic effects and

QTL heritability. A high QTL heritability can yield esti-

mates of the QTL position that tend towards the true value

with a small standard deviation. When the QTL heritability

was small, as in the case of h2 = 0.10, especially for the full

cross model, the estimates of QTL position were biased

with a standard deviation up to 10.19. The average esti-

mates of QTL genotypic effects and heritability were al-

most equal to the true values, but the standard deviations

decreased as the heritability increased. The precision of the

estimates for QTL position, genotypic effects and herita-

bility decreased as the number of parameters in the model

increased. The test cross model yielded the most precise es-

timates of QTL position, genotypic effects and heritability

because it had only three parameters (one for residual or en-

vironmental variance and two for QTL genotypic effects)

while the full cross model yielded less precise estimates

with five parameters. This difference can be explained by

the fact that the high complexity of the model decreased the

precision of the parameter estimates.

The linkage map of P. deltoides and P. euramericana

was scanned with the three QTL segregation models using

the interval mapping method. Figure 2 shows the profiles of

the log likelihood ratios (LR) generated by each model to

detect QTLs that control the adventitious root trait. The

critical values determined at the 1% significance level by

1000 permutation tests (Doerge and Churchill, 1996) were

14.71, 21.78 and 27.54 for the test cross, F2 cross, and full

cross models, respectively. For each position on a linkage

map, the LEC was used to determine the most likely QTL

segregation pattern. Six high peaks (A-F) that exceeded the

thresholds were detected in the LR profiles (Figure 2).

However, since peak E in Figure 2a and peak F in Figure 2b

occurred at the same position in marker interval

CG/CTT_440R~ TC/CGT_120, linkage 3 there were only

five true QTLs.

Table 3 summarizes the procedure for selecting the

most likely QTL segregation pattern for the five positions

in Figure 2. According to the LEC, peaks A, C and F were

selected to be the significant QTL positions because each of

them had the lowest value for LEC and a significant value

of LR under the same QTL segregation pattern, whereas

peaks B and E were not significant QTL positions since

they did not have the lowest values for LEC. However,

peak F was close to peak C and they had almost the same
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Table 2 - Average estimates for QTL position, effects, heritability and power of model selection (PMS) using LEC for the three QTL segregation patterns

based on 1000 simulation replicates. Standard errors are shown in brackets.

QTL segregation

pattern

h2 QTL position �u1
�u2

�u3
�u4

�h 2 Power

0.10 49.91 (5.02) 15.01 (0.51) 10.00 (0.50) 0.102 (0.028) 0.959

0.15 50.00 (3.60) 15.00 (0.39) 9.99 (0.40) 0.152 (0.031) 0.962

Test cross 0.20 50.00 (2.96) 15.01 (0.33) 10.01 (0.32) 0.202 (0.033) 0.965

0.30 50.02 (1.98) 15.00 (0.25) 10.00 (0.26) 0.302 (0.036) 0.966

0.50 50.02 (1.53) 15.00 (0.16) 10.00 (0.17) 0.501 (0.030) 0.987

0.10 51.36 (7.21) 20.03 (1.17) 15.97 (0.84) 9.98 (1.17) 0.107 (0.030) 0.911

0.15 50.97 (5.52) 20.01 (0.95) 16.00 (0.65) 10.01 (0.95) 0.155 (0.036) 0.942

F2 cross 0.20 50.55 (4.43) 19.98 (0.76) 16.00 (0.54) 10.03 (0.78) 0.203 (0.038) 0.948

0.30 50.13 (2.91) 19.98 (0.57) 15.99 (0.41) 10.00 (0.60) 0.304 (0.043) 0.946

0.50 50.01 (1.95) 20.01 (0.38) 16.00 (0.26) 10.00 (0.39) 0.503 (0.041) 0.961

0.10 51.43 (10.19) 20.12 (1.42) 18.58 (1.21) 13.38 (1.22) 9.97 (1.37) 0.121 (0.043) 0.679

0.15 51.27 (8.27) 20.09 (1.11) 18.31 (1.00) 13.77 (0.99) 9.95 (1.09) 0.169 (0.050) 0.812

Full cross 0.20 50.87 (7.22) 20.02 (0.90) 18.15 (0.88) 13.80 (0.85) 9.98 (0.93) 0.215 (0.054) 0.912

0.30 50.54 (5.45) 19.97 (0.70) 18.03 (0.69) 13.96 (0.67) 10.00 (0.72) 0.308 (0.059) 0.986

0.50 50.13 (2.86) 19.98 (0.44) 18.00 (0.42) 14.00 (0.41) 10.03 (0.43) 0.503 (0.046) 1.000



genotypic effects so that the former may be considered a

ghost QTL (Martinez and Curnow, 1992; Doerge, 2002).

Overall, therefore, two QTLs, i.e. peaks A and C, were con-

cluded to be the significant QTLs responsible for root num-

ber.

Discussion

The efforts of many statistical geneticists in the past

two decades mean that genetic linkage maps can now be

constructed using different segregation molecular marker

data from full-sib families in species such as forest trees in

which inbred lines are almost impossible to obtain through

traditional self-mating for many generations (Maliepaard et

al., 1997; Wu et al., 2002; Lu et al., 2004; Tong et al.,

2010). Two softwares, JoinMap (Van Ooijen, 2006) and

FsLinkageMap (Tong et al., 2010), are available for con-

structing an integrated genetic linkage map with predicted

linkage phase between any two adjacent markers. Based on

such genetic linkage maps in outbred species, we have now

proposed a method for selecting the appropriate model for

detecting QTLs by considering three QTL segregation pat-

terns, i.e., test cross (1:1 segregation), F2 cross (1:2:1 segre-

gation) and full cross (1:1:1:1 segregation). Our method has

some advantages in the genetic mapping of complex traits

by accounting for the biological characteristics of forest

trees.

First, our QTL mapping method with model selection

procedures allows one to choose the most likely QTL seg-

regation pattern of the three assumed patterns. Like molec-

ular markers, QTL segregation may show different patterns

throughout the genome in an outcrossing species. Hence, it

is reasonable to incorporate different QTL segregation

modes into a statistical model for QTL mapping in a full-sib

family. However, MapQTL (Van Ooijen, 2009), the only

available software that can be used to detect QTLs with

data from a full-sib family, assumes that the QTL segrega-

tion is fixed as ab � cd. This is the case of the full cross pat-

tern in our statistical model. The shortcoming of MapQTL

can be illustrated by the real example described above in

which QTLs were detected segregating in test cross and F2

cross patterns. This means that no QTLs would be found if

QTL mapping in this example were done with MapQTL.

Second, our QTL mapping method could be done by

using genetic linkage maps of outbred species that had been

constructed in the past 20 years. For example, in forest

trees, many parent-specific linkage maps (Plomion et al.,
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Figure 2 - The profiles of the log likelihood ratios for root number, an adventitious root trait in poplar, across all the 19 linkage groups in the integrated

map of P. deltoids and P. euramericana based on (a) test cross, (b) F2 cross, and (c) full cross models. The threshold values of the three models for assert-

ing the existence of a QTL at a significance level of p = 0.01 are indicated as horizontal dashed lines. Each short red line at the bottom of the frame indi-

cates a marker position.



1995; Wu et al., 2000; Yin et al., 2002; Shepherd et al.,

2003; Gan et al., 2003) have been constructed and QTL

mapping studies have also been done with the pseudo-test

cross strategy first proposed by Grattapaglia and Sederoff

(1994). This method has some limitations in QTL mapping

in that the linkage phase between adjacent two markers and

possible multiple QTL segregation patterns are not consid-

ered. The application of our QTL mapping method to these

previous data would be expected to yield better results.

Third, the use of LEC as the criterion for identifying

QTL segregation patterns is not only supported by the sim-

ulation results but also by the quantity itself. Model selec-

tion is an important but very difficult problem that has not

been completely resolved for mixed models (McLachlan

and Pell, 2000). Although AIC and BIC have been exten-

sively applied to many situations, they were apparently un-

able to select the correct QTL segregation ratio in our QTL

mapping models (Figure 1). Unlike AIC and BIC, LEC

contains more information about the model itself. LEC not

only contains the number of estimated parameters and the

sample size but also the prior probabilities of the estimated

parameters and the negative Hessian matrix of the log like-

lihood. These characteristics indicate that LEC generally

has a higher power than AIC and BIC in model selection.

Finally and most importantly, we have developed a

Windows-based software (FsQtlMap) to allows the imme-

diate implementation of our QTL mapping strategy. Com-

puter packages for QTL mapping, such as MapMaker/QTL

(Lincoln and Lander, 1990) and Windows QTL Cartogra-

pher (Wang et al., 2010), are well-established and have

been extensively used for inbred lines. In contrast, there are

no popular statistical tools for QTL mapping in outbred

species such as forest trees. Although MapQTL (Van

Ooijen, 2009) has been used for QTL mapping in forest

trees by some researchers, its application is limited by the

assumption that there is only one QTL segregation pattern

in a full-sib family. By incorporating the characteristics of

outcross species FsQtlMap provides a much more powerful

computing tool for QTL mapping.

Our new QTL mapping method was applied to real

data and successfully detected two QTLs that affect adven-

titious roots in Populus. One QTL segregated in an F2 cross

and had much higher heritability. This finding indicates

that the rooting capacity of poplars may be controlled by a

major gene that can explain ~70% of the phenotypic vari-

ance. This conclusion is consistent with that of Han et al.

(1994).
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Supplementary Material

Appendix: Elements of the information matrix of the log- likelihood

The elements of the information matrix ( )eI θ , denoted by
1 2

( )e j jI θ , are the negative

second partial derivatives of the log likelihood function (Eq. (5)) with respect to

1μ , 2μ , , kμ , and 2σ , which can be directly obtained as follows:

2
* * 2 2 *

2 4
1

ln ( ) 1
( ) (1 )( )

n

e jj ij ij i j ij
ij

L
I p p y p

θθ μ σ
μ σ =

∂ ⎡ ⎤= − = − − − −⎣ ⎦∂ ∑ , for 1,2, ,j k=

1 2 1 2 1 2

1 2

2
* *

4
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