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Abstract

Physical maps are important tools to uncover general chromosome structure as well as to compare different plant lin-
eages and species, helping to elucidate genome structure, evolution and possibilities regarding synteny and
colinearity. The increasing production of sequence data has opened an opportunity to link information from mapping
studies to the underlying sequences. Genome browsers are invaluable platforms that provide access to these se-
quences, including tools for genome analysis, allowing the integration of multivariate information, and thus aiding to
explain the emergence of complex genomes. The present work presents a tutorial regarding the use of genome
browsers to develop targeted physical mapping, providing also a general overview and examples about the possibili-
ties regarding the use of Fluorescent In Situ Hybridization (FISH) using bacterial artificial chromosomes (BAC), sim-
ple sequence repeats (SSR) and rDNA probes, highlighting the potential of such studies for map integration and
comparative genetics. As a case study, the available genome of soybean was accessed to show how the physical
and in silico distribution of such sequences may be compared at different levels. Such evaluations may also be com-
plemented by the identification of sequences beyond the detection level of cytological methods, here using members
of the aquaporin gene family as an example. The proposed approach highlights the complementation power of the
combination of molecular cytogenetics and computational approaches for the anchoring of coding or repetitive se-
quences in plant genomes using available genome browsers, helping in the determination of sequence location, ar-
rangement and number of repeats, and also filling gaps found in computational pseudochromosome assemblies.
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Introduction

Scientific advances in the field of genomics have

been promising for crop improvement in quality, produc-

tivity and resistance against pathogens, meeting the de-

mands for food, fiber and biofuels. Such an interest has led

to the production of large quantities of biological data from

diverse sources. The continuous increase in the amount of

available data on genomes and gene expression studies re-

quires efficient storage, organization and data analysis. So

the next logical step is to develop various graphical user in-

terfaces or genome browsers, which provide logical access

to data flows that otherwise would be unintelligible (Sen et

al., 2010). According to the Entrez Genome Project, in

2009 more than 150 projects related to the Viridiplantae

genomes were initiated, including several species of agro-

nomic, industrial and biotechnological interest, emphasiz-

ing the importance of bioinformatics platforms for the pro-

motion of comparative genomics of model plants so as to

enable us to understand the biological properties of each

species, as well as accelerating gene discovery and func-

tional analysis.

In this scenario, several genome browsers were de-

veloped, especially dedicated to generate information on

cultivated and model plants. Gramene, for example, is a

free online tool for genome comparison, providing a total of

15 genomes, including those of Oryza sativa (cv. japonica

and cv. indica), Arabidopsis thaliana, A. lyrata,

Brachypodium distachyon, Populus trichocarpa, Sorghum

bicolor and Vitis vinifera (Youens-Clark et al., 2010).

Genetics and Molecular Biology, 35, 1 (suppl), 335-347 (2012)

Copyright © 2012, Sociedade Brasileira de Genética. Printed in Brazil

www.sbg.org.br

Send correspondence to Ana M. Benko-Iseppon. Laboratório de
Genética e Biotecnologia Vegetal, Departamento de Genética, Uni-
versidade Federal de Pernambuco, Av. Prof. Morais Rego 1235,
50.670-420 Recife, PE, Brazil. E-mail: ana.iseppon@gmail.com.

Research Article



PlantGDB provides access to sequences, as well as to a va-

riety of tools for analysis and comparison of genomes, pro-

viding chromosome-based genome browsers (xGDB) for

14 plant species with completely or partially sequenced

genomes (Duvick et al., 2008). Additional sources of infor-

mation are Phytozome, which currently provides genome

browsers for 22 plant species, including the legumes soy-

bean (Glycine max) and Medicago truncatula, and LIS (Le-

gume Information System) that comprises data on 18 le-

gume species.

To facilitate gene and genome annotation, and to un-

derstand the organization, structure and evolution of genes

and genomes, we carried out a set of procedures so as to op-

timize the use of the information deposited in plant genome

browsers for cytogenetic and physical mapping of selected

genes or genome regions. We also present a practical exam-

ple of how to anchor Bacterial Artificial Chromosomes

(BACs) and repetitive sequences in the soybean genome,

integrating in silico and in situ approaches, as well as an ex-

ample of how a careful study of gene families (e.g. aqu-

aporins) may aid in characterizing and explaining the emer-

gence of complexity in plant genomes.

Applications and Uses of Plant Genome
Browsers (PGBs)

The information on complete genome sequences al-

lows us to derive important sets of genomic features, in-

cluding the identification of protein-coding and non-coding

genes, regulatory elements, gene families and repetitive se-

quences, such as the Simple Sequence Repeats (SSR).

Among other applications, this set of features has become

the raw material for the integration of multivariate informa-

tion such as “omics” data. Alignments are often used to ex-

plore/describe gene structure and the distribution of gene

families in complete genomes (Soares-Cavalcanti et al.,

2012), as well as the conservation of syntenic structures

among chromosomes of different species, allowing for the

evolutionary history reconstruction of genes and genomes

through comparative structural and functional genomic ap-

proaches (McClean et al., 2010).

Notably, plant genomes contain large amounts of re-

petitive elements (RE), which refer to a broad and heteroge-

neous group of genetic elements that are often degenerate

and inserted in each other. Mobile elements, simple se-

quence repeats (e.g. micro-, mini- and satellite) and gene

families with high numbers of repeating units (e.g. rDNA

and histones) are the main RE groups (Spannagl et al., 2007).

These RE groups are present in mostly of the unanchored se-

quence scaffolds after plant genome assembly, as for in-

stance in the case of the SoyBase platform (Schmutz et al.,

2010). The FISH (Fluorescent In Situ Hybridization) proce-

dure could be a good strategy to identify these blocks which

are frequently localized in heterochromatic regions (Cuadra-

do and Jouve, 2007). This strategy emphasizes the power of

complementation which may result from the combination of

molecular cytogenetics and computational approaches to the

anchoring of repetitive sequences in plant genomes with

available genome browsers, in order to determine its loca-

tion, arrangement and number of repeats, filling gaps found

in computational pseudochromosome assemblies.

FISH-based cytogenetic maps developed using BAC

clones as probes are often associated with genetic and

contig maps (Cheng et al., 2001; Findley et al., 2010), and

may be useful during whole genome sequencing projects,

helping to evaluate the size of the putative remaining gaps.

Given the low correlation observed between physical dis-

tances (measured in micrometers) and genetic distances

(based on the recombination frequency), the integration of

cytogenetic and genetic maps has allowed the identification

of possible distortions in physical distances found in link-

age maps (Kao et al., 2006). Recently, a cytogenetic map of

the common bean was built by FISH with 43 available an-

choring points (BACs) between the genetic and the cyto-

genetic maps. Their comparison confirmed the suppression

of recombination in extended pericentromeric chromosome

regions, indicating that suppression of recombination cor-

relates with the presence of prominent pericentromeric

heterochromatic blocks, and is responsible for the distor-

tions of the inferred distances (Pedrosa-Harand et al., 2009;

Fonsêca et al., 2010).

Bioinformatics platforms and associated databases

are essential for the emergence of effective approaches that

make the best use of genomic resources, including its re-

spective integration. Genetic maps, often constructed by in-

dependent research groups for several plant species, allow

to define the relative position of markers linked to heritable

traits. When compared to physical maps, genetic maps pro-

vide a means to link these heritable traits to the underlying

genomic sequence variation (Lim et al., 2007). It also al-

lows the investigation of homologies among different ge-

nomes in the same species (allopolyploidy) or different

species, observing colinearity (e.g. conservation of gene or-

der) or synteny (e.g. conservation of linkage) among them

(Hougaard et al., 2008), both at macro and micro levels

(Kevei et al., 2005). The former focuses on the genome as a

whole, examining large regions (e.g. linkage groups) by

comparison of genes or chromosome segments based on

genetic, physical or cytogenetic maps of different species

(Mandáková and Lysak, 2008; McClean et al., 2010), while

the latter focuses directly on smaller, but continuous, com-

pletely sequenced genomic regions (David et al., 2009).

Genome browsers are flexible platforms that allow

blast searches, and also searches for pseudochromosomes,

organism names, contig IDs, clone accession numbers,

GenBank accession numbers, gene symbols, genetic mark-

ers, or any other term indexed in the database. Recent inno-

vations in search platforms based on the various “omics”

and the development of new applications provided essen-

tial research resources for various plant species. As these
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become available for ever more species, and when com-

bined with wet lab experiments, they will aid in integrating

biological data from diverse sources. With worldwide ef-

forts directed towards the structural and functional charac-

terization of its genome, soybean is at the forefront of

legume genomics, with a robust infrastructure in informa-

tion technology that is critical to understand the biology of

this and other legumes. The final application of these re-

sources and information reflects the efforts to elucidate the

genetic background of given agronomic traits, with impor-

tant implications for plant breeding.

A Practical Example Using Soybean

Previous studies demonstrated that the soybean ge-

nome (probably of polyploid origin) has undergone multi-

ple whole genome duplications, genome diploidization, as

well as chromosomal rearrangements (Shoemaker et al.,

2006), thus making it one of the most complex plant geno-

mes currently investigated. Hence, multiple copies (or

blocks) of DNA sequences were identified in more than

two chromosomes. On average, 61.4% of the homologous

genes are present in blocks involving only two chromo-

somes, 5.63% are spread over three chromosomes, and

21.53% in four (Schmutz et al., 2010).

Soybean (2n = 40 chromosomes) was the first legume

to be completely sequenced, serving as a reference for more

than 20,000 legume species and helping to understand the

mechanism of biological fixation of atmospheric nitrogen

by symbiosis. The soybean genome was sequenced using

the shotgun strategy, covering 950 Mb of sequence. Most

of the genome sequences were assembled into 20 pseudo-

chromosomes (Glyma 1.01), grouping 397 sequence scaf-

folds in ordered positions within the 20 soybean linkage

groups. An additional amount of 17.7 Mb were recognized

in 1,148 sequence scaffolds that were left unassembled, be-

ing constituted mainly of repetitive DNA and less than 450

predicted genes (Schmutz et al., 2010). The scaffold posi-

tions were identified by means of extensive genetic maps,

including 4,991 single nucleotide polymorphisms (SNPs)

and 874 simple sequence repeats (SSRs) (Song et al., 2004,

Choi et al., 2007; Hyten et al., 2010a,b).

Using a combination of full-length cDNA, EST,

homology and ab initio methods, 46,430 protein-coding

loci were identified in the soybean genome with a high con-

fidence level, and another 20,000 loci were predicted with a

low confidence level. From the first group of genes, 12,253

gene families (34,073 genes) could be identified with one

or more sequences in other angiosperms, as well as 283 le-

gume-specific gene families and 741 soybean-specific gene

families, reflecting an ancient but continuous process of du-

plication and genetic divergence (Schmutz et al., 2010).

Anchoring gene families in physical maps

On a microscale, the genomic distribution pattern of

gene family members has served to assist in the inference of

the processes that generated the observed genome

complexity (Di et al., 2010). As an example we used the

aquaporin gene family, because aquaporins are a ubiqui-

tous protein family and have important physiological roles.

Aquaporins constitute a set of small transmembrane

proteins that facilitate the process of transporting water and

small solutes. The first plant aquaporin was identified in

soybean root nodules. Later, their presence was verified in

many species of Viridiplantae, recognizing four main aqua-

porin types that reflect their size and subcellular localiza-

tion (Chaumont et al., 2001, 2005; Kaldenhoff and Fischer,

2006; Kruse et al., 2006; Maeshima and Ishikawa, 2008).

Aquaporins are abundant, diverse and widely distributed in

plant genomes. Arabidopsis presents 35 aquaporin coding

genes spread throughout the five chromosomes of the ge-

nome that is believed to be one of the simplest among plants

(Chaumont et al., 2005; Ishikawa et al., 2005; Zhao et al.,

2008). Although the first aquaporin was described in soy-

bean, there are no studies on the abundance, diversity and

distribution of aquaporins in this legume.

For the study of aquaporins in the soybean genome,

we chose four Arabidopsis protein sequences as probes,

representing each of the four subfamilies of aquaporins:

Plasma Membrane Intrinsic Protein (PIP1.4; acc.

NP_567178.1), Tonoplast Intrinsic Protein (PIR1-1, acc.

P25818.1), Nodulin26-like Intrinsic Protein (NIP4-2, acc.

NP_198598.1) and Small and Basic Intrinsic Protein

(SIP2-1, acc. NP_191254.1). Using these as query sequen-

ces, a tBLASTn search was conducted in the EST sequence

database of GENOSOJA. At this stage, we adopted a cut-

off e-value of e-05 for acceptance of putative aquaporin

homologs in soybean.

Subsequently, sequential analyses were performed to

determine the identity of these putative homologs expres-

sed in soybean, through recognition of similarities with

known proteins using the BLASTx algorithm, conceptual

translation using the ORF finder program, and evaluation

of conserved domains using the rpsBLAST algorithm. Af-

ter identifying the expressed homologs, the next step con-

sisted of anchoring these transcripts in the soybean genome

browser available at the SoyBase web server. For this pur-

pose, such transcripts were entered as queries in a BLASTn

search. The conceptually translated protein sequences were

also used as queries in a tBLASTn search in order to dis-

cover possible new aquaporin loci not represented in the

available soybean EST pool. Finally, a megaBLAST search

was carried out using the nucleotide sequences of all loci in

order to determine the most closely related genes, thus re-

flecting the relationship among the chromosomal regions

harboring aquaporin genes (Figure 1).

The initial search for aquaporin homologs in soybean

expressed sequences recovered 102 candidates. However,

these sequences were anchored in only 64 loci in the soy-

bean genome. This may be indicative of alternative pro-

cessing of primary transcripts, but may also reflect certain

Physical, genetic and FISH maps of soybean 337



noise introduced during the assembling process of the avai-

lable ESTs. The proteins obtained by conceptual translation

of the loci, when compared with the genome through the

tBLASTn tool, reported 36 new loci, totalizing 100 aqua-

porin genes in the soybean genome. This number is approx-

imately three times higher than that denoted for

Arabidopsis and rice (Johanson et al., 2001, Sakurai et al.,

2005), and is the largest number of aquaporins observed in

a plant species to date.

The increase in the number of aquaporin coding genes

has been attributed to segmental and whole genome dupli-

cations (Liu et al., 2009). These processes can also be in-

voked to explain the number and distribution of aquaporins

in the soybean genome. For example, pseudochromosomes

10 and 20 (Gm10 and Gm20) share four colinearly pre-

served aquaporin genes at the distal regions of the long

chromosome arm, which are inverted only in relation to the

extremity (Figure 1). This observation is consistent with the

syntenic relationship between Gm10 and Gm20 (Schmutz

et al., 2010), and among these and chromosome 7 (Pv7) of

Phaseolus vulgaris (McClean et al., 2010). Another strik-

ing example is the commonality of a tandem duplication

found integrally or with the loss of one of the genes from

the tandem composition. The first case was observed be-

tween Gm5 and Gm8, as well as between Gm7 and Gm8

(Figure 1), again in agreement with previous observations

(McClean et al., 2010) considering an overall evaluation

regarding diverse gene families. The latter can be seen in-

volving the distal regions of the long chromosome arm of

Gm3 and Gm19, which are colinearly conserved, except for

the absence of one of the SIP genes in Gm3 (Figure 1). A

general prevalence of aquaporin genes in distal positions is

also evident. These are just some of the events denoted in

Figure 1. In general, the number and distribution of aqua-

porins corroborate previous suggestions of the octoploid

nature of soybean (Shultz et al., 2006). The panel depicted

by the analysis suggests that this gene family is a good can-

didate to determine the time elapsed after polyploidization

of soybean from the putative diploid ancestor(s), especially

when sister genomes are added to the comparison (Schranz

and Mitchell-Olds, 2006).

Comparative mapping between genetic, physical
and cytogenetic maps

With the development of the SoyBase platform,

comparative analysis of genetic and physical maps
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Figure 1 - Distribution and microsyntenic relationships of 100 aquaporin coding genes in the soybean genome. Chromosomes are depicted with the

centromere (in orange) in their expected position. Scale = 1 Mb. Tracks outside show the subfamily-based gene name. Not all gene names are written for

image clarity. Microsyntenic relationships are shown as links between chromosome regions. Pink line = TIP genes; Purple line = PIP genes; Green line =

NIP genes; Orange line = SIP genes.



through contigs (distances measured in base pairs) with

cytogenetic maps has made map integration even more in-

formative, allowing not only a deeper analysis of both re-

petitive and single copy DNA sequences, but also the

rapid and efficient identification of synteny between dif-

ferent taxonomic groups. Below are alternative ways of

using the SoyBase for the analysis and selection of both

repetitive and single-copy DNA sequences for cyto-

genetic mapping in soybean.

In silico selection of BACs for FISH

BAC inserts are capable of carrying up to 500 kb of

genomic DNA, with typical sizes ranging from 80 to

200 kb, containing highly repetitive DNA sequences to sin-

gle copy DNA (Peterson et al., 2000). Accordingly, BACs

containing markers linked to disease resistance genes, for

example, can be directly selected from the genome brows-

ers for subsequent acquisition and use as FISH probes, al-

lowing in situ localization of the markers and also poten-

tially contributing to the recognition of possible distortions

between maps. Another point is the identification of chro-

mosomes in a cell and the association with their respective

linkage groups and/or pseudochromosomes, as recently

elucidated for soybean (Findley et al., 2010).

As an example, we present the analysis and selection

of BAC Gm_WBc0102N16 (102N16) and BAC

Gm_WBc0088G15 (88G15) regarding Gm16 (linkage

group J) on the SoyBase web server (Figure 2). Both BACs

presented interesting characteristics like QTL (Quantitative

Trait Loci) associated with drought tolerance or plant
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Figure 2 - BAC selection scheme, using the SoyBase browser (a’). BACs were selected from a high exon density region (a’’), considering their associated

mapped markers and physical map locations (b). In the BAC selection, some aspects could be observed: (c) its position in the linkage map (cM), with its

associated molecular markers and QTLs; (d) synteny regions with other species, and (e) recent and old duplicated regions in the soybean genome. Infor-

mation sourced at http://soybase.org/gbrowse/cgi-bin/gbrowse/gmax1.01/.



height/yield or height of plant (102N16) and increasing

yield (88G15) (BARC SSR markers at SoyBase) (Table 1,

Figure 2b). Another important point is the selection of

BACs with high exon density, because BACs from regions

with lower exon densities are more likely to carry repetitive

DNA sequences, which can promote in situ hybridization at

different sites, preventing its exact location in the karyo-

type. BACs with high exon density, lacking repetitive re-

gions, can be selected through a heat map (Figure 2a’) that

consists of 100 kbp segments differentiated by a color in-

tensity gradient representing exon density (including all

splice variants). The BACs were also selected by the

amount of Glyma1 gene models (Figure 2a’ and Table 2),

as well as presenting aligned sequences from other legumes

(Figure 2a’’), the presence of a given molecular marker

(Figure 2c) or in synteny with Medicago truncatula (Figure

2d). Additionally, some regions of genome duplication in

soybean could be observed (Figure 2e).

Evaluation of SSR oligonucleotides in the soybean
genome

As a case study, we report the distribution of an SSR

sequence (AAC)5 in soybean, as assessed by in silico analy-

sis of repetitive sequences in SoyBase as compared with the

FISH results. SSR microsatellites consist of small repeat

units (1-6 bp) distributed in tandem throughout the geno-

mes, they are found within structural genes or other repeti-

tive sequences, as well as associated with heterochromatic

regions (Heslop-Harrison, 2000; Cuadrado and Jouve

2010). Rapid SSR evolution has led to a genome-specific,

species-specific and even chromosome-specific distribu-

tion pattern (Begum et al., 2009). The frequency and distri-

bution of different SSR oligonucleotide motifs have been

the subject of intense investigation, especially in some par-

tially or completely sequenced genomes, as in P. vulgaris

(Schlueter et al., 2008) and G. max (Hyten et al., 2010a),

aiming to understand the genomic organization of different

species.

However, large SSR blocks are difficult to detect by

in silico analysis, as they are observed as numerous short

overlapping repeat units. FISH can more easily identify

these blocks as in situ marking sites, often located in hetero-

chromatic regions (Cuadrado and Jouve, 2007).

With this in mind we performed an in silico screening

of (AAC)5 in the soybean unmasked genome using the fol-

lowing parameters in soybean genome browser at Phyto-

zome: comparison matrix blossum62, e-value of 0.1 or less

and low complexity filter off (Figure 3a). The oligo-

nucleotide (AAC)5 was used as the probe, with 77% pairing

identity as a cut-off parameter (similar to FISH stringency).

Due to the repetitive nature of the probe, the BLASTn

alignment created an artifact of sliding windows in continu-

ous regions (Figure 3a), thus the alignment page was pro-

cessed by a macro scripted in UltraEdit (Figure 3b),

resulting in a formatted Microsoft Excel table that enabled
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the size and limits of the matching region to be calculated in

bp (base pairs) by subtracting the initial from the final

alignment position for each region (Figure 3c). This infor-

mation pointed to sequence alignment distribution over 15

soybean pseudochromosomes, with no matches for Gm2,

Gm3, Gm12, Gm14 and Gm18. The aligned regions were

then examined in the SoyBase genome browser for associ-

ated genes, intragenomic duplications and synteny with

other species (see Table 3).

A schematic representation of the in silico mapping

on soybean pseudochromosomes has been constructed us-

ing as size parameter the soybean pseudochromosome

lengths available on the SoyBase web server, which range

from 37.4 to 62.31 Mb. Considering a ratio of 1 Mb to

1 mm, the oligonucleotide repetitions were individually po-

sitioned along the pseudochromosomes (Figure 4).

The in silico mapping of the (AAC)5 microsatellite in

soybean showed the presence of 32 sites, with sizes varying

from 26 to 81 bp, located in regions of high to moderate

gene density, sometimes associated with genes, and only

one site for a region without genes. Four out of the 32 sites

represented two overlapping repeat units each (Figure 4).

FISH protocol using BACs (102N16 and 88G15) and
synthetic oligonucleotide SSR (AAC)5 as probes

BAC probes

BAC clones were selected as previously described

and ordered from the G. max genomic library at the Univer-

sity of Arizona (USA) (www.genome.arizona.edu/orders).

In this study, we used two soybean BACs belonging to link-

age group J (BAC 102N16 and 88G15 - Gm16).

BAC DNA was isolated using the Qiagen Plasmid

Mini kit protocol (Qiagen), with some adaptations. The

probes were labeled by nick translation with Cy3-11-dUTP

(Amersham) following manufacturer’s instructions.

(AAC)5 synthetic oligonucleotide and 45S rDNA probes

The synthetic oligonucleotide (AAC)5 was indirectly

labeled with digoxigenin-11-dUTP by the end labeling

method (DIG Oligonucleotide 3’-End Lab. Kit, 2nd gener-

ation, Roche) according to the manufacturer’s instructions.

R2, a plasmid with a 6.5 kb fragment of the 18S-5.8S-25S

rDNA repeat unit from A. thaliana L. (Wanzenböck et al.,

1997), was isolated as described above and labeled by nick

translation with biotin-16-dUTP and used as a probe in

Gm13 identification.

FISH

For both probe types, cytological preparations were

produced as described by Carvalho and Saraiva (1993),

with some adaptations. For the FISH procedure, slides were

pretreated as described by Pedrosa et al. (2003). Chromo-

somes were denatured in 70% formamide in 2x SSC at

70 °C for 7 min and then dehydrated for 5 min in each con-

centration of an ice-cold ethanol series (70% and 100%).

Physical, genetic and FISH maps of soybean 341

Table 2 - Gene models located in the BACs GM_WBc0088G15 and

GM_WBc0102N16 through navigation in the soybean genome browser

(http://soybase.org/gbrowse/cgi-bin/gbrowse/gmax1.01/) in January

2011.

Gene models BAC Protein of interest and/or means of action

GM_WBc0088G15

Glyma16g23750 Heat shock protein binding

Glyma16g23760 No information

Glyma16g23770 No information

Glyma16g23780 No information

Glyma16g23790 Leucine Rich repeat containing protein (nucleic

acid binding)

Glyma16g23800 Leucine Rich repeat containing protein (protein

binding)

Glyma16g23810 No information

Glyma16g23820 Alcohol Dehydrogenase related (oxidoreductase

activity)

Glyma16g23830 Uncharacterized (Putative methyltransferase)

Glyma16g23840 Myb-like DNA-binding domain

Glyma16g23850 AP endonuclease (zinc ion binding)

Glyma16g23870 Calcium/Calmodulin dependent protein kinase

related (EF hand)

Glyma16g23880 FE(II)/ Ascorbate oxidase (oxidoreductase ac-

tivity)

Glyma16g23890 No information [gb def: MKIAA0431 protein

(Fragment)]

Glyma16g23900 No information

GM_WBc0102N16

FJ014811.1 Clone cw129 leucine-rich repeat transmembrane

protein kinase mRNA

FJ014812.1 Clone cw130 leucine-rich repeat receptor-like

kinase mRNA

Glyma16g01660 Exocyst complex component Sec10 (vesicle

docking)

Glyma16g01670 No information

Glyma16g01680 (ubiquitin-like-protein ligase activity)

Glyma16g01690 No information

Glyma16g01700 Zinc finger, C3HC4 type (RING finger)

Glyma16g01710 Ring finger protein 11(NEDD4 WW DO-

MAIN-BINDING PROTEIN 2)

Glyma16g01730 No information

Glyma16g01740 No information

Glyma16g01750 Protein-tyrosine kinase activity

Glyma16g01760 Calcineurin-like phosphoesterase

Glyma16g01770 DVL family

Glyma16g01780 RNA binding protein (nucleic acid binding)

Glyma16g01790 Serine threonine protein kinase, plant type (pro-

tein-tyrosine kinase activity)

Glyma16g01800 NADH Dehydrogenase

Glyma16g01810 26S Protease Regulatory Subunit (ATP binding)

Glyma16g01820 Uncharacterized conserved protein (DUF2343)

Glyma16g01830 Integral to membrane

Glyma16g01840 Protein of unknown function, DUF654



Probe denaturation, post-hybridization washes and detec-

tion were performed according to Heslop-Harrison et al.

(1991), except for the stringent wash, which was performed

with 0.1x SSC at 42 °C. Probes labeled with digoxigenin-

11-dUTP were detected using sheep anti-digoxigenin-

FITC (Roche) and amplified with anti-sheep-FITC

(Sigma), in 1% (w/v) BSA. Biotin probes were detected us-

ing mouse anti-biotin (Dako) and amplified with rabbit

anti-mouse TRITC conjugate (Dako) in 1% (w/v) BSA. All

preparations were counter-stained and mounted with

2 �g/mL DAPI in Vectashield (Vector).

Cells were analyzed on a Leica DMLB microscope

and images of the best cells were captured on a Leica DFC

340FX camera, using Leica CW 4000 software. All images

were optimized for contrast and brightness, and for the su-

perimposed images, DAPI staining image was converted to

grayscale, while the BACs 88G15 and 102N16 were artifi-

cially colored in yellow and orange, respectively. Images

were superimposed, using the lighten tool. All these pro-

cesses were done using Adobe Photoshop CS4 (Adobe Sys-

tems Incorporated) (Figure 5).

Comparison of cytogenetic maps with in silico analysis

The in silico selected BACs 88G15 and 102N16 were

in situ mapped as a single signal in Gm16. BAC 102N16

was located at the subterminal region of the short chromo-

some arm, while BAC 88G15 aligned at the intercalary re-

gion of the long chromosome arm (Figure 5a). The chromo-

some size was measured (2.84 �m), as well as the exact

location and site size using the Micromeasure program, en-
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Figure 3 - In silico of (AAC)5 SSR oligonucleotide. (a) Anchoring by using the BLASTn algorithm at http://www.phytozome.com/search.php; (b) screen

print of the UltraEdit text editor for organizing data sheets; (c) Microsoft Office Excel sheet for data handling; (d) sequence location in the soybean ge-

nome at http://soybase.org/gbrowse/cgi-bin/gbrowse/ gmax1.01/.



abling us to determine the physical distance between these

markers (1.5 �m or 53% of the total chromosome length),

which was represented by a chromosome-specific ideo-

gram (Figure 6a).

The positions of the cytogenetic markers were ex-

plored in a comparative analysis with the contig physical

map, constructed by in silico analysis, and integrated with

the available soybean genetic map, revealing some diver-

gence. Comparing in situ and in silico results, the observed

discrepancies may be related either to the heterochromatin

condensation behavior in mitotic metaphase chromosomes,

or the impossibility to computationally determine the posi-

tion of the remaining non-anchored 17.7 Mb scaffolds in

the soybean physical map (Schmutz et al., 2010). More-

over, comparing the in situ analysis to the linkage map, it

appears that Satt622 and Satt405 located in BACs 88G15

and 102N16, respectively, are at a genetic distance corre-

sponding to 33 cM between markers (or 36.5% of the J link-
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Figure 4 - Representation of the (AAC)5 SSR oligonucleotide in silico dis-

tribution, centromeric and pericentromeric regions of each Glycine max

pseudochromosome, as well the in silico localization of BACs 88G15 and

102N16 (both on Gm16) and 5S and 45S rDNA (Gm19 and Gm13, respec-

tively). Information sourced at http://soybase.org/gbrowse/cgi-bin/

gbrowse/gmax1.01/.
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age group) of the soybean genetic map, and indicating a

distortion between the cytogenetic and genetic distances.

Such distortions have recently been observed in compara-

tive map analyses for P. vulgaris (Pedrosa-Harand et al.,

2009; Fonseca et al., 2010) and Oryza sativa (Cheng et al.,

2001), and are attributed to the suppression of recombina-

tion events in pericentromeric regions.

Regarding the SSR oligonucleotide (AAC)5, a com-

parative in silico and in situ analysis of its location showed

that of the 31 sites observed in silico, 20 were found outside

the pericentromeric region (Figure 4). Moreover, the FISH

analysis revealed different (AAC)5 hybridization sites scat-

tered throughout most chromosomes, especially in the pro-

ximal regions of two chromosome arms (Figure 5b). Such

information raised the hypothesis that FISH has also shown

sites associated with heterochromatic regions, not revealed

by the in silico analysis because of their absence in the as-

sembled pseudochromosomes, due to the fact that the

SoyBase platform excluded a fraction of the constituent

scaffolds that remained non-anchored (Schmutz et al.,

2010). The absence of such repetitive regions may be justi-

fied by technical difficulties in their clustering/assembling

using bioinformatic tools. Besides, many genome projects

face the difficulties of sequencing microsatellite rich re-
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Figure 6 - Comparative analysis of the genetic (cM*), cytogenetic (�m) and in silico (Mbp*) maps of Glycine max. (a) Ideogram showing the in situ map-

ping of BACs 88G15 (yellow) and 102N16 (orange) on chromosome 16, compared to the in silico mapping of pseudochromosome Gm16 and its corre-

sponding linkage group J. The same chromosome Gm16 was used as standard for chromosome size and positioning of the linkage group. Lines indicate

the distortion between cytogenetic and genetic distances as well as cytogenetic and in silico distances. (b) Complementary analysis of the (AAC)5

oligonucleotide distribution sites (green) and 45S rDNA site (red) by in silico and in situ analysis on the pseudochromosome and chromosome Gm13, re-

spectively. *Information sourced at http://soybase.org/gbrowse/cgi-bin/gbrowse/gmax1.01/ in January 2011.

Figure 5 - FISH analysis of Glycine max metaphase cells. (a) in situ hybridization with BACs 88G15 and 102N16 (both belonging to Gm16) stained with

Cy3 and pseudocolored in yellow and red, respectively; (b) the (AAC)5 synthetic oligonucleotide as probe, colored in green. The chromosomes were

counterstained with DAPI and pseudocolored in gray. Bar in b (for both pictures) corresponds to 10 �m.



gions, due to DNA polymerase slippage during PCR, caus-

ing variation and sometimes the “compression point” effect

(Liepelt et al., 2005).

Thus, the identified discrepancies support the idea

that in silico and in situ analyses are complementary to each

other, facilitating a better understanding of the physical

structure and genomic organization, mainly regarding re-

petitive DNA rich regions. An in silico and in situ compara-

tive analysis for chromosome 13 carrying the 45S rDNA

further supports our findings (Figure 6b).

Synteny with other crops

From a macrosyntenic point of view, a broad conser-

vation of genome macrostructure is observed among le-

gumes, especially within the galegoid clade, also

highlighting inferred chromosomal rearrangements that

may justify the variation in chromosome number between

these species (Choi et al., 2004). Recently, synteny map-

ping between common bean and soybean (phaseoloid le-

gumes) revealed 55 syntenic blocks of shared loci, with a

mean size of 32 cM and seven loci on average. By compar-

ing the location of these blocks, it is very clear that nearly

all segments of the common bean genome mapped to two

segments of the soybean genome (McClean et al., 2010).

More recently, the integration of genetic and cyto-

genetic maps with sequencing data has provided a greater

number of marks and information about genome organiza-

tion and evolution, facilitating a better understanding of

chromosome homeologies and macrosynteny conservation

among species. Using SoyBase, it was possible to identify

alignments and synteny among soybean pseudochromo-

somes, as well as among soybean and other legume chro-

mosomes. For instance, the BACs used in the present work

(88G15 and 102N16) have homologies with other legumes.

BAC 88G15 aligned to sequences of Cajanus cajan,

Chamaecrista fasciculata, P. vulgaris, Medicago

truncatula and Vigna unguiculata, whereas 102N16

aligned to all the aforementioned species, as well as to

Glycine soja, Lotus japonicus, Pisum sativum and Lupinus

albus (Table 1). Regarding synteny, 88G15 and 102N16

were syntenic to M. truncatula chromosomes Mt5 and Mt8,

while 102N16 was syntenic to Mt8. Table 1 shows the

synteny (duplications) of those BACs to other soybean

chromosomes. Recently, an association between soybean

cytogenetic and physical maps was successfully conducted

(Findley et al., 2010), enabling not only a comparative

study between soybean and G. soja, but also the simulta-

neous identification of 20 chromosome pairs in soybean

mitotic preparations, as well as the establishment of the re-

lationship with their pseudochromosomes.

To date, no investigation on the conservation of chro-

mosome position and colinearity has been made available

for legume species regarding aquaporin coding genes. A re-

cent physical mapping of wheat aquaporin genes confirmed

many orthologous relationships between wheat and rice

and/or barley aquaporin genes, many of which were con-

served in the syntenic genome areas (Forrest and Bhave,

2010). Our data is the first to explore this gene family

within the soybean genome, raising evidence of past in-

tense duplication events in soybean, followed by genome

reorganization that retained most of the new aquaporin cod-

ing genes. Given that most soybean chromosome regions

correspond to two or more chromosome segments from P.

vulgaris, it is likely that some of the aquaporin coding

genes are conserved in the syntenic regions of both organ-

isms.
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