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Abstract

Synonymous single nucleotide variants (sSNVs) do not alter the primary structure of a protein, thus it was previously 
accepted that they were neutral. Recently, several studies demonstrated their significance to a range of diseases. Still, 
variant prioritization strategies lack focus on sSNVs. Here, we identified 22,841 deleterious synonymous variants in 
125,748 human exomes using two in silico predictors (SilVA and CADD). While 98.2% of synonymous variants are 
classified as neutral, 1.8% are predicted to be deleterious, yielding an average of 9.82 neutral and 0.18 deleterious 
sSNVs per exome. Further investigation of prediction features via Heterogeneous Ensemble Feature Selection revealed 
that impact on amino acid sequence and conservation carry the most weight for a deleterious prediction. Thirty nine 
detrimental sSNVs are not rare and are located on disease associated genes. Ten distinct putatively non-deleterious 
sSNVs are likely to be under positive selection in the North-Western European and East Asian populations. Taken 
together our analysis gives voice to the so-called silent mutations as we propose a robust framework for evaluating 
the deleteriousness of sSNVs in variant prioritization studies.
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Introduction
Point mutations in protein coding sequences may lead 

to remarkable functional changes and their severity can be 
classified by evaluating the extent of amino acid alterations 
to protein function (Cooper et al., 2010). Synonymous single 
nucleotide variants (sSNVs) do not alter the sequence of amino 
acids due to codon degeneracy, seemingly causing no change 
to protein function. Because of this, sSNVs are often discarded 
in variant prioritization pipelines (Buske et al., 2015).

The idea that sSNVs are innocuous has been recently 
challenged when several studies associated these variants to 
different diseases (Gartner et al., 2013; Bonin et al., 2016; 
Diederichs et al., 2016; Palagano et al., 2017). sSNVs in 
GWAS studies share similar likelihood and effect size to 
disease association as non-synonymous SNVs (Chen et 
al., 2010). The mechanisms by which sSNVs can cause 
deleterious consequences comprise a series of processes 

related to modulation of gene expression, such as aberrant 
splicing (Cartegni et al., 2002), modified mRNA stability 
(Nackley et al., 2006) and changes in the pace of synthesis 
and cotranslational folding of proteins due to codon usage 
bias (Hunt et al., 2014).

Studies on yeast have demonstrated that the majority 
of synonymous variants are strongly nonneutral and can 
have significant effects on gene expression levels (Shen et 
al., 2022), suggesting that synonymous variants may play a 
more important role in shaping an organism’s phenotype than 
previously thought. Despite the demonstrated importance 
of sSNVs, efforts to experimentally elucidate the functional 
consequences of sSNVs are scarce, especially when compared 
to initiatives validating non-synonymous variants (Buske et al., 
2015). For such, while methods for predicting the consequence 
of sSNVs to protein function have been developed (Buske et 
al., 2015), we lack a robust framework for evaluating sSNVs 
deleteriousness to the benefit of variant prioritization studies.

Here, we sought out to develop a framework to assist 
in the deleteriousness prediction of sSNVs identified by 
whole exome sequencing (WES) data. We obtained candidate 
deleterious (detrimental) sSNVs by combining the prediction 
results of Silent Variant Analysis (SilVA) and Annotation 
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Dependent Depletion (CADD). Next, we evaluated the weight 
of features to deleteriousness classification via Heterogeneous 
Ensemble Feature Selection, and comprehensively analyzed the 
frequency of variants and gene ontology. Finally, we evaluated 
if benign variants could be subject to positive selection using 
the Population Branch Statistics (PBS), an Fst based method.

Material and Methods

Dataset

All the data used here are publicly available on The 
Genome Aggregation Database (gnomAD v2.1.1) (Karczewski 
et al., 2020). We downloaded the variant call format (.vcf) 
files for all 24 human chromosomes, separately, containing 
data from 125,748 exomes, all mapped to the GRCh37/hg19 
reference sequence. The Y chromosome was cut out from 
the analyses because one of the prediction softwares (SilVA) 
doesn’t have support for this chromosome.

Synonymous variants identification  
and effect prediction

Each .vcf file was used as input for SilVA (v1.1.1) (Buske 
et al., 2015), which identifies only synonymous variants and 
predicts their effects. SilVA bases its predictions on a number 
of features, including conservation, codon usage, splice sites, 
splicing enhancers and suppressors, and mRNA folding free 
energy. We used all variants classified as synonymous by SilVA 
as input to CADD (v1.4) (Rentzsch et al., 2019), which is a 
variant effect predictor not specific to sSNVs. CADD integrates 
multiple annotations into one metric by contrasting variants 
that survived natural selection with simulated mutations. Next, 
we selected only the variants classified as synonymous both 
by SilVA and CADD.

The next filter step involved the effect predicted for each 
variant. We separated our dataset into two groups: sSNVs 
predicted as deleterious and sSNVs predicted as benign. The 
CADD PHRED-like scaled score ranks a variant relative to 
all possible substitutions of the human genome (8.6x109) 
(Rentzsch et al., 2019). A PHRED-like score greater or equal 
to 20 indicates the 1% most deleterious, while a score greater 
or equal to 30 indicates the 0.1% most deleterious. For this 
study, variants with a PHRED-like score ≥ 15 were considered 
as detrimental and variants with a PHRED-like score < 10 were 
considered as benign, as recommended by the authors. On 
the other hand, SilVA classifies the variants as benign (score 
≤ 0.270), potentially pathogenic (0.270 > score ≤ 0.485) and 
likely pathogenic (score > 0.485) based on the predicted score 
that ranges from 0 to 1, where close to 1 is more likely to be 
deleterious. Variants featuring both pathogenic SilVA classes 
(potentially and likely) were considered as deleterious for this 
work. Variants which had divergent effect prediction between 
SilVA and CADD were filtered out and the remaining sSNVs 
composed our final dataset.

Ensemble feature selection

To find out which features contributed the most to 
the prediction of detrimental variants, we performed a 
Heterogeneous Ensemble Feature Selection (EFS) on 53 
features from the CADD annotations (Table S1). The remaining 
46 features were filtered out for either presenting more than 5% 

of missing values or not making sense to this specific analysis 
(Table S2). We combined both Python3 and R programming 
languages to create an ensemble with four filter methods 
provided by FSelector R package (Romanski et al., 2021): 
Chi-square (Bommert et al., 2020), OneR (Holte, 1993), 
Gain Ratio (Quinlan, 1986), and Symmetrical Uncertainty 
(Bommert et al., 2020).

All the feature selection methods provide a features 
ranking, from the most to the least relevant feature to 
discriminate among classes (i.e., deleterious or benign) based 
on scores computed according to their particularities. Our 
ensemble setup combines the four different feature relevance 
opinions using the Borda Count method, a popular voting 
rule that combines preferences of multiple voters. Due to 
the severe imbalance between the number of deleterious and 
benign variants in our dataset, we performed an undersampling 
on the benign data, which is the majority class. We randomly 
sampled the benign class 100 times for the same amount of 
variants in the deleterious class and performed the Ensemble 
Feature Selection with all samples. The final ranking was a 
combination of all 100 rankings also using the Borda Count 
method.

Gene enrichment

To investigate the functions of the genes on which the 
detrimental sSNVs are located and the biological pathways 
implicated, we developed the R package called autoGO 
as an integrator of gene enrichment for Gene Ontology 
(GO) and Kyoto Encyclopedia of Genes and Genomes 
(KEGG) pathways. The GO search depends on the package 
clusterProfiler (v3.18.1) (Yu et al., 2012) and the enrichment 
of KEGG pathways depends on the package KEGGprofile 
(v1.32.0) (Zhao et al, 2020). ClusterProfiler allows the user 
to perform the KEGG pathways enrichment as well, however, 
it uses a deprecated version of the KEGG database, while 
KEGGprofile connects with the up-to-date data available 
online. Both packages perform hypergeometric tests to assess 
the significance of the enrichment followed by false discovery 
rate (FDR) correction for multiple comparisons.

As the advantages over the currently available packages, 
autoGO was designed to deal with files containing numerous 
genes, working as a standalone application. AutoGO performs 
the analysis from a simple table containing the gene identifiers 
with or without expression data, generating standardized plots 
and tables for each input file, regardless of the source of the 
enriched terms. Consequently, AutoGO can optimize the 
efforts on the analysis of genomics data. Sources may be found 
at https://github.com/ldiass/MPSbase/tree/master/autoGO.

Identification of outliers

In order to evaluate the possibility of positive selection 
acting upon the benign variants dataset, we used the Fst based 
Population Branch Statistics (PBS) to detect outliers at first. 
Introduced by Wright (1951) as part of the F-statistics, the Fst 
is a descriptive measure of the differentiation prompted by 
important evolutionary processes such as migration, mutation 
and drift, between two populations (Holsinger and Weir, 2009). 
Since Fst is directly related to the variance in allele frequency, 
small Fst values indicate similarity of the allele frequencies 
within each population.

https://github.com/ldiass/MPSbase/tree/master/autoGO
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PBS was first described by Yi et al. (2010) in a study of 
heritable adaptations to extreme altitude in the Tibetan Plateau 
population. It is based on the premise that a gene presenting 
large differences in allele frequencies between two populations 
configures a potential target for natural selection. However, 
simply ranking Fst values wouldn’t tell which population was 
affected by selection. PBS introduces a third more distant 
population for a pairwise Fst comparison, yielding in the 
PBS value. Variants which present extreme PBS values – the 
outliers – configure strong candidates for positive selection 
in the first population. Here, we developed an R script to 
calculate PBS values as described by Yi et al. (2010).

Two groups of three populations were separately 
analyzed: East/South Asian (EAS-SAS), and North-Western/
South European (NWE-SEU), with the third and more distant 
population being the African/African American for both 
groups. Population datasets were obtained from GnomAD 
using the database’s classification. These populations were 
chosen for the similarities between the natives from the same 
continent given by the minimal Fst values between them (EAS-
SAS = 0.00108 and NWE-SEU = 0.00029), and for the blatant 
differences from the African/African American natives. The 
African/African American population is represented by 8.128 
individuals, South Asian by 15.308, East Asian by 9.197, 
whereas South and North-Western European are represented 
by 56.885 individuals together.

As a support analysis, we separately ran the same groups 
of populations on Bayescan (v2.1) using default parameters. 
Just like PBS, Bayescan is an Fst based method used to identify 
variants under natural selection. The difference is that it uses 
a Bayesian model for estimation of locus–population specific 
Fst coefficients.

Results

The majority of human synonymous variants are 
predicted to be neutral

Our raw dataset consisted of 16,754,528 single nucleotide 
variants found in 125,748 exomes (Karczewski et al., 2020). 
After combining prediction results from SilVA and CADD, 
we obtained 1,266,032 sSNVs, corresponding to 7.56% of 
our raw dataset. Out of this set of sSNVs, 98.2% (1,243,191 
variants) were considered benign (File S1), while 1.8% 
(22,841 variants) were predicted to be deleterious by both 
predictors (File S2), yielding an average of 0.18 deleterious 
sSNVs per exome (Figure S1). In contrast to studies on yeasts 
(Shen et al., 2022), the majority of synonymous variants 
found in humans are predicted to be neutral.

CADD ranked 589,360 variants as the top 15% 
deleteriousness, which corresponds to its cutoff. Only 186 
variants were ranked as the top 0.1% most deleterious 
(Figure 1A and 1B) with a PHRED-like score > 30. Out of 
46,264 variants predicted as deleterious by SilVA, 10,720 
sSNVs fell in the likely pathogenic category, with scores 
higher than 0.48, and only 77 obtained a score higher than 
0.9 (Figure 1C and 1D). None of the 77 top-scoring variants 
from SilVA’s prediction are ranked among the 0.1% CADD 
variants.

The sSNV 9-139685876-G-A is the only featuring 
CADD’s top 5 scoring variants that was predicted as likely 
pathogenic by SilVA, with a 0.586 score. The remaining four 
variants featuring CADDs top 5 were considered potentially 
pathogenic by SilVA, with a score ≤ 0.350: 19-7747163-G-
T, 20-35807771-G-A, 3-73047268-G-A, 9-35809402-G-C. 
Four out of five SilVA’s top 5 variants are included in the 1% 
predicted as most deleterious by CADD (Table 1). 

“Consequence” is the most relevant feature to the 
effect prediction

Using the comprehensive annotation provided by 
CADD for each variant (Tables S1 and S2), we performed a 
Heterogeneous Ensemble Feature Selection in order to rank 
these annotations according to their relevance to the effect 
prediction. The top ten most relevant features are related to 
the type of variant, conservation scores, chromatin state, and 
the reference amino acid (Table S1). The most relevant feature 
is “consequence”. Since we are assessing only synonymous 
mutations, our final dataset presented only two types of 
consequences: ”synonymous” and ”splice site” (synonymous 
variants occurring in splice sites). From the deleterious dataset, 
75.72% of the variants occur in splice sites, whereas only 
1.12% of benign variants occur in splice sites. Interestingly, 
25% of deleterious variants occur outside splicing sites. The 
remaining features in the top eight are conservation scores 
given by different softwares. The ninth most relevant feature 
is the proportion of heterochromatin state in 127 cell types.

More than 90% of the sSNVs are super rare 

Next, we categorized detrimental sSNVs according to 
their allele frequency (AF) into not rare, rare and super rare 
variants. In our data, more than 90% of the variants from both 
classes, benign and deleterious, present an AF ≤ 0.1% and are 
considered here as super rare (Figure S2). The proportion of 
super rare detrimental variants is statistically higher than super 
rare benign variants, whereas the proportion of rare (0.1% 
≥ AF ≤ 1%) and not rare (AF > 1%) deleterious variants is 
statistically lower than rare and not rare benign variants (p 
< 2.2x10−16).

Out of the 22,841, 21,926 were considered super rare 
deleterious variants, located on 9635 different genes. KEGG 
pathway (Figure 2A; File S3) and Gene Ontology (Figure 
S3; File S4) enrichment analyses revealed that metabolic 
pathways are enriched in 438 genes (FDR = 2.12x10−14), 
corresponding to less than 35% of the total gene set where 
this pathway is represented. Nevertheless, the spinocerebellar 
ataxia pathway was found to be enriched in 66 genes (FDR 
= 2.76x10−9), corresponding to almost 50% of the gene set 
associated with this pathway. 

The 876 rare deleterious variants are located on 827 
different genes, yet only 63 were found to be implicated in four 
different KEGG pathways (Figure 2B; File S5) according to 
enrichment analyses (Figure S4; File S6): Ubiquitin mediated 
proteolysis (FDR = 0.00039, 15 genes), Lysosome (FDR = 
0.00046, 14 genes), Endocytosis (FDR = 0.00056, 22 genes) 
and Protein digestion and absorption (FDR = 0.00055, 12 
genes). The latter is the only pathway not found to be enriched 
in the super rare deleterious sSNVs genes.
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Figure 1 – Comparison between SilVA and CADD predictions. A. CADD’s prediction boxplot. In grey, the benign group, in green the top 10% most 
deleterious variants, in red the top 1%, and in blue the top 0,1%. The Y axis indicates the PHRED-like scaled score; B. Density plot of CADD’s prediction. 
The dashed red line indicates the cutoff for deleterious variants C. SilVA prediction boxplot. In gray, the likely benign group, in green, the potentially 
pathogenic group, in red, the likely pathogenic group. Y axis indicates the mean SilVA score; D. Pie chart of SilVA’s prediction. Same color code as 
Figure 1C.

For the 39 not rare deleterious variants, no KEGG 
pathway was found to be enriched in the 39 different genes 
on which they are located. Remarkably, all genes have been 
associated with one or more diseases, with the exception of 
GKAP1, on which the sSNV 9-86354657-A-C is located 
(Table 2).

FOXD4L5 carries the best candidate for positive 
selection in the NWE population

We then decided to evaluate if non deleterious sSNVs 
were subject to evolutionary constraints, given they comprise 
the majority of our data. Positive selection acting upon 
variants classified as benign by both SilVA and CADD 
(1,243,191 variants) was investigated using the population 
branch statistics (PBS) to pairwise compare the Fst values 
of variants from two groups of closely related populations 
against a distant one. In one group (EAS-SAS) we compared 
East and South Asians, and in the other group (NWE-SEU), 
we compared North-Western and Southern Europeans, both 

using African/African American as the outgroup population. 
PBS is an Fst-based method with good power to detect recent 
selection by measuring alleles with extreme frequency in a 
specific population when compared to two other populations 
(Yi et al., 2010). Variants showing extreme PBS values – the 
outliers – represent strong candidates for positive selection.

The top 0.1% higher Fst values between the NWE-
SEU group encompassed 168 sSNVs (Figure 3A), while 
145 sSNVs were found in the top 0.1% Fst of the EAS-SAS 
group (Figure 3B). The two overall best outlier candidates 
are found to be positively selected on the North-Western 
European population: a C>T change (PBS = 0.42) on the 
gene FOXD4L5 and an A>G change (PBS = 0.35) on the gene 
CHRFAM7A (Table 3). The other three candidates to complete 
the top 5 for the North-Western European population are the 
T>C variant (PBS = 0.17) situated on the gene HERC2; a 
T>C variant found in the Nodal Modulator 3 (NOMO3) gene 
(PBS = 0.13); and the G>A sSNV (PBS = 0.08) located on 
the gene Leucine Rich Repeat Containing 37A (LRRC37A).
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Table 1 - Top-scoring pathogenic variants from each predictor and their strongest gene-disease association according to MalaCards.

Predictor Variant CADD* SilVA* Gene Disease (MalaCards ID)

CADD

3-73047268-G-A 44.00 0.299 PPP4R2 multiple cancers, SPN0461

19-7747163-G-T 37.00 0.322 TRAPPC5 SPN4052, BNC0023, OST1104, RTN0415, multiple Cancers

9-35809402-G-C 33.00 0.350 SPAG8§ ACR1286, EPP0117, SHR0848

9-139685876-G-A 32.00 0.586 TMEM141 INT0049, multiple cancers

20-35807771-G-A 24.80 0.325 RPN2 CNG41110, ANM08011,
multiple Cancers

SilVA

12-105537021-G-A 22.50 0.951 WASHC4§ INT47412, ATS20413

6-152631823-C-T 18.37 0.951 SYNE1§ SPN20714, EMR01415, ART16516, SPS00817, EMR01818, 
JVN05019

5-137488171-C-T 20.30 0.943 BRD8 multiple cancers

8-96047804-G-A 22.30 0.936 NDUFAF6§ MTC16420, FNC06621, LGH00722, PRM38423

6-31922996-C-T 23.60 0.933 NELF-E ATM09524

1Spinal muscular atrophy. 2X-Linked Spondyloepiphyseal Dysplasia Tarda. 3Binocular Vision Disease. 4Osteogenesis Imperfecta Type Xv. 5Retinitis 
Pigmentosa 11. 6Acromesomelic Dysplasia 1. 7Epiphyseal Chondrodysplasia, Miura Type. 8Short Stature With Nonspecific Skeletal Abnormalities. 
9Intraneural Perineurioma. 10Congenital Disorder of Glycosylation, Type in. 11Anemia, Congenital Dyserythropoietic, Type Iiia. 12Autosomal Recessive 
Intellectual Developmental Disorder 43. 13Autosomal Recessive Non-Syndromic Intellectual Disability. 14Spinocerebellar Ataxia 8. 15Autosomal 
Dominant Emery-Dreifuss Muscular Dystrophy 4. 16Myogenic Type Arthrogryposis Multiplex Congenita 3. 17Spastic Ataxia. 18Autosomal Dominant 
Emery-Dreifuss Muscular Dystrophy 2. 19Juvenile Amyotrophic Lateral Sclerosis. 20Mitochondrial Complex I Deficiency, Nuclear Type 17. 21Fanconi 
Renotubular Syndrome 5. 22Leigh syndrome. 23Primary Fanconi Renotubular Syndrome. 24Autoimmune Disease.
§Gene is likely to be associated with causing the disease(s), since their gene-disease associations are supported by manually curated and trustworthy sources.

*SilVA classifies the variants as benign (score ≤ 0.270), potentially pathogenic (0.270 > score ≤ 0.485) and likely pathogenic (score > 0.485), whereas 
CADD uses a PHRED-like score system, separating the deleterious category into the 1% most deleterious (PHRED score ≥ 20) and the 0.1% most 
deleterious (PHRED score ≥ 30). For this study, variants with a PHRED-like score < 10 were considered as benign.

Figure 2 – KEGG pathways analysis. A. Top-10 KEGG pathways enriched in the super rare variants genes; B. KEGG pathways enriched in the rare 
variants genes.
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Table 2 – Not rare pathogenic variants and their strongest gene-disease association according to MalaCards.

Variant MAF ABraOM SilVA CADD Gene Disease (MCID†)
Monogenic

22-38051628-C-A 0.02048 0.045230 0.479 17.10 PLCD1§ NLD012, LKN007

11-77090939-C-T 0.01339 0.006568 0.333 15.09 PAK1§ INT331

Multifactorial

17-7468277-C-T 0.03548 0.022167 0.504 18.72 SENP3 PSR032, ATS523, multiple cancers

12-122292609-C-T 0.01160 0.007389 0.590 22.90 HPD§ HWK001, TYR011

17-80399692-T-G 0.02413 0.022167 0.288 18.50 HEXDC MLD018, AMY004

10-63450379-G-A 0.02376 0.015599 0.445 21.70 CABCOCO1 CNR021

10-56106173-T-C 0.01359 0.021346 0.346 16.76 PCDH15§ USH041, DFN093

6-46851296-C-T 0.01190 0.020525 0.400 17.54 ADGRF5 PLY117, RTN048, SFT011

20-44580788-G-T 0.02123 0.037767 0.344 22.10 ZNF335§ MCR223

21-33678976-G-T 0.01311 0.003284 0.368 18.28 MRAP GLC043, FML063

19-41086309-G-C 0.03815 0.042693 0.419 16.05 SHKBP1 AML050, NNN034, BRK001, DLF001, KRN001, SML004

6-31938120-C-T 0.01684 0.018062 0.362 22.60 DXO CTS005, CRY008

11-86159223-C-T 0.05721 0.061576 0.368 17.66 ME3 THY062

12-132416780-C-A 0.01648 0.015599 0.432 16.76 PUS1§ MYP021

15-64452322-G-A 0.01375 0.010673 0.305 18.60 PPIB§ OST130, BRT054, OST122, OST121, OST080

16-66764069-G-C 0.01689 0.011494 0.405 16.61 DYNC1LI2 BRD019

11-76867135-C-T 0.04401 0.033662 0.312 20.30 MYO7A§
USH036, DFN250, DFN251, USH001, RRG078, RTN008, 
SNS001, USH035, FND002, NNS072, CNR004, NNS044, 
ERM002, RRT027, RRT028

9-86354657-A-C 0.01474 0.002463 0.360 15.01 GKAP1 multiple cancers

16-67917958-G-A 0.03065 0.044335 0.316 22.00 EDC4 ULN001, THR013

4-113468564-C-T 0.05138 0.030378 0.309 22.20 ZGRF1 ISL163

13-30107118-A-C 0.04922 0.022167 0.359 15.66 SLC7A1 HYP595

19-39329205-C-T 0.02172 0.025452 0.352 20.90 HNRNPL AZS001, MTH009

X-153176369-T-C 0.01101 - 0.339 18.67 ARHGAP4 NPH007, DBT005, XLN251

3-58376875-T-G 0.01735 - 0.316 15.25 PXK§ SYS001

13-51941943-T-C 0.01705 0.009852 0.317 18.81 INTS6 multiple cancers

13-46942949-A-C 0.1767 0.041051 0.656 16.39 RUBCNL multiple cancers

15-81294774-G-C 0.05068 0.040230 0.339 15.71 TLNRD1 BLD134

18-43604634-C-T 0.01421 0.006568 0.339 15.60 PSTPIP2 CHR288, SPH001

1-54704829-T-C 0.01544 0.032841 0.397 16.85 SSBP3 LSS002, CCK001

5-90459600-T-G 0.02762 0.004105 0.388 15.77 ADGRV1§ USH020, FBR069, USH001, USH035, FND002, RRG078, 
EPL140, USH037, GNR002

7-89937168-G-A 0.02964 0.008210 0.817 23.50 CFAP69§ SPR127, NNS033

16-4487486-G-A 0.01564 0.004926 0.705 19.68 DNAJA3 CDS002, MYS074, ALT004

Both

7-117199709-G-A 0.01672 0.027094 0.543 23.10 CFTR§ CYS001, PNC108, HRD234, BRN076, VSD002, MLN007, 
PRS050, SPR093, AQG005, IDP074, NCH001, MLN084

3-143371201-C-T 0.03362 0.050082 0.417 22.00 SLC9A9§ ATS377, CLR023

19-11325229-C-T 0.01410 0.029557 0.845 23.00 DOCK6§ ADM007, FML021

17-33477242-G-A 0.06422 0.046798 0.372 21.90 UNC45B§ CTR144, MYP004, MYF012, ERL036, ERL043

14-23856861-C-T 0.01165 0.018883 0.319 22.00 MYH6§ CRD089, CRD096, ATR022, SCK022, CRD086, DLT002, 
HRT038, PTN001, CRD233, FML304, FML272

11-6650684-T-A 0.009917 0.009852 0.307 22.70 DCHS1§ VNM003, MTR077, MTR080

15-91543131-T-A 0.01862 0.047619 0.681 22.90 VPS33B§ ART062, KRT080, CHL193

†MalaCards ID. For the complete description of disease names, refer to Table S3.
§Gene is likely to be associated with causing the disease(s), since their gene-disease associations are supported by manually curated and trustworthy sources.
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A G>T change on NPIPB5 is a great candidate for 
positive selection in the EAS population

The third highest scoring sSNV overall was found to 
be positively selected on the East Asian population. The 
G>T change (PBS = 0.19) is located on the gene NPIPB5 
on chromosome 16. The other four variants to complete the 
five best candidates to be positively selected in the East Asian 
population, in relevance order, are: the T>G variant (PBS = 
0.15), found in the gene WASHC2A; the T>C variant (PBS 
= 0.11) located on the gene Tryptase β 2 (TPSB2); a T>C 
change (PBS = 0.11) on the gene Polycystic Kidney Disease 

1-Like 2 (PKD1L2); the T>C variant (PBS = 0.10) situated 
on the gene RGPD3.

We ran the same groups of populations on Bayescan 
(v2.1) (Foll and Gaggiotti, 2008), which identifies variants 
under natural selection using a Bayesian model for estimation 
of locus–population-specific Fst coefficients. Bayescan was 
not able to identify any outliers (Figure S5), maybe because 
of high Fst values and the small number of populations. This 
method is known for being conservative, which allows for 
a low false positive rate (Narum and Hess, 2011), although 
robustness decreases when the number of screened populations 
is low (Tigano et al., 2017).

Figure 3 - Manhattan plot showing PBS statistics. A. PBS outlier analysis for the NWE-SEU group. Highlighted in green, the outliers featuring the top 
0.1% best candidates for positive selection. B. PBS outlier analysis for the EAS-SAS group. Highlighted in green, the outliers featuring the top 0.1% 
best candidates for positive selection.

Table 3 – PBS outliers and their genes.

Group Variant PBS Gene Description

SEU-NWE

9-70177312-C-T 0.428844876 FOXD4L5 Forkhead Box D4 Like 5

15-30654889-A-G 0.353300602 CHRFAM7A Fusion of
CHRNA7 and FAM7A

15-28467246-T-C 0.170901254 HERC2 HECT And RLD Domain
Cont. E3 Ubiq. Prot. Ligase 2

16-16367702-T-C 0.136165561 NOMO3 NODAL Modulator 3

17-44408795-G-A 0.082536940 LRRC37A Leucine Rich Repeat
Containing 37A

SAS-EAS

16-22547298-G-T 0.19979496 NPIPB5 Nuclear Pore Complex
Interacting Protein B5

10-47911591-T-G 0.15311104 WASHC2A WASH Complex Subunit 2A

16-1279253-T-C 0.11847263 TPSB2 Tryptase Beta 2

16-81242151-T-C 0.11058199 PKD1L2 Polycystic Kidney
Disease 1-Like 2

2-107040985-T-C 0.10454195 RGPD3 RANBP2 Like And GRIP
Domain Containing 3
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Discussion
Synonymous variants are often considered to be neutral. 

However, they may impact phenotype through different 
mechanisms. For example, synonymous variants may have 
an impact on splicing, through splice consensus disruption or 
leading to alternative splicing. But, it still might be pathogenic, 
even if no effect on splice consensus sites or alternate splicing 
are predicted. However, such variants would probably be 
classified as Likely Benign with computational support. 
Moreover, if splicing impact is suspected or evidence hints 
at pathogenicity, the American College of Medical Genetics’ 
(ACMG) recommends it should be classified as uncertain 
until functional evaluation or further evidence is available 
(Richards et al., 2015).

This proposed framework holds potential in the 
reclassification of synonymous Variants of Uncertain 
Significance (VUS). Here, we leveraged comprehensive 
genomic data from multiple populations, allowing for a more 
extensive assessment of the potential impact of sSNVs. By 
employing this approach, our study contributes with valuable 
insights into the functional consequences of these variants, 
thereby offering a promising avenue for the reclassification of 
VUS. Through the integration of comprehensive population 
data and advanced genomic analysis, this method holds 
promise in enhancing our understanding of VUS and their 
potential association with diseases. Nonetheless, the utilization 
of this extensive analysis within a diagnostic context remains 
ambiguous; conceivably, its application could be tailored 
for focused reclassification endeavors in specific disease-
associated genes.

The results show that, among CADD’s top 5 scoring 
variants, sSNV 9-139685876-G-A stands out as the sole 
variant predicted as likely pathogenic by SilVA. This variant 
has no clinical significance reported in literature yet, and is 
located on the transmembrane protein 141 (TMEM141), on 
chromosome 9. Although its function is not clearly known, 
it is speculated that TMEM141 might be involved in signal 
transduction across the membrane due to its loosely packed 
helices (Klammt et al., 2012). The other four variants that 
constitute CADD’s top 5 were deemed potentially pathogenic 
by SilVA: 19-7747163-G-T, 20-35807771-G-A, 3-73047268-
G-A, 9-35809402-G-C. Despite none of them having clinical 
significance reported, all are located on disease associated 
genes (Table 1).

Another noteworthy result is that four of SilVA’s top 5 
variants are encompassed within the 1% of variants predicted 
by CADD to be the most deleterious. All of them are located 
on genes which have been associated with disorders such as 
cancer, neurological and neurodegenerative diseases. Despite 
having no strong association with any disease according to 
MalaCards (Rappaport et al., 2013), The Negative Elongation 
Factor Complex Member E (NELF-E) was found to be involved 
in the regulation of HIV’s post infection transcription (Rao et 
al., 2006). It is also important to observe that none of SilVA’s 
top 5 scoring sSNVs have clinical significance reported in 
the literature yet.

The Ensemble Feature Selection analysis revealed 
that the most relevant feature for the effect prediction is 
”consequence”, denoting the variant’s impact on genomic 

features as provided by VEP. Notably, 25% of deleterious 
variants manifest beyond splicing sites, thus indicating that 
other mechanisms leading to deleteriousness are at play, 
such as impaired mRNA stability and codon usage bias. The 
mechanisms by which a synonymous variant can impair mRNA 
stability, thus, the efficiency of translation, are not readily 
discernible. Although there’s a possibility that it could impact 
translation initiation, it’s also feasible that sSNVs might induce 
a broader disruption in mRNP structure (Duan et al., 2003). 
When it comes to codon usage bias, it is directly associated 
with the optimization of fundamental cellular processes, 
such as speed and accuracy of translation (Hunt et al. 2014).

The remaining attributes within the top eight encompass 
conservation scores provided by various software tools. 
Conservation is one of the most important aspects for assessing 
the effect of any variant. Evolutionary processes have discarded 
most deleterious mutations, albeit variants of all levels of 
conservation are required for species adaptability (Miller 
et al., 2019). “Conservation” is also related to the non-
random frequency of synonymous codon selection that varies 
from organism to organism, and even from gene to gene. 
The change of the preferred codon for an unusual one can 
influence the efficiency of gene expression processes and 
folding of the protein (Spencer et al., 2012). The significance 
of the proportion of heterochromatin state in 127 cell types, 
ranked ninth in our analysis, can be attributed to the nature of 
heterochromatin, primarily comprising inactive regions of the 
genome where gene expression is limited in most instances.

When categorizing the variants based on their allele 
frequency, it is important to consider the underlying assumption 
that detrimental variants generally exhibit low AF due to 
evolutionary processes (Buhr et al., 2016). Therefore, variant 
effect predictors lean to filter deleterious variants of higher 
frequency and neutral variants of lower frequency (Zeng and 
Bromberg, 2019). This contributes to the observation of a 
substantial percentage of variants from both classes, benign 
and deleterious, possessing an AF ≤ 0.1%, thereby being 
classified as super rare in this study.

The results of enrichment analyses for the 9635 genes 
where the super rare variants are situated indicate that metabolic 
pathways are significantly enriched in a substantial number of 
genes. However, it is noteworthy that these enriched pathways 
represent less than 35% of the total gene set associated with 
them. Although it is possible that many sSNVs may play a role 
in the diversity of metabolic pathways, it is also reasonable to 
assume that this is a very unspecific pathway, overrepresented 
in too many genes. The sSNV 6-152631823-C-T, one of the 
top-scoring SilVA variants, is located on the gene SYNE1, 
which has been associated with spinocerebellar ataxia. This 
pathway was found to be enriched in 66 genes. This analysis 
might reveal new targets for disease linkage due to its strength 
of association (FDR = 2.76x10−9).

Regarding the not rare deleterious variants, the findings 
reveal that all 39 sSNVs are situated within genes linked to 
one or more diseases, except for GAKP1. Interestingly, a 
missense variant in this gene was shared by three esophageal 
squamous cell carcinoma (ESCC) patients in a study that 
aimed to identify candidate susceptibility variants for ESCC 
(Donner et al., 2017). This gene encodes a protein that is 
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highly similar to the mouse GKAP1 protein. In mice, GKAP1 
is known to be mainly expressed in the testis, and its deletion 
increases sperm production (Wang et al., 2019).

The results for the positive selection analyses revealed 
that our best candidate for positive selection was found on the 
gene FOXD4L5, located on chromosome 9. Gene ontology 
annotations for the FOX family gene member predict it to 
enable transcription factor-DNA binding. FOXD4L5 was found 
to be one of the top 12 highly mutated genes in a familial 
lung cancer study (Kanwal et al., 2018), although further 
investigation is necessary to assess whether the mutations 
contribute to the development of cancer. Importantly, the sSNV 
that we found on FOXD4L5 was not one of those mutations 
and has never been associated with diseases to date.

The second PBS highest scoring variant overall is an 
A>G change and it’s located on the gene CHRFAM7A, on 
chromosome 15. This gene is the result of the duplication of 
exons 5 to 10 of CHRNA7 in fusion with FAM7A, a cluster of 
seven exons (A to F) located both upstream and downstream 
of CHRNA7 on chromosome 15 (Di Lascio et al., 2022). 
Although no clinical significance has yet been reported for 
this variant, CHRFAM7A has been widely associated with 
neurological disorders such as schizophrenia and bipolar 
disorder (Kunii et al., 2015). Further studies in leukocytes and 
macrophages revealed that CHRFAM7A plays an important 
role in the activation of the cholinergic anti-inflammatory 
pathway (Maroli et al., 2019).

The T>C variant is the third best candidate to be 
positively selected in the North-Western European population. 
No clinical significance has been reported to this variant. It 
is found on the gene HERC2, on chromosome 15, which 
belongs to the HERC gene family. This family is known 
to produce large proteins with multiple structural domains. 
HERC2 is related to ligase activity and ubiquitin protein 
ligase binding according to gene ontology annotations and 
was recently found to play an important role on the regulation 
of nucleolar localization of the helicases (Zhu et al., 2021). 
HERC2 is frequently downregulated in numerous types of 
cancers due to its critical role on chromosomal stability (Wu 
et al., 2018), and variants in this gene have been associated 
with developmental delay (Puffenberger et al., 2012).

The fourth best candidate to be positively selected on 
the North-Western European population is a T>C variant 
found on the gene NOMO3, on chromosome 16. It codes for a 
transmembrane protein that is highly conserved among human 
tissues (Sun et al., 2022) and participates in a complex that 
takes part in the Nodal signaling pathway during vertebrate 
development (Haffner et al., 2004). A study of a five generation 
family with Multiple Synostoses Syndrome Type 4 presenting 
reduction of the GDF6 gene expression reported NOMO3 as 
severely downregulated, which might indicate that it plays a 
role in the GDF6 pathway to skeletal joint development and 
ossification (Clarke et al., 2021). An immune profiling of 
Medullary Thyroid Cancer (MTC) reported NOMO3 to be 
highly expressed in MTC, configuring as potential tumor-
associated antigen (Pozdeyev et al., 2020). Importantly, the 
sSNV discussed here has no clinical significance reported in 
the literature.

The G>A sSNV found on the gene LRRC37A has no 
clinical significance reported. The LRRC37 gene family is 
located on a complex region on chromosome 17 subject to high 
linkage disequilibrium (Bekpen et al., 2012). Several studies 
reported that genes located in this region, such as LRRC37, are 
associated with Parkinson Disease risk (Bowles et al., 2022). 
Furthermore, Bowles et al. (2022) demonstrated that LRRC37A 
produces a membrane-associated protein that contributes in 
chemotaxis, astroglial inflammation and cellular migration.

The aforementioned sSNVs exhibited positive selection 
in the north-western European population. Notably, the overall 
third highest scoring sSNV demonstrated positive selection 
in the East Asian population. This particular variant involves 
a G>T change and is situated on the gene NPIPB5, which is 
located on chromosome 16. No clinical significance has been 
reported to this variant, but a recent study described the gene 
NPIPB5 as a putative novel prognostic biomarker for clear 
cell renal cell carcinoma (Wang et al., 2022).

On the gene WASHC2A, we find the T>G variant, 
a good candidate for positive selection on the East Asian 
population, with no association with diseases to date. The 
WASHC2A gene, located on chromosome 10, is part of the 
gene family FAM21 which is the largest component of the 
multiprotein complex called The Wiskott–Aldrich syndrome 
protein and SCAR homologue (WASH) complex (Lee et al., 
2016). This complex takes part on the endosomal sorting 
pathway, where endosomes sort the proteins for lysosome 
degradation or the recycling pathway (Bonifacino and Rojas, 
2006). Depletion of the WASH complex results in endosomal 
sorting defects in subsequent pathways (Gomez and Billadeau, 
2009). Furthermore, Vincendeau et al. (2010) demonstrated 
that a protein fragment which interacts with the HIV regulatory 
protein Rev, can control HIV replication and is located in the 
highly conserved proteins encoded by FAM21 genes.

Another noteworthy variant is the T>C change, located 
on the gene TPSB2, on chromosome 16. β tryptases are 
tetrameric serine proteases secreted by mast cells upon 
activation (Schwartz and Irani, 2000). Elevated serum level 
of mature Tryptase β serves as diagnostics for mastocytosis 
(Valent et al., 2001).

The fourth sSNV most likely to be positively selected 
in the East Asian population is a T>C change on the gene 
PKD1L2, located on chromosome 16. This gene encodes a 
protein member of the polycystin family, which is composed 
of membrane proteins that function as ion-channel regulators 
and share significant homology to each other (Yuasa et al., 
2004). More specifically, the product of PKD1L2 has several 
alternative splicing forms and binds to specific G-protein 
subunits, which are responsible for transducing extracellular 
signals into the cell (Yuasa et al., 2004). Besides being 
associated with polycystic kidney disease, a study in the 
Korean population revealed that a copy number variation in 
PKD1L2 is related with colorectal cancer predisposition (Park 
et al., 2017). Additionally, PKD1L2 features a four-mRNA 
model recently constructed for prediction of breast cancer 
prognosis (Qi et al., 2019).

Finally, the T>C variant is our last candidate for positive 
selection on the East Asian population. It is situated on the 
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gene RGPD3, a member of the RGP gene family, located in the 
cluster of Ran-binding protein-related genes, on chromosome 
2. This gene family is composed of eight partial copies of the 
RanBP2 gene, originating from intrachromosomal segmental 
duplication, with the posterior acquisition of the GRIP domain. 
It is likely that RGP genes play a role in intracellular trafficking 
(Ciccarelli et al., 2005). Moreover, a study on what influences 
craniofacial morphology on Northern Han Chinese suggested 
that the RGPD3 gene is associated with the morphology of 
the nose and ears (Wu et al., 2019).

It is significant to point out that all positively selected 
sSNV here described have no clinical significance reported 
in the literature. Most are located on functionally important, 
pleiotropic genes that may be benefiting from more 
frequently used codons that confer better pace of synthesis 
and cotranslational folding of proteins. This fitness benefit 
would explain why these variants are likely being positively 
selected in, at least, two populations. However, accurately 
determining the specific advantages conferred by such positive 
selection poses a significant challenge due to the prevailing 
focus of most studies on diseases linked to specific genetic 
variations, genes or genomic regions. Further investigation 
taking into account whether causal sSNVs are also subject to 
evolutionary constraints and/or associated with life-history 
traits of a population, as well as with diseases, may complement 
these findings.

The results regarding positive selection must be taken 
with caution. Most methods used in population genetics 
were developed considering natural populations, that is, 
geographically dispersed populations. Here, we have to 
take into account that gnomAD uses ancestry informative 
markers (AIM) for the biogeographical classification of 
populations by training a random forest model using samples 
with known ancestry (Karczewski et al., 2020). Grouping 
individuals based on shared characteristics in order to make 
sense of the biological variation is a complex task and has 
many possibilities depending on the population concept 
being used. The outlier analysis can also be affected by the 
different number of samples in each population (see Materials 
and Methods) and by the lack of genotype level information 
on the gnomAD files. We were not able to use data from the 
1000 Genomes Project to access genotype information in this 
analysis as roughly only 20% of the sSNVs present in the 
gnomAD data were present at the 1000 Genomes database, 
although it comprises most of gnomAD samples for which 
exome sequencing is available.

In this study, two sophisticated predictors have been 
employed, both of which incorporate a range of features and 
mechanisms to comprehensively assess the potential impact 
of sSNVs on the human exome. The resulting framework 
provides a highly detailed and accurate prediction of the effect 
of these variants on gene function. Vihinen (2022) suggested 
”unsense” as a new nomenclature for synonymous variants 
having an effect on the protein. This may fundamentally change 
the way in which predictors annotate these variants in the 
future. Therefore, accurately annotating the deleteriousness 
of synonymous variants is increasingly challenging, and 
requires a more comprehensive approach that takes into 
account the diverse mechanisms by which these variants can 
affect gene function.

Conclusions
In this study we have shown that a significant number of 

sSNVs can have an impact on protein function and propose a 
framework for sSNVs variant prioritization. This effect seems 
to be related mainly to alteration of splice sites and loss of 
preferred codons, suggesting an effect on protein folding. 
The fact that a substantial portion of the predicted deleterious 
sSNVs have ultra rare allelic frequency in the population and 
are present in disease-related genes strengthens our predictions. 
Finally, outlier analyses revealed that at least ten benign sSNVs 
are likely to be under positive selection in two populations. 
Taken together these results give voice to the so-called silent 
mutations and caution that these variants must be included in 
variant prioritization analysis. As with any prediction study, 
further experimental confirmation should be advised.
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