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Abstract

This paper gives a model of a structured population with respect to an autosomal locus with two alleles. The popula-
tion reproduces in discrete and non-overlapping generations. The population is assumed to be in equilibrium in that
exactly the same distribution of genotypic proportions is reproduced in each generation. The population is subdivided
into `localities’ which are characterized by the local gene frequencies. Within each locality the genotypic proportions
may depart from Hardy-Weinberg proportions and the same fixation index applies to all localities. The system de-
parts from reality by assuming that the frequency of the first allele follows the beta distribution. However, this enables
a convenient way to derive the mating frequencies of parents so that equilibrium is maintained. Wright’s F-statistics
are applied to characterize the population as a whole. The system is extended to permit an arbitrary level of
outbreeding.
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Introduction

This paper gives a mating system for a structured
population with respect to an autosomal locus with two al-
leles. The population reproduces in discrete and non-over-
lapping generations and is assumed to be in equilibrium
meaning that the population is exactly reproduced in each
generation. The simplest model of an unstructured popula-
tion is that of Weinberg (1908) and Hardy (1908). Stark
(2006) and Li (1988) showed that certain forms of non-
random mating produce and sustain Hardy-Weinberg pro-
portions. While there were earlier attempts to add realism
by going beyond the original model of Hardy and Weinberg
it appears that Sewall Wright did most to develop models of
structured populations. Some of his ideas are summarized
in Wright (1965), which gives references to his earlier
work. In that paper Wright wrote “A system was developed
for describing the properties of hierarchically subdivided
natural populations. Three parameters were proposed in the
1951 paper in terms of a total population (T), subdivisions
(S), and individuals (I). FIT is the correlation between ga-
metes that unite to produce the individuals, relative to the
gametes of the total population. FIS is the average over all
subdivisions of the correlation between uniting gametes
relative to those of their own subdivision. FST is the correla-
tion between random gametes within subdivisions, relative
to gametes of the total population.”

The principal features contained in the quotation
above are included here in that the total population is di-
vided into sub-populations or localities which may be con-
nected in the sense that the two members of a mating pair
may come from different localities or may come from the
same locality. Each locality is characterized by its gene fre-
quencies. Nei (1987, p. 159) and Weir (1996, p.166) each
have a section on fixation indices and so provide some
background to the general theme of this paper.

The object here is to develop a compact model so that
relations between various parameters can be explored. The
most novel feature is that it is possible to give explicit ex-
pressions for mating frequencies, an aspect of the whole
subject of subdivided populations to which Wright and oth-
ers have given little attention.

The following sections give the notation used, mating
frequencies at local and overall levels, distribution of geno-
types from mating, a numerical example and some discus-
sion.

Notation

The two alleles of the autosomal locus are denoted by
A and B and the frequency of A within a locality by x and
over the whole population by q. The corresponding fre-
quencies of B are of course 1-x and 1-q, respectively. The
frequency of A varies over the whole population according
to the beta distribution so that the probability of finding a
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locality with gene frequency x in a small interval of width
dx containing the value x is given by the expression

(xα-1(1-x)β-1/B(α, β))dx, 0 ≤ x ≤ 1 ; α, β > 0, (1)

where B(α, β) is the beta function with parameters α, β
given by

B u u du( , ) ( ) ,α β α β= −− −∫ 1 11

the integral being taken over the interval (0, 1).
The properties of (1) are given in Kendall and Stuart

(1977, p. 35). In particular the first four moments about the
origin of (1) are:
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From these the mean frequency of A over the whole
population is given by
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and the standard deviation of the distribution of frequency
by
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Stark (2007) gives a general mating system which can
maintain a given departure from the Hardy-Weinberg form.
Here a particular case of this is used (see Stark, 1976a,
1976b). If the frequencies of genotypes AA, AB and BB are
respectively f0 = q2 + Fpq, f1 = 2pq – 2Fpq, f2 = p2 + Fpq,
(p = 1-q), then the mating frequencies, denoted by fij, are
given by

fij = fifj(1 + ρdidj/V), (2)

where ρ = 2F/(1+F), d0 = –2p, d1 = q - p, d2 = 2q and
V = 2pq(1 + F).

The mating frequencies

It is assumed that the genotypic frequencies within a
locality characterized by gene frequency x are:

type AA x2 + ωx(1-x);

type AB 2x(1-x) - 2ωx(1-x);

type BB (1-x)2 + ωx(1-x). (3)

Thus ω is the within locality fixation index and corre-

sponds to Wright’s FIS. The symbol ω is used here for con-
venience and to avoid complications is assumed to be
non-negative. When a pair of mates is chosen from the
same locality it is assumed that the frequency of mating
pairs of the various types follow formula (2), with appropri-

ate substitutions, such as ω for F, x for q, x2 + ωx(1 - x) for
f0, etc.

On the assumption that the distribution of types
within localities follows (3) and that the distribution of
gene frequencies follows (1), matings within localities be-
ing as given in (2), the overall distribution of types in the
whole population can be calculated, and in particular the
overall population frequency of A, denoted by q. This will
be demonstrated in the next section.

The complete model permits mating between individ-
uals from different localities. In order to maintain the over-
all population structure the frequencies of pair types will
again follow formula (2) but substituting whole population
parameters. This will be shown in a later section. A final re-
finement allows for an arbitrary choice of the proportion of

inter-locality matings denoted by χ.

Integrated mating frequencies consistent with a
uniform within-locality fixation index

The probability of observing a locality with gene fre-

quency close to x was given as (xα-1(1-x)β-1/B(α, β))dx in
formula (1). To maintain genotype proportions with fixa-

tion index ω, as given in (3), apply mating system (2) to pa-
rental frequencies (3). The resulting mating frequencies can
be integrated using (1) as the weighting factor to obtain the
overall mating frequencies in terms of the first four mo-
ments of the beta distribution, as follows:
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In the above, where male and female are of different
type, the reciprocal mating also shares the same fre-
quency. Thus AA x BB and BB x AA have identical fre-
quency. Note that the frequency of AB x AB matings is
four times that of AA x BB matings. The resulting matrix
of mating frequencies is denoted by L. A numerical exam-
ple employing this formula in combination with mating
frequencies of outbreeding pairs is given in Table 1. The
method of calculating tables such as Table 1 is completed
in the next section.

Overall genotypic distribution

The application of the mating frequencies given in the
preceding section produces the following overall genotypic
distribution among offspring:

AA
α α ωβ

α β α β +1
( )
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+ +
+ +
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(6)

The frequency of gene A borne by this distribution is

q = α/(α + β), that of B is β/(α + β) and the fixation index is

FIT = (1 + ω(α + β))/(1 + α + β). Applying the relation

(1-FIT) = (1 - ω)(1-FST) produces FST = 1/(1 + α + β). Thus
FST is seen to be equal to the variance of the (beta) distribu-

tion of gene frequencies over localities αβ/((α + β)2(α + β +
1)) divided by the product of the overall frequencies of
genes A and B. An alternative way of calculating FST is
given in the final section.

The distribution of frequencies given by (4)-(6) can
be maintained by outbreeding, that is by forming couples in
which the two partners come from different localities. The
frequencies of the various pair types are taken from formula
(2) using parental frequencies from (4)-(6), gene frequency

q = α/(α + β) and fixation index FIT = (1 + ω(α + β))/

(1 + α + β). Denote the matrix of outbreeding mating fre-
quencies by M.

A further refinement is possible by permitting an ar-

bitrary proportion of outbreeding denoted by χ. Combining
the two forms of mating yields a mating matrix given by

C = (1 – χ)L + χM. Since both L and M produce offspring
following frequencies (4)-(6), their combination C does the
same.

Numerical example

Table 1 gives an example of the system: the parame-

ters are α = 3, β = 5, ω = 1/8 and χ =1/2 . The matrix of over-
all mating frequencies C is given in Table 1. The overall
genotypic proportions are: type AA 37/192; type AB

70/192; type BB 85/192. The overall frequencies of genes A

and B are respectively 3/8 and 5/8. Other properties of the
population are: variance of the distribution of the A gene
frequency is 5/192, FIT = 2/9 and FST = 1/9.

Discussion

The quantity FST can be derived directly in a way
which illustrates the following description of Wright given
above: “FST is the correlation between random gametes
within subdivisions, relative to gametes of the total popula-
tion”. Assign the gametic values 0 and 1 respectively to al-
leles A and B, as in Table 2. Calculate the probabilities of
drawing a pair of genes independently within a locality
characterized by allele frequency x, as in Table 2. Calculate
the overall frequencies of the respective gene pairs by inte-
gration over distribution (1), using the moments of the beta
distribution given above to yield the integrated values
given in Table 3. Calculate the uncorrected sum of products

of genic values from Table 3 to obtain β(β+1)/((α+β)

(α+β+1)). Correct this by deducting the product of overall

mean values, namely β2/(α + β)2, to derive the corrected
sum of products of genic values (covariance of genes in a

pair), that is αβ/((α+β)2(α+β+1)). Divide the covariance
by the product of the standard deviations of the values of
the genes in a pair over the whole population. Since the dis-
tributions of genic values are identical, this is equal to the

variance of either, that is αβ/((α+β)2. The result is the cor-
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Table 1 - Mating scheme with α = 3, β = 5, ω = 1/8, χ = 1/2.

Male x Female AA AB BB

AA 0.0747 0.0823 0.0357

AB 0.0823 0.1427 0.1396

BB 0.0357 0.1396 0.2674

Table 2 - Probabilities of independently-drawn gene pairs in a locality.

Allele and value A 0 B 1

A 0 x2 x(1 - x)

B 1 (1 - x)x (1 - x)2



relation between the values of the gene pair namely

FST = 1/(1 + α + β), as noted earlier. Thus FST is the correla-
tion between the values of a pair of genes drawn from the
population that is due just to their sharing membership of
the same locality.

A virtue of the model and analysis given here is that
they show explicitly how the various quantities such as FST

are expressed in terms of the basic parameters α, β, ω and χ.
They show for example that FST depends only on the param-
eters of the distribution of gene frequency. They show also

that a continuum of overall mating tables defined by χ can
sustain the same population structure. Weir (1996, p. 166)
discusses the use of an estimate of FST to examine “popula-
tion differentiation” in a setting in which estimates of gene
frequencies are available from samples of sub-populations.
The analysis given here is a pointer as to what an estimate
of FST should reflect. Weir (1996, p. 167) sounds a note of
caution in interpreting a typical estimate of FST by a formula
which he gives because it is difficult to assess the signifi-
cance of sub-population divergence in this way. He recom-
mends a test employing a contingency-table chi-squared
statistic rather than FST. Nei (1987, p.163) mentions some
approaches to empirical studies of population differentia-
tion. In some populations there are no clear indications of
sub-population boundaries. The formula given here for FIT

shows that this quantity is determined by ω(FIS) as well as

by α and β. Therefore, when a population is sampled as a
single entity, the calculated fixation index reflects both
sub-population differentiation and departure from Hardy-
Weinberg proportions at a local level.

References
Hardy GH (1908) Mendelian proportions in a mixed population.

Science 28:49-50.
Kendall MG and Stuart AS (1977) The Advanced Theory of Sta-

tistics, v 1: Distribution Theory. 4th ed. Charles Griffin &
Company Limited, London, 472 pp.

Li CC (1988) Pseudo-random mating populations. In celebration
of the 80th anniversary of the Hardy-Weinberg law. Genetics
119:731-737.

Nei M (1987) Molecular Evolutionary Genetics. Columbia Uni-
versity Press, New York, 512 pp.

Stark AE (1976a) Generalisation of the Hardy-Weinberg law. Na-
ture 259:44-44.

Stark AE (1976b) Hardy-Weinberg law: Asymptotic approach to
a generalized form. Science 193:1141-1142.

Stark AE (2006) A clarification of the Hardy-Weinberg law. Ge-
netics 174:1695-1697.

Stark AE (2007) On extending the Hardy-Weinberg law. Genet
Mol Biol 29:664-666.

Weinberg W (1908) Über den Nachweis der Vererbung beim
Menschen. Jahresh Verein f vaterl Naturk Württem 64:368-
382. English version: On the demonstration of heredity in
Man. In: Boyer SH (ed) Papers on Human Genetics. Pren-
tice-Hall, Englewood Cliffs, pp 4-15.

Weir BS (1996) Genetic Data Analysis II: Methods for Discrete
Population Genetic Data. Sinauer Associates, Inc. Pub-
lishers, Sunderland, 445 pp.

Wright S (1965) The interpretation of population structure by
F-statistics with special regard to systems of mating. Evolu-
tion 19:395-420.

Associate Editor: Paulo A. Otto

26 Stark

Table 3 - Integrated probabilities of independently-drawn gene pairs over
the whole population.

A 0 B 1

0 α(α+1)/((α+β)(α+β+1)) αβ/((α+β)(α+β+1))

1 αβ/((α+β)(α+β+1)) β(β+1)/((α+β)(α+β+1))


