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Abstract

Metformin (dimethyl-biguanide) is an insulin-sensitizing agent that lowers fasting plasma-insulin concentration,
wherefore it’s wide use for patients with a variety of insulin-resistant and prediabetic states, including impaired glu-
cose tolerance. During pregnancy it is a further resource for reducing first-trimester pregnancy loss in women with
the polycystic ovary syndrome. We tested metformin genotoxicity in cells of Chinese hamster ovary, CHO-K1 (chro-
mosome aberrations; comet assays) and in mice (micronucleus assays). Concentrations of 114.4 �g/mL and
572 �g/mL were used in in vitro tests, and 95.4 mg/kg, 190.8 mg/kg and 333.9 mg/kg in assaying. Although the in vi-
tro tests revealed no chromosome aberrations in metaphase cells, DNA damage was detected by comet assaying af-
ter 24 h of incubation at both concentrations. The frequency of DNA damage was higher at concentrations of
114.4 �g/mL. Furthermore, although mortality was not observed in in vitro tests, the highest dose of metformin sup-
pressed bone marrow cells. However, no statistically significant differences were noted in micronuclei frequencies
between treatments. In vitro results indicate that chronic metformin exposure may be potentially genotoxic. Thus,
pregnant woman undergoing treatment with metformin should be properly evaluated beforehand, as regards vulner-
ability to DNA damage.
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Introduction

Metformin (dimethyl-biguanide) is an insulin-sen-

sitizing agent that lowers fasting plasma insulin concentra-

tions by increasing the peripheral uptake of glucose and

decreasing hepatic glucose output (Nisbet et al., 2004). It is

prescribed for patients suffering from a variety of insu-

lin-resistant and prediabetic states, including impaired glu-

cose tolerance, obesity (Tankova et al., 2003; Rotella et al.,

2006; Hirsch et al., 2009) and metabolic abnormalities as-

sociated with HIV disease (Hadigan et al., 2000; Johnson et

al., 2005; Diehl et al., 2008). Furthermore, metformin is

also used regulating anovulation, and induce and sustain

pregnancy in polycystic-ovary syndrome patients (Jaku-

bowicz et al., 2002; De Leo et al., 2006; Lilja and Ma-

thiesen, 2006; Brassard et al., 2008).

The toxicity of metformin is well-known in cases of

metabolic impairment due to liver and kidney diseases, its

toxicity, by being mainly associated with lactic acidosis,

can occur through both acute and chronic exposure (DePalo

et al., 2005; Strack, 2008). Secondary to metformin-

associated lactic acidosis, patients may undergo alterations

in the central nervous system, cardiovascular collapse, re-

nal failure, and eventually, death (Snyder and Berns, 2004;

Spiller and Sawyer, 2006). Nonetheless, non-clinical or

metabolic outcomes, possibly associated with genotoxic ef-

fects, have not received due consideration. Results from the

few experimental in vivo and in vitro studies so far under-

taken are controversial. While some reports indicated no

genotoxic effects (Attia et al., 2009), others (Janjetovic et

al., 2011) have assumed that metformin can produce oxida-

tive stress due to DNA fragmentation. Onaran et al. (2006)

proposed that high concentrations of metformin increased

cumene hydroperoxide (CumOOH)-induced DNA dam-

age. Furthermore, Anedda et al., (2008) showed that

metformin induces oxidative stress in white adipocytes,

by|through increasing the levels of reactive oxygen species,

and reducing aconitase activity.

Various drugs are capable of damaging the DNA in

living cells. If not repaired, or if produced in excessive

amounts, DNA damage can initiate a cascade of biological

effects (cellular, organic, individual), the most outstanding
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consequence being carcinogenesis (Moustacchi, 2000; Ba-

rash et al., 2010). Therefore, on considering the enhanced

association between the chronic use of certain drugs and the

increase in DNA damage, the aim of the current study was

to evaluate metformin genotoxicity.

Materials and Methods

Chemicals

Metformin was commercially obtained as metformin

hydrochloride 500 mg (Merck S.A.). Before using, the drug

was dissolved in Dulbecco modified Eagle medium

(DMEM) at determined experimental concentrations.

In vitro test

Cell and culture conditions

Chinese hamster ovary (CHO-K1) cells were grown

at 37 °C, in an atmosphere of 5% of CO2 in DMEM,

(GIBCO-BRL), at pH 7.4, and supplemented with 10% fe-

tal calf serum. The CHO-K1 cells (3.5 x 105) were seeded

into 25 cm2 tissue culture flasks and stabilized for 24 h. All

the experiments were run in triplicate.

Cell viability analysis with trypan blue exclusion test-

ing was to determine the metformin dosage necessary to

kill 50% of the cells (lethal concentration 50, LC50). On

considering previous studies, lower dosages of LC50, viz.,

15% (114.4 �g/mL) and 80% (572 �g/mL), were employed

for evaluating genotoxicity.

Experimental groups consisted of cells treated with

metformin (114.4 and 572 �g/mL). Negative controls con-

sisted of untreated cultures and positive control (cyclo-

phosphamide at 6 �g/mL) groups. After treatment for 24 h,

each culture was washed, harvested, re-suspended in PBS

and used for the comet assay and chromosome aberration

testing.

Comet assay

The comet assay (alkaline) described by Singh et al.

(1988) was used with certain modifications. Briefly, 30 �L

of cell suspension (105-106 cells) were mixed with 120 �L

of low melting point agarose (0.5% in PBS buffer) and

added to slides that had been previously covered with a

layer of type II agarose (1.5% in PBS buffer). The slides

(without coverslips) were immersed in cold lysing solution

(2.5 M NaCl, 0.1 M EDTA, 0.01 M Tris and 1X Triton

X-100) for 1 h at 4 °C. They were then placed into an elec-

trophoresis solution (300 mM NaOH, pH 13, 1 mM

EDTA,) for 20 min, at 25 V and 300 mA. After electropho-

resis, the slides were neutralized in 0.4 M Tris buffer

(pH 7.5), stained with 50 �L ethidium bromide (20 �g/mL;

Sigma), and analyzed using a fluorescence microscope

(Carl Zeiss) at 400X equipped with exciting (515-560-nm)

and barrier (590-nm) filters.

Approximately 300 randomly chosen cells per exper-

imental point (100 per replicate slide) were analyzed. DNA

damage category was assigned to five classes (0-4), based

on the visual aspect of the comets, and considering the ex-

tent of DNA migration in accordance with Visvardis et al.

(1997). Nucleoids with a bright head and no tail were clas-

sified as class 0 (undamaged nucleoids), whereas highly

damaged ones, with a small head and a long diffuse tail, as

class 4. Those presenting intermediate characteristics were

classified as classes 1, 2 or 3. Index of DNA damage (IDD)

was quantified using the equations described by

Jaloszynski et al. (1997):

IDD �
� � �( )

( / )

n n n n
1 2 3 4

2 3 4

100�

where IDD is DNA damage in arbitrary units, n1 - n4 the

number of class 1 to 4 comets and � the total number of

scored nucleoids, including class 0. IDD values ranged

from 0 (all undamaged nucleoids) to 400 (all maximally

damaged nucleoids) arbitrary units, each of which was con-

verted to a percentage of damaged DNA, with the total

score of 400 representing 100% damage.

Metaphase preparation

Chromosome aberrations were carried out according

to our own routine procedures (Almeida Santos et al.,

2005). Briefly, in all the treatments, colchicine 4% (105 M)

was added to the culture 2 h before harvesting. After har-

vesting, the cells were treated with a 0.075 M KCl hypo-

tonic solution for 20 min at 37 °C, fixed three times in

methanol-acetic acid (3:1), and slides prepared. These were

stained with 10% Giemsa in a phosphate buffer (pH 6.8) for

10 min. 1556 metaphases (200 metaphases from each paral-

lel culture) were analyzed per treatment. Blind analysis was

through cytogenetic assaying. Cells with chromosome ab-

errations, such as gaps, breaks and acentric fragments, i.e.,

fragments of chromosomes without centromeres, were re-

corded. The standard cytogenetic procedures established

by the Chatham Bars Inn Conference (CBIC system) were

adopted, i.e., a chromatid lesion whose length was less than

the diameter of the chromatid itself was classified as a

chromatid gap, whereas, that whose length was equal to or

greater than the diameter was regarded as a chromatid

break.

In vivo test

All animal handling and procedures were carried out

according to the international practices for animal use and

care, and approved by the Animal Ethics Committee of the

University of Brasilia. Female Swiss albino mice (10-12

weeks old) weighing 25-30 g were obtained from the Cen-

tral Animal Facility of the University of Brasilia. 100 ani-

mals were acclimatized to laboratory conditions for one

week prior to starting the study; they were provided with

Purina mice chow and filtered water ad libitum. Following
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acclimatization, they were randomly divided into groups

(10 each) for acute toxicity testing to determine the median

lethal dose (LD50), 7 days after an intraperitoneal (i.p.) in-

jection. The Trimed Sperman-Karber method was used,

whereby LD50 value was defined as 477 mg/kg. The

metformin concentrations represented respectively 20%,

40%, and 70% of the LD50, and were given in the form of

i.p. injections in a 0.5 mL volume.

For the genotoxicity experiment, 40 animals were

randomly divided into five groups (8 in each). Three of

these received metformin in the concentrations 95.4, 190.8,

and 333.8 mg/kg body weight, respectively, representing

20%, 40%, and 70% of LD50, in the form of i.p. injections

in a 0.5 mL volume. The remaining two groups served as

controls, one receiving the same volume in saline solution

(negative control) and the other cyclophosphamide (En-

doxan) 30 mg/kg (positive control).

The animals were sacrificed by cervical dislocation,

twenty four hours after receiving the i.p. injections. Bone-

marrow cells were then collected and washed with 3 mL of

a phosphate buffer saline (PBS) solution containing 5 IU

heparin/mL. After fixing the harvested cells three times in

methanol-acetic acid (3:1), slides were prepared. These

were then stained with 10% Giemsa. Two thousand poly-

chromatic erythrocytes (PCEs) and two thousand normo-

chromatic erythrocytes (NCEs) were examined per animal.

Micronuclei were only scored in PCEs. The PCE/NCE rela-

tionship was recorded as a sign of cytotoxicity. Micronu-

cleus assaying was according to MacGregor et al. (1987).

Statistical analysis

Statistical analysis of data from the in vivo test was

based on micronucleated cells/group and analyzed by Chi-

square test using Yates correction. Comet-assay data were

analyzed taking into account two parameters, namely i) fre-

quency of DNA damaged cells and ii) frequency of DNA

damage (DD). Prior to statistical analysis, data were trans-

formed into arcsine x (x = number of cells with DNA dam-

age) or log x (x = IDD). Transformed data (arcsine or log x)

underwent variance analysis (ANOVA). The Fischer test

was used in the event of statistically significant differences

(p < 0.05).

Results

Compared to the control group, metformin at the

lower concentration induced DNA damage in CHO-K1

cells (Table 1). However, although treated with both con-

centrations, the frequency of those with increased levels of

DNA damage was higher when they were not dose-related.

No chromosome aberrations were observed in metaphase

cells at the treatment-levels used (Table 2).

The in vivo tests showed there to be no bone-marrow

cells at the highest concentration (333.9 mg/kg), probably

as a result of acute cytotoxicity, although without any clini-

cal outcome, such as morbidity or mortality. Nonetheless,

at the lower concentrations (95.4 mg/kg and 190.8 mg/kg),

there was neither an increase in micronuclei nor a decrease

in PCE frequency in viable cells (Table 3).
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Table 1 - DNA damage in CHO-K1 cells exposed to metformin, as mea-

sured by comet assaying.

Treatments Cell with DNA

damage (%)

DNA damage (%)

Negative control 24.53 � 13.08a 16.26 � 7.18a

Positive control 95.88 � 1.06b 89.43 � 5.79c

Metformin 114.4 �g/mL 86.77 � 4.72b 64.12 � 7.03bc

Metformin 572.0 �g/mL 73.77 � 12.46b 41.74 � 9.23ab

a, b, cDifferent superscripts in the same column denote significant differ-

ences (p < 0.05).

Table 2 - Chromosome aberrations in metaphase CHO-K1 cells exposed to metformin.

Treatments Examined cells

(N)

Structural chromosome aberrations (%) Total structural

aberrations (%)

Number of

damaged cells
Breaks Gaps Acentric frag-

ments

Negative control 400 0.50 � 0.50 1.25 � 1.06 2.75 � 0.35 4.5 � 0.00a 18

Positive control 356 2.56 � 1.35 - 9.24 � 0.60 11.82 � 0.74b 42

Metformin 114.4 �g/mL 400 0.75 � 0.35 0.75 � 1.06 5.50 � 0.70 6.50 � 2.82ab 28

Metformin 572.0 �g/mL 398 1.76 � 1.07 0.25 � 0.35 4.02 � 0.73 6.03 � 1.46a 32

a, bDifferent superscripts in the same column denote significant differences (p < 0.05).

Table 3 - Micronuclei in polychromatic erythrocytes of Swiss mice

treated with metformin*

Treatments MN – PCE (%) PCE/NCE (%)

Negative control 3.5 � 2.70a 45.51a

Positive control 23.3 � 12.80b 34.88a

Metformin 95.4 mg/kg 7.7 � 7.20a 46.11a

Metformin 190.8 mg/kg 11.3 � 10.30a 46.03a

MN: micronuclei; PCE: polychromatic erythrocytes; NCE: normochro-

matic erythrocytes *Metformin at concentrations of 334.7 mg/kg – there

are no bone-marrow cells, probably as result of acute cytotoxicity. a, bDif-

ferent superscripts in the same column denote significant differences

(p < 0.05).



Discussion

According to comet assaying, metformin was shown

to induce DNA damage in CHO-K1 cells. However, this in

vitro genotoxicity was not noted in chromosome aberra-

tions and in vivo tests (micronucleus). Micronucleus assay-

ing, as of chromosome aberrations, is a cytogenetic form

that measures chromosomal damage, thus only effective

when both DNA strands are broken. On the contrary, comet

assaying quantitatively measures DNA strand breaks in ei-

ther or both strands (Slamenova et al., 1997; Zeni and

Scarfi, 2010).

The frequency of cells with DNA damage was higher

when CHO-K1 cells were treated with both metformin con-

centrations, although the frequency of DNA-strand breaks

was only perceived at the lower concentration (Table 1). It

is presumed that cells treated with the higher concentration

were severely damaged in the first cycle. Thus, the second

cycle resulted in fewer cells capable of successfully repair-

ing the damage. In fact, only moderate alterations were

noted (comet type 1 and 2). Under stress conditions, such as

DNA damage, p53 blocks the cell-cycle, thus facilitating

DNA repair or inducing apoptosis. Therefore, CHO-cell

deficiency in p53 might lead to the inefficient repair of cells

damaged by substances, such as metformin. Furthermore,

the failure to eliminate DNA damaged cells might give rise

to morphologically and functionally altered cell-transfor-

med cell clones. Buzzai et al. (2007) suggested that metfor-

min is selectively toxic to p53-deficient cells. On other

hand, the lower concentration did not induce cell-death in

the first cycle. Thus, the expected changes were apparent in

cells in the second cycle, i.e., the accumulated damage from

both cycles showing 3 and 4 comet-types.

DNA damage can have biological consequences,

such as transcription and/or replication inhibition, ulti-

mately leading to cell-death (Olsen et al., 2005; Hales,

2005). Accumulation of DNA damage and unrepaired

DNA lesions can cause cell-death or permanent cell-cycle

blockage (Hassa and Hottiger, 2005). Therefore, it is rea-

sonable to assume that those cells surviving the first cycle

modulated the observed type of DNA damage. The associa-

tion between drug exposure and DNA damage (and eventu-

ally apoptosis induction) has been established. Kefas et al.

(2004) showed that longer metformin exposure (> 24 h) re-

sulted in a progressive increase in apoptotic rat �-cells, the

effects of metformin being both dose- and time-dependent.

In fact, low concentrations of metformin are capable of in-

ducing AMP-activated protein kinase (AMPK) mediated

alterations in �-cells (Kefas et al., 2004). On the other hand,

Ben Sahra et al. (2008) showed that, although not apoptosis

inductive, metformin was effective in blocking the cell-

cycle in G0/G1.

So far, there has been no indication of chromosome

aberrations induced by metformin in bone-marrow cells.

According to the in vivo study, no micronuclei were ob-

served in mice bone-marrow cells at concentrations of

95.4 mg/kg and 190.8 mg/kg, although the higher concen-

tration induced cytotoxicity. Twenty four hours after ad-

ministration of metformin at 333.9 mg/kg, no cells were

found for micronucleus analysis. It is noteworthy that not

only the dose, but also the type of tissue, can modulate

genotoxicity, some substances possibly presenting pro- and

anti- genotoxic effects. Bone marrow, easy to isolate and

process, is routinely used in chromosome aberration tests.

This highly vascular tissue has a population of rapidly cy-

cling cells, thereby increasing vulnerability to toxic drugs.

On the other hand, the lower metformin concentrations

(95.4 mg/kg and 190.8 mg/kg) did not induce micro-

nucleated cells. It is probable that, under the prevailing ex-

perimental conditions, metformin induces more breaks in a

single strand of DNA, Thus, in the absence of double

strands, no damage was detected by cytogenetic tests.

The mechanism of metformin effects on DNA mole-

cules is unknown. Notwithstanding, these might possibly

be mediated through its activation of AMPK, thereby in-

creasing nitric oxide synthase (Zhou et al., 2001; Davis et

al., 2006; Za’tara et al., 2008). Zou et al., (2004) specu-

lated that mitochondria-derived reactive-nitrogen-species

mediate AMPK activation by way of metformin. De-

pending on the dose, nitric oxide is capable of inducing

beneficial effects by playing a role in the gene regulation

and signal transduction pathways possibly involved in de-

fensive mechanisms against oxidative stress (Miyamoto et

al., 2003). Nevertheless, high levels (nanomoles) can

damage macromolecules, such as lipids, proteins and

DNA, thereby leading to mutagenesis and carcinogenesis

(Bishop and Cashman, 2003). Moreover, it has been

shown that nitric oxide can induce mutation by impairing

the repair-enzyme system (Jaiswal et al., 2001).

Metformin is known to accumulate in tissues. Studies

have indicated that doses insufficient for lowering

hyperglycemia in diabetic animals concentrate in tissues

(Wilcock and Bailey, 1994). Hirsch et al., (2009) showed

that low doses of metformin inhibits cellular transforma-

tion and selectively kills cancer-stem cells in four geneti-

cally different types of breast cancer. The authors propose

combining metformin with chemotherapy as a novel treat-

ment, not only for breast cancer, but possibly others. Fur-

thermore, in vitro lymphocytes challenged with CumOOH

showed that high concentrations of metformin potentially

induce DNA damage (Onaran et al., 2006). Taken to-

gether, the data suggest that chronic metformin exposure

may be potentially genotoxic. Thus, pregnant woman un-

der treatment with metformin should be properly evalu-

ated as to vulnerability to DNA damage.
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