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Abstract

A beta-glucosidase-like enzyme-encoding gene (bglH) of an endophytic Bacillus pumilus strain (CL16) was cloned
using a shotgun genomic library constructed in Escherichia coli. The nucleotide sequence of the entire cloned frag-
ment (2484 bp) was determined and characterized. An incomplete open reading frame (ORF) of 534 bp (ORF1) des-
ignated bglP and a complete ORF of 1419 bp (ORF2) designated bglH, located in the fragment, are organized in an
operon. The protein deduced from 1419 bp (ORF2) had 472 amino acid residues without a characteristic signal pep-
tide sequence, suggesting that the enzyme is localized in the cytoplasm. The amino acid sequence deduced from
bglH gene had high similarity with β-glucosidases from the glycosyl hydrolase family 1. Over-expression of the B.
pumilus bglH gene in E. coli showed a 54 kDa protein whose identity was confirmed by mass spectrometry
(MALDI-TOF).
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Cellulose comprises the major carbohydrate polymer

of the plant cell wall. It is an unbranched polymer com-

posed of anhydro-1,4-D-glucopyranoside units linked by

β-glucosidic bonds. Enzymatic degradation of cellulose

within the polysaccharide matrix of the cell wall requires

the synergism of multiple enzymes such as the cellulases,

exo- (cellobiohydrolase) and endo-β-1,4-glucanases, and

β-glucosidases (cellobiases) (Knauf and Moniruzzaman,

2004). The β-glucosidases are widespread in microorgan-

isms where they metabolize various carbohydrate sub-

strates, including cellobiose, produced as a consequence of

cellulose hydrolysis, and aromatic β-glucosides such as

arbutin and salicin that are produced by a variety of plants

(Tajima et al., 2001; Spiridonov and Wilson, 2001; Park et

al., 2002; Marques et al., 2003; An et al., 2005).

Considerable polymorphism in β-glucosidase forms,

functions and kinetics has been reported (Ogunseitan,

2003). Although several cellulolytic enzymes released by

phytopathogens have already been well-characterized,

knowledge on the uptake and hydrolysis of carbohydrates

by endophytic microorganisms is limited. Endophyte mi-

croorganisms colonize inner plant tissues, living symbioti-

cally with the host species (Azevedo et al., 2000). These

microorganisms have been investigated as a source of new

genes and proteins for use in industrial processes (Stamford

et al., 2001, 2002; Pleban et al., 1997; Reddy et al., 1996;

Moy et al., 2002; Lima et al., 2004).

Recently, 15 endophytic strains of Bacillus spp. iso-

lated from Citrus were evaluated for cellulolytic activity

(Lima et al., 2004). The Bacillus pumilus strain CL16

showed high cellulase activity and was selected for further

studies. We have cloned the β-1,4-endoglucanase eglA

gene from strain CL16 and expressed it in E. coli. The

endo-1,4-β-glucanase EglA has high thermostability, an

important feature in biotechnical processes that require

high temperatures (Lima et al., 2004).

During the study described in the present paper we

isolated and characterized a new locus of β-glucoside sugar

utilization genes from the endophytic B. pumilus CL16

strain.

Using the degenerated primers DEG1F (5’-ATRACC

TACTgNAARTTRgg-3’) and DEG1R (5’gCRAANCCY

AgHTARACggT-3’) designed based on the amino acid re-

gions conserved amongst β-glucosidases reported for Ba-
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cillus spp, a 560 bp B. pumilus fragment was obtained and

successfully cloned in the pUC18 vector. Nucleotide se-

quence, determined using the DYEnamic ET DYE Termi-

nator Cycle Sequencing Kit (Amersham Biosciences,

Germany) on MegaBACE 1000 (Amersham Pharmacia

Biotech, Germany), showed high similarity with the bglH

gene from B. subtilis subsp. subtilis strain 168 (E

value = 1e-17).

This fragment was successfully used as a probe for

screening the bglH gene in a shotgun genomic library con-

structed from B. pumilus strain CL16 (Lima et al., 2004).

Hybridization was done using the DIG High Prime DNA

Labeling and Detection Starter Kit II, according to the man-

ufacturer’s instructions (Roche, Germany). Pre-hybri-

dization (30 min) and hybridization (overnight) steps were

at 42 ºC. Only one positive transformant was recovered

from 2400 colonies. The recombinant plasmid isolated

from this clone was denoted pMH2. The presence of the

bglH gene was confirmed by two steps of sequencing.

Firstly, using the M13 primers (Amersham Biosciences,

Germany) and then with a set of new primers, GLICO1 F

(5’-TCCAgAgATTCTTggACAAgT-3’), GLICO2 R (5’-

CACTTggAACAAATTggTgATg-3’) and GLm F (5’-

gCATAAgCACggAATTgAgTC3-3’) designed specifi-

cally for a bgl internal segment.

Two open reading frames (ORF) were found to com-

pose the insert: an incomplete ORF of 534 bp (ORF1) and a

complete one with 1419 bp (ORF2), which presented high

similarity with the bglP and bglH genes, respectively, both

from B. subtilis subsp. subtilis strain 168 (Kunst et al.,

1997). The bglP gene from B. subtilis encodes an aryl-β-

glucoside-specific enzyme II of the phosphoenolpyruvate

sugar: phosphotransferase system (PTS), whereas the ac-

tivity of BglH from B. subtilis was only recently directly

demonstrated (Setlow et al., 2004). These authors showed

that the bglH gene from B. subtilis encodes an aryl-

phospho-β-D-glucosidase and that this gene was induced

by aryl-β-D-glucosides.

The β-glucoside utilization pathways that rely upon

the PTS for carbohydrate uptake have been characterized in

several bacteria (Krüger and Hecker, 1995; Lai et al., 1997;

Brown and Thomson, 1998; Brehm et al., 1999; Marasco et

al., 1998; An et al., 2005), but not in B. pumilus. According

to An et al. (2005) the discovery of new PTS-related se-

quences in bacterial genomes continues, and suggests that

PTS enzymes might have additional unknown functions.

The nucleotide sequence of the entire insert (2484 bp)

and the deduced protein sequence of the bglH gene from B.

pumilus are shown in Figure 1. The ORF1 was upstream

from ORF2, and separated by a 24 bp sequence. The ab-

sence of a promoter sequence between the ORFs identified

by us, and their similarity with the operon described for B.

subtilis strain 168 (Entrez Gene-NCBI server) suggest that

they are organized into an operon. The nucleotide sequence

downstream from ORF2 was compared to other sequences

deposited at NCBI GenBank (BLASTX) but no similarity

could be identified.

We found that the 1419-nucleotide-long ORF2 had a

GC content of 41.6%. It was preceded by a potential ribo-

some binding site (AGGAGG) that was 9 bp upstream from

the putative ATG start codon but, as expected, with no adja-

cent promoter sequence. Downstream from the TAA stop

codon, no sequence resembling a rho-independent trans-

criptional terminator could be identified. The protein de-

duced from the ORF-complete sequence had 472 amino

acid residues with an estimated molecular mass of 53.9 kDa

and a isoelectric point of 4.97. The CDSearch program

(NCBI server) revealed that BglH had a single domain con-

sisting of the glycosyl hydrolase family 1 (GH1) sequence,

covering 464 residues from amino acid 4 to 468.

The deduced B. pumilus BglH amino acid sequence

was compared to other BglH sequences deposited at NCBI
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Figure 1 - Nucleotide sequence of the entire insert (2484 bp) and the de-

duced protein sequence of the bglH gene from Bacillus pumilus. Start and

stop codons and the ribosome-bounding site (RBS) are underlined. Partial

nucleotide sequence of the bglP gene is in italic font.



GenBank (Figure 2) and found to be highly similar to ho-

mologous enzymes from several Bacillus species: B.

halodurans (gi 10173219), B. subtilis strain 168 (gi

7435440), B. cereus (gi 52144364), B. thuringiensis (gi

49477027), B. licheniformis (gi 52082495), B. clausii (gi

56965550). The Glu175 and Glu369 residues, the catalytic

nucleophile, conserved in the B. pumilus BglH, are charac-

teristic of family 1 proteins that hydrolyze glucosidic bonds

by acid/base catalysis (Withers and Aebersold, 1995).

The absence of a signal peptide sequence (SignalP 3.0

program) and the lack of potential transmembrane regions

(TMPred program) in the BglH sequence suggest that the

enzyme is localized in the cytoplasm, as is the case for most

bacterial β-glucosidases (Bhatia et al., 2002 and references

therein).

We constructed an expression plasmid for the over-

production of β-glucosidase (Bgl) by amplifying the bgl

open reading frame (ORF) using the polymerase chain re-

action (PCR) and the MHF (5’-CACCATgAACAAgTT

AgAAAAAACAT-3’) and MHR (5’-TTAgTAATCCAA

ATgTTCCCCATTTg5-3’) primer pair. For DNA polymer-

ization the AccuPrime Pfx enzyme (Invitrogen, USA) was

used. The amplified product was cloned into the pENTR/

SD/D-TOPO plasmid producing the entry vector of the

Gateway Cloning System (Invitrogen, USA). From the en-

try vector the bgl gene was transferred to the expression

vector pET-DEST42 by in vitro site-specific recombina-

tion. The recombinant expression plasmid containing the

bgl gene was named the pAB1 plasmid. The cloned frag-

ment was completely sequenced to confirm that no muta-

tions were introduced during the amplification procedures.

Transformed Escherichia coli BL21 CodonPlus

(DE3) cells harboring the pAB1 expression vector were

grown on Luria-Bertani medium (LB) supplemented with

250 μg mL-1 ampicillin and incubated at 37ºC until the log

phase (OD600nm = 0.2). After induction with 0.5 mmol L-1

IPTG (isopropyl-beta-D-thiogalactopyranoside) a strong

band of 54 kDa was detected by sodium dodecyl sulfate

polyacrylamide gel electrophoreses (SDS-PAGE) analysis

(Laemmli, 1970), suggesting the over-expression of the B.

pumilus bglH gene in E. coli (Figure 3). This molecular

mass is consistent with that predicted from the amino acid

sequence of the BglH protein. The over-expressed protein

was completely purified and subjected to digestion with

trypsin followed by peptide fingerprint analysis by matrix

assisted laser desorption ionization time-of-flight mass

spectrometry (MALDI-TOF/MS), in order to confirm the

protein identity. The provided peptide masses were equiva-

lent to the ones predicted, confirming that the over-

expressed 54 kDa-band was in fact the BglH protein of B.

pumilus.

Crude protein extracts obtained from the E. coli cells

harboring the pAB1 plasmid were assayed for activity

against ρ-nitrophenyl-β-D-glucopyranoside and cellobi-

ose. Each assay consisted of 0.5 mL 5 mM of ρ-nitro-

phenyl-β-D-glucopyranoside or 0.2% of cellobiose as sub-

strate, 0.1 mL of 50 mM phosphate buffer (pH 5.8 to 7.5) or

Mc’Ilvaine buffer (pH 3 to 7) and 0.05 mL of crude en-

zyme. The mixture was incubated for 1 h at 37 ºC and the

activity of β-glucosidase towards ρ-nitrophenyl-β-D-glu-

copyranoside was estimated by measuring the amount of

ρ-nitrophenol released at 400 nm. The activity of β-gluco-

sidase toward cellobiose was estimated by measuring the

glucose released by the glucose oxidase method (Glucose

Enzyme Color Kit, Bio Diagnostica, Brazil). The enzy-

matic activity of Bgl against ρ-nitrophenyl-β-D-gluco-

pyranoside was assayed in Mc’Ilvaine buffer (pH 7.0) us-

ing the same protocol. Little activity against synthetic

aryl-β-D-glucosides and no activity against cellobiose were

observed. The highest activity against ρ-nitrophenyl-β-D-

102 Structural characterization of the bglH gene

Figure 2 - Multiple alignment of amino acid sequence predicted from

bglH genes of the following Bacillus species: B, halodurans (gi

10173210); B. subtilis strain 168 (gi 7435440); B. cereus (gi 52144364);

B. thuringiensis (gi 49477027); B. licheniformis (gi52082495); B. clausii

(gi 56965550); and B. pumilus obtained in the present study. Asterisks

show amino acids conserved in all sequences analyzed. The regions of cat-

alytic amino acid residue Glu175 and the catalytic nucleophile Glu369 are

boxed.



glucopyranoside (0.106 μmol min-1 mL-1) was observed us-

ing Mc’Ilvaine buffer at pH 7.0. This low activity was also

observed using purified Bgl. The B. subtilis BglH also

showed very low activity against non-phosphorylated

β-glucosides. The enzyme activity against aryl-phospho-

-β-D-glucosides was not measured because there was no

commercial supplier for this substrate.
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Figure 3 - Over-expression of the BglH protein in Escherichia coli BL21

CodonPlus(DE3) was analyzed by 12% SDS-PAGE. Proteins were

stained with Coomassie Blue R-250. a) Lane 1, lysate from untransformed

cells not induced with IPTG; Lane 2, lysate from untransformed cells in-

duced with IPTG; Lane 3, lysate from transformed cells with pAB1 not in-

duced with IPTG; Lane 4, lysate from transformed cells with pAB1

induced with IPTG. b) Lane 1, lysate from transformed cells with pAB1

induced with IPTG; Lane 2, Purified protein obtained from transformed

cells with pAB1. Molecular weight markers (MW) are indicated in kDa.

Arrow indicates the BglH protein.
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