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Abstract

Cross-amplification was tested and variability in microsatellite primers (designed for Neotropical parrots) compared,
in five macaw species, viz., three endangered blue macaws (Cyanopsitta spixii [extinct in the wild], Anodorhynchus
leari [endangered] and Anodorhynchus hyacinthinus [vulnerable]), and two unthreatened red macaws (Ara
chloropterus and Ara macao). Among the primers tested, 84.6% successfully amplified products in C. spixii, 83.3% in
A. leari, 76.4% in A. hyacinthinus, 78.6% in A. chloropterus and 71.4% in A. macao. The mean expected
heterozygosity estimated for each species, and based on loci analyzed in all the five, ranged from 0.33 (A.
hyacinthinus) to 0.85 (A. macao). As expected, the results revealed lower levels of genetic variability in threatened
macaw species than in unthreatened. The low combined probability of genetic identity and the moderate to high po-
tential for paternity exclusion, indicate the utility of the microsatellite loci set selected for each macaw species in kin-
ship and population studies, thus constituting an aid in planning in-situ and ex-situ conservation.
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Around 30% of all parrot species are endangered or

vulnerable due to habitat destruction and illegal trade (Col-

lar, 1997). Conservation may include the establishment of

ex-situ populations for reproduction programs, as well as

in-situ management (e.g. translocation and reintroduction).

Microsatellite data constitute a useful aid in planing the es-

timation of genetic relationships among individuals, demes

and populations, as well as in the analysis of genetic vari-

ability and population dynamics (Jarne and Lagoda, 1996;

Ellegren et al., 1997; Li et al., 2002). Moreover, these

markers can be employed in guiding breeding decisions

and improving the genetic management of captive popula-

tions, through the identification of potential couples with

the lowest genetic similarities (Caballero and Toro, 2000;

Jones et al., 2002; Russello and Amato, 2004). However,

the isolation of microsatellite loci is usually expensive and

time-consuming. Furthermore, the avian genome contains

about 10 times less microsatellite loci than is the case with

humans (Primmer et al., 1997). As an alternative, these

primers from closely related species can be cross-amplified

in the focal organism (Primmer et al., 2005).

Few microsatellite markers have been developed for

parrots, although positive cross-amplification of some has

been reported for several species (Hughes et al., 1998; Rob-

ertson et al., 2000; Russello et al., 2001, 2007; Caparroz et

al., 2003, 2007; Sainsbury et al., 2004; Chan et al., 2005;

Raisin et al., 2009; Pillay et al., 2009). Nevertheless, there

is no available information regarding amplification effi-

ciency or polymorphism levels in several macaw species.

The aim was to report the success in cross-species

amplification of several microsatellite markers, and in the

comparative analysis of polymorphism levels in five ma-

caw species, three endangered (the Spix’s macaw,

Cyanopsitta spixii, extinct in the wild, the Lear's macaw,

Anodorhynchus leari, endangered, and the hyacinth ma-

caw, Anodorhynchus hyacinthinus, vulnerable), as well as

two unthreatened species (the scarlet macaw, Ara macao,

and the red-and-green macaw, A. chloropterus).

Blood samples were analyzed from 11 captive Spix's

macaws (eight originally from the wild, and three non-

siblings born in captivity), 21 captive Lear’s macaws (al-

though all wild birds, their geographical origin and rela-
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tionships were unknown), 30 wild hyacinth macaws from

the Pantanal (state of Mato Grosso do Sul), 31 wild red-

and-green macaws from the Pantanal, and 28 wild scarlet

macaws from the southeast of the state of Pará, all in Brazil.

Samples of the latter three species were obtained from nest-

lings. Only one chick per nest was studied. All the samples

were preserved in absolute ethanol and stored frozen at the

Laboratório de Genética e Evolução Molecular de Aves

(LGEMA), Instituto de Biociências, Universidade de São

Paulo. Total DNA was extracted from blood samples, ac-

cording to standard protocol, with proteinase K digestion

and phenol: chloroform (Bruford et al., 1992).

Primer pairs were tested for 19 di- and tetranucleotide

microsatellite loci. Seven of these were designed for Ara

ararauna (UnaCT21, UnaCT32, UnaCT43, UnaCT74 and

UnaGT55; Caparroz et al., 2003; UnaCT41int; Gebhardt

and Waits, 2008; UnaCT35 F 5’TCTATCCCTTTTTGTC

AGC3’ and UnaCT35 R 5’TAGCTAGATTTTCTTCTC

TG3’; R. Caparroz, unpublished), eight for Amazona

guildingui (AgGT07, AgGT08, AgGT12, AgGT17,

AgGT21, AgGT81, AgGT19 and AgGT32; Russello et al.,

2001, 2005), two for Anodorhynchus hyacinthinus (Scott

K. Davis, unpublished; MAC 436 F 5’GCACCAAACA

CAACATCTTATTC3’ and MAC 436 R 5’TTGGGACAC

CAATGTAATTTG3’, and HYA 1172 F 5’GATCCTTTG

CTTAAGACAGATGTC3’ and HYA 1172 R

5’GAGTGAAATACACATTCAGCTTCTG3’), and two

for Psittacus erithacus (Pee�11 and Pee�16; Taylor and

Parkin, 2007). In each primer pair, the forward one had an

additional 5’ M13 sequence tail (5’-TGTAAAACGACG

GCCAGT-3’) (Schuelke, 2000), so as to enable applying

the universal dye-labelling method (Boutin-Ganache et al.,

2001).

We initially tested the potential cross-amplification

of each locus (Table 1) with two to four samples from each

species. PCR was carried out in a total volume of 12 �L

with 20-50 ng of template DNA, 10 mM of Tris-HCl,

50 mM of KCl, 1.5 mM of MgCl2, 200 �M of each dNTP,

0.2 �M of a M13 fluorescent primer (FAM, HEX or NED,

Applied Biosystems, CA), 0.1 �M of an M13 tailed for-

ward primer, 0.3 �M of a reverse primer and 0.5 unit of Taq

polymerase (Pharmacia). PCR conditions were: initial de-

naturation at 95 °C for 10 min; followed by 35 cycles of

95 °C for 1 min, 52-58 °C (see Table 1) for 40 s and, 72 °C

for 40 s; and a final extension of 72 °C for 7 min. Amplifi-

cation products were visualized in 1.5% agarose gel and

fragments sized by comparison with the 1 kb Plus DNA

ladder (Invitrogen). Any amplification that produced frag-

ments with similar sizes to those observed in source species

was considered successful. Allele sizes were determined on

an ABI 377 DNA sequencer (Applied Biosystems) for blue

macaws, and a MegaBACE 1000 (GE Healthcare) for red

macaws, using a weight standard (TAMRA 500C or

GeneScan -500 ROX STANDARD, Applied Biosystem) in
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each sample lane. Profile analysis was undertaken with

GeneScan and Genotyper 2.1 (Applied Biosystems), or

MegaBACE Genetic Profiler Software Suite v2.2 (GE

Healthcare). A fragment from one homozygous individual

from each species was also sequenced, using the Big Dye

Terminator Cycle Sequencing Kit (Applied Biosystems), to

check for the presence of microsatellite loci.

The number of alleles per locus, observed and ex-

pected heterozygosities (Nei, 1978), paternity exclusion

(Q, Weir, 1996) and genetic identity probabilities (Paetkau

et al., 1995) were estimated using Identity 1.0 (Wagner and

Sefc, 1999). Deviation from Hardy-Weinberg expectation

and linkage equilibrium were analyzed with Genepop 4.0

(Raymond and Rousset, 1995), and by applying the Bon-

ferroni correction to account for multiple comparisons.

Genotyping errors, due to null alleles, stutter bands or allele

dropouts, were analyzed using Micro-checker 2.2.3 (van

Oosterhout et al., 2004).

Among the heterologous primer pairs tested, eleven

of thirteen (84.6%) amplified products in the Spix's macaw,

10 of 12 (83.3%) in the Lear's, 13 of 17 (76.4%) in the hya-

cinth,11 of 14 (78.6%) in the red-and-green and 10 of 14

(71.4%) in the scarlet macaw (Table 1). Sequencing results

showed that the repeat units are the same as those in source

species. Among these successfully amplified loci, six were

polymorphic in the Spix's (54.5%) and Lear's macaws

(60%), eleven in the hyacinth (84.3%), and ten in the

red-and-green (90.9%) and scarlet (100%). The number of

alleles per polymorphic locus ranged from two to five in the

Spix's macaw, two to six in the Lear's macaw, two to seven

in the hyacinth, two to 12 in the red-and-green, and five to

15 in the scarlet (Table 1).

All the pairs of polymorphic loci were in linkage

equilibrium in all the species studied. Sporadic cases of de-

parture from Hardy-Weinberg equilibrium (HWE, p < 0.01)

were found in the blue macaw species: locus UnaCT43 in

the Spix's; UnaCT35 and MAC436 in the Lears; and

MAC436, UnaCT41int, and Pee�11 in the hyacinth macaw

(Table 2). Analysis with Micro-Checker software revealed

null alleles at all these loci. Expected heterozygosity across

all the loci in Hardy Weinberg equilibrium were 0.55 in the

Spix's macaw, 0.62 in the Lear's, 0.40 in the hyacinth, 0.55

in the red-and-green, and 0.74 in the scarlet (Table 2).

Threatened species, usually present in small popula-

tions, are more vulnerable to loss of genetic diversity

through processes such as genetic drift and inbreeding.

Thus, it was expected that levels of genetic variability in the

threatened species studied would be lower than in the un-

threatened. This proved to be so, results showing lower lev-

els of genetic variability in the threatened blue macaws than

in the unthreatened red. On considering only the four loci

UnaCT21, UnaCT43, UnaCT74 and AgGT21, which suc-

cessfully amplified in all the species, expected mean

heterozygosis in the three blue macaws proved to be lower

than in the two red (Table 2). Furthermore, monomorphic
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loci were more frequently observed in the former. This is in

accordance with results from DNA fingerprinting, showing

a certain correlation between genetic similarity among

pairs of individuals and the level of threat. In the extinct

Spix's macaw, the similarity is 64% (Caparroz et al.,

2001b), in the vulnerable hyacinth, 34% (Miyaki C. Y., un-

published results), and in the unthreatened red-and-green,

27% (Caparroz et al., 2001a). Moreover, 21 single locus

minisatellite markers also showed higher variability in

red-and-green macaws than in the hyacinth (Faria and

Miyaki, 2006).

The Spix's macaw, already rare since its discovery, is

now extinct in the wild (Ridgely, 1981, Sick, 1981). Al-

though most of the Spixs samples analyzed were from wild

individuals, given the rarity of the species, they are all pos-

sibly related, a possible reflection of its historically small

wild population.

In 2003, the population of Lear's macaws was esti-

mated to be around 450 individuals (Menezes et al., 2006).

This species occurs in a small area in the state of Bahia

(Brazil). As most likely all the individuals analyzed here

came from this very same, small wild population, the low

genetic variability levels observed here could be thus re-

lated. However, as the relationships among these individu-

als are unknown, it is possible that genetic variability levels

are biased, due to possible kinship among some.

The population of the hyacinth is the largest among

the blue macaws. It is estimated to be around 6,500 individ-

uals, with 5,000 in the Pantanal alone (Birdlife Interna-

tional, 2010). However, its mean expected heterozygosity

has proved to be relatively low, compared to that estimated

for each of the other two more threatened blue species (Ta-

ble 2). All the individuals analyzed, although possibly not

closely related (only one chick per nest was studied), were

sampled in the same area, most likely from the same popu-

lation. Thus, this sampling appears to be a reliable repre-

sentation of the wild population in the Pantanal. Even so,

the analysis of individuals from other localities is essential

for characterizing the genetic variability of the species, as a

whole.

The total population sizes of both red macaws studied

here is unknown, but it is not believed to approach the

thresholds of vulnerability under the population-size-cri-

terion of the International Union for Conservation of Na-

ture (< 10,000 mature individuals with a continuing decline

estimated to be > 10% in ten years or three generations, or

with a specified population structure; Birdlife Internatio-

nal, 2000). Thus, it becomes essential to expand their geo-

graphical sampling, in order to evaluate the variability

levels in the two species.

On considering all the loci, the potential of pater-

nity/maternity exclusion was greater than 78% in all the

macaw species studied (Table 2). It is noteworthy that in the

case of red macaws the potential was more than 99%, thus

indicating the suitability of these loci for parentage testing.

This study placed in evidence that, in the macaw spe-

cies analyzed, the cross-amplification of previously devel-

oped microsatellite loci can increase the availability of

markers to address both ecological and population ques-

tions. The low combined-probabilities of genetic identity,

and the moderate to high probabilities of paternity exclu-

sion (Table 2), indicate the utility of these microsatellite

sets in studying parentage and population differentiation, a

valuable aid in planning in-situ and ex-situ conservation ac-

tion.
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