
GenFlow: Generic flow for integration, management and analysis of
molecular biology data

Marcio Katsumi Oikawa1, Marcos Eduardo Bolelli Broinizi1, Alexandre Dermargos2, Hugo Aguirre

Armelin2 and João Eduardo Ferreira1

1Universidade de São Paulo, Instituto de Matemática e Estatística, Departamento de Ciência da

Computação, São Paulo, SP, Brazil.
2Universidade de São Paulo, Instituto de Química, Departamento de Bioquímica, São Carlos, SP, Brazil.

Abstract

A large number of DNA sequencing projects all over the world have yielded a fantastic amount of data, whose
analysis is, currently, a big challenge for computational biology. The limiting step in this task is the integration of large
volumes of data stored in highly heterogeneous repositories of genomic and cDNA sequences, as well as gene
expression results. Solving this problem requires automated analytical tools to optimize operations and efficiently
generate knowledge. This paper presents an generic flow model , called GenFlow, that can tackle this analytical task.

Key words: biological workflow, information modeling, semantic and control data, molecular sequence analysis.

Received: November 11, 2003; Accepted: October 7, 2004.

Introduction

Computational molecular biology uses computa-

tional power to analyze genetic, molecular and biochemical

data from multiple biological species in a genome scale.

Presently, scientists face the challenge of integrating bio-

logical data stored over the years in dynamic heterogeneous

structures. Many genomic and molecular biology studies

have been applying a number of computational tools, gen-

erating results with different input and/or output formats,

without common standards. Today, integration and analy-

sis of these large volumes of heterogeneous data are no lon-

ger amenable to direct human manipulation and has

become one of the major problems in bioinformatics. Thus,

biologists badly need efficient dynamic techniques for data

integration. However, dynamic integration and analysis of

heterogeneous data, using multiple applications (applying

different heuristics on the data, customizing specific argu-

ments, etc.), are not trivial problems. In fact, they remain

important topics for research in computer science.

This paper reports on the development of an generic

flow model, GenFlow, allowing efficient integration and

analysis of heterogeneous biological data. We start charac-

terizing the generic flow approach describing the use of

GenFlow to tackle a common problem in molecular genet-

ics, i.e., choosing molecular clones from a mouse cDNA li-

brary to manufacture microarrays for studies of differential

gene expression during cell cycle progression. Next, we

present a formal study of generic flow design. The final

product, GenFlow, provides integrated tools enabling in-

vestigators to comparatively analyze results of multiple ex-

periments, through friendly structures for management of

heterogeneous data.

Characterizing the Problem: A Common Work
Flow in Molecular Genetics

We illustrate the integration problem and the generic

flow approach with a real example found in studies of

mouse gene expression within a large cooperative project

between departments of the University of São Paulo

(CAGE-Cooperation for Analysis of Gene Expression).

We had an UNIGENE set of 34,000 mouse cDNA clones

(kindly supplied by Prof. Marcelo Bento Soares, University

of Iowa; Bonaldo et al., 1996) whose sequences stored in

the Genbank database were the only data available. To se-

lect clones of interest, we proceed according to the follow-

ing steps:

1. Assembly of the sequences, performed by Phrap

(Gordon, 2001) and CAP3 (Huang, 1996; Huang and

Madan, 1999), aiming to confirm sequences uniqueness.

2. Identification and separation of polyA tail-

possessing sequences.

Genetics and Molecular Biology, 27, 4, 691-695 (2004)

Copyright by the Brazilian Society of Genetics. Printed in Brazil

www.sbg.org.br

Sendo correspondence to Joao Eduardo Ferreira. Universidade de
São Paulo, Instituto de Matemática e Estatística, Departamento de
Ciência da Computação, Rua do Matao 1010, 05508-090 São
Paulo, SP, Brazil. E-mail: jef@ime.usp.br.

Research Article



3. Local alignment against a general database NR

(NCBI, 1988), performed by BLAST (Altschul et al.,

1997), aiming to assess sequence similarities and to ex-

clude no match sequences. At the end of this step, we were

reduced to 25,772 sequences.

4. Another round of the Blast against a RIKEN

(RIKEN, 2001) database, searching for similar sequences

in the Mouse Consortium Genome. At this point we were

down to 17,338 sequences.

5. Choice of the best sequences of interest, manually

done by the investigator.

Basically, the generic flow is represented by the

scheme in Figure 1.

Note that each application has a specific role, there-

fore, Phred, CAP3 and BLAST must be executed according

to the specified order. Thus, the generic flow is a single se-

quential chain, with well-defined starting and finishing

points and without loops between steps (see Figure 1).

Formal Analysis and generic flow Modeling

GenFlow (Generic flow) stores the results of generic

components for pipeline definition and control, seeing the

applications as atomic objects. These objects encapsulate

some properties while maintaining mutual relationships.

These relationships, adding to the knowledge of the expert

users, define a flow for information. The Genflow can be

edited for supporting more than one application and gener-

alized for multiple users. Particularly, we have presented an

example applied to sequence analysis, but it could be used

to analyze microarray data, metabolic and signaling path-

ways, protein 3D structures, and so forth.

Next, we will suggest a formal way of modeling a ge-

neric execution flow, built from the applications and based

on the following assumptions:

i. there is a finite and non-empty collection of applica-

tions for analysis, which we consider valid for the operating

system. This is denoted as A;

ii. there is a finite set of non-empty values for tasks,

denoted as T. This is a set of discrete elements, where each

element indicates the position of the application within the

workflow;

iii. there is a finite set of finite and non-empty values

for the algorithms, denoted as H. The algorithms indicate

the variation of the implementation strategies for the execu-

tion of the same task;

iv. there is a finite set of finite and non-empty values

for structural input and output formats, denoted as F;

v. some constructs, such as tuple, used for complex

data structures composition, are available.

All values of the sets defined above (i to v) are atomic.

Values are formed using the construct tuple and they will be

called structured values (Liu, 1992).The type T denotes a

task of the application p, p ∈ A, in the experiment.

Structure for applications

Application for analysis

Given a set P of parameters for an application, we can

define an application for analysis as a tuple

A = (v, h, t, p, in, out)

where v ∈ N and indicates the version of the used applica-

tion,

h ∈ H, t ∈ T,

p ∈ P, in ∈ F

and out ∈ F.

Then, the set of all application objects are represented

by N × H × T × P × F × F. We will adopt the convention ob-

ject domain in recovering the values of a particular domain.

Property Functions

We can use the above definition for relationships

among applications. We call these relationships validators,

which map their arguments to Boolean values (true or

false).

Precedence validator (<)

The < is a function of the form f: A × A → {true,

false}.

Let a and b be applications, whereby a, b ∈ A and

a ≠ b. We say that a < b (or a precedes b) if a and b have dis-

tinct types and the type of a (a.t) indicates a task prior to

type of b (b.t);

Format equivalence validator (≈)

The ≈ is a function of the form f: F × F → {true,

false}.

Let a and b be structured formats, whereby a, b ∈F.

We say that a ≈ b if a has an equal semantic meaning to b,

and, it is so possible structurally to translate a to b.

692 Oikawa et al.

Figure 1 - Pipeline for Gene Classification.



Moreover, a and b must belong to the same domain.

In addition, each structure component of an a format must

have an equivalence to b format. A direct consequence of

this approach is the usage of a building wrapper to translate

files from a to b formats.

Chained validator (→)

The → is a function of the form f: A × A → {true,

false}.

Let a and b be applications, whereby a, b ∈ A. We say

that a → b (or a chains b) if a < b, a.t = b.t and a.out ≈ b.in.

Therefore, a and b are called chains if we can run

them in series, using the output of application a as input (or

one of them) in application b, abstracting structural format

restrictions for input/output files. Hence, a generates an

output file semantically similar to the b input file.

Application equivalence validator (≡)

The ≡ is a function f: A × A → {true, false}.

Given applications a and b. We assume that a, b ∈ A.

We denote by a ≡ b (or a is equivalent to b) whether a and b

are of the same type (a.t = b.t) and, in addition, whether

their input and output files are semantically similar; this im-

plies that a.in ≈ b.in and a.out ≈ b.out.

Relationships and communication

We can define some logical relations and their com-

munication features using the definitions viewed previ-

ously. In this way, we can classify the applications

according to their relations and, in addition, we are able to

construct communication rules and restrictions based on

their properties.

Chained applications

Let Pi and Pj be two applications, whereby Pi, Pj ∈ A.

Pi and Pj are called chained if the relation Pi → Pj returns

true.

The applications chain is a relation key for our inte-

gration system. This relationship defines whether they can

be executed in sequential order, or not. Furthermore, this

relation is strongly linked to the input/output structures of

the used algorithms, because these patterns define, physi-

cally, the sets of applications which can be chained.

Modeling and implementation

Biological data processing usually generates a se-

quential flow of tasks, each one representing a single appli-

cation. The full, or partial automation, occurs through an

integration process, controlling communication among

subsequent applications. Our approach extends ideas from

Peleg et al. (2002) and Siepel et al. (2001), integrating tasks

according to running rules specified and formalized earlier

in this section.

The precedence and chaining logic, represented by

respective functions and exposed by their definitions, allow

us to create alternative flows for the experiment analysis.

The formalization facilitates the design of generic integra-

tion components, allowing better definition of flow struc-

tures. In addition, formal components give us the freedom

to build complex generic flow, analyzing them through di-

verse viewpoints. GenFlow allows partial flow without

having to cover all sequential tasks. This is very conve-

nient, since there are cases in which we do not have primi-

tive data sources or our experiment tasks are based on

intermediate results.

The main advantage of a GenFlow editing system is

the automation of sequencing tasks. A file generated from

one step can be used in next, even if it has some structural

incompatibility, solved by a XML file translation (Achard

et al., 2001) (see the internal structure of the system in Fig-

ure 2 and the interface for the users in Figures 3 and 4).

In addition, the real physical location of each applica-

tion is visualized by users. Therefore, investigators do not

worry about the installation or communication between ap-

Integrating molecular biology data and applications 693

Figure 2 - GenFlow schema for molecular biology experiments.



plications, because software interactions are controlled by

GenFlow.

A generic GenFlow schema can be viewed in Figure

2. The applications Pi, i = 1,2, ... n (where n is the number of

applications installed and available in the operating sys-

tem), are placed in sequential order, according to their task.

This property is defined when Pi is installed in the environ-

ment, according to its algorithm running parameters. It de-

fines precedence relations among other applications.

Each Pi application is associated to an execution step

Ek, k = 1,2, ..., m (where m is the number of tasks for a par-

ticular workflow). The chains are built in series and run us-

ing input/output files.

All applications follow the precedence order and

present semantic compatibility of their input and output

files; they are called chained. In Figure 2, we can see some

kinds of chaining applications, such as P1 and P3, P2 and P4,

P3 and P4.

The system implementation is external, using text

files and database connection drivers. This approach pro-

duces a flexible architecture, under DBMS (Database Man-

agement System) and implementation language viewpoint.

Between each two sequential steps, one or more text files

are generated for intermediation of the communication in-

terfaces of the applications; we usually map its information

to a XML (W3C, 2004) file format. The choice of XML is

based on the adoption of a renowned and standardized file

format, optimizing the understanding of all embedded

structural elements and promoting the improvements and

extensions for interested groups. Furthermore, this prefer-

ence avoids the creation of new, non-standard and eventu-

ally confusing file formats. The information in XML

format can be stored in database through persistent ser-

vices.

System Application and Conclusions

Our group is developing a web application of

GenFlow. A centralized architecture was chosen for the

web implementation, benefiting investigators that have fa-

cilities to manage applications and large volumes of data.

The system can be accessed from different web clients, pro-

viding an additional level of convenience and freedom to

the users.

In addition, all information is stored on a DBMS,

guaranteeing information persistence and an alternative

tool for data organization and retrieval, essential for works

involving large amounts of data.

The visualization pages will allow multiple ways of

displaying results, including construction of novel and cus-

tomized forms to exhibit results.

Currently, integration research addresses the problem

through scripts or structured compiled code, so each mini-

mal change implies code modification. The main advantage

of our approach is system scalability. We can reduce the de-

pendence levels through software components, providing

flexibility and dynamism for the system.

The dynamism is particularly interesting to biolo-

gists, because they will be able to start the execution of

many workflows at the same time, without having to trans-

late formats between the applications. Furthermore, the re-

searcher gains evaluation power for algorithms, results and

experiments, thus improving their quality.

In the Figures 3 and 4, we see the operation of the sys-

tem. This process is divided into four steps:

1. Editing - the user builds the sequence of tasks

(GenFlow) that need to be executed (see Figure 3);

2. Parameter configurations - the user sets up the pa-

rameters for each selected task, if necessary;

3. Data recovery - the user chooses the data that will

feed GenFlow from a central DBMS;

4. Execution - the execution of the tasks starts (see

Figure 4).

The addition of new applications into the system does

not require strategic changes, because the integration level

is separated from the applications. We need just define the

694 Oikawa et al.

Figure 3 - Definition of the GenFlow: editing the task flow for an experi-

ment.

Figure 4 - Running GenFlow.



function mapping to link the XML standard format of the

system to the input and output formats of the new entry.

We successfully tested the performance of the

GenFlow system analyzing a mouse cDNA library, pre-

sented in section 2. The investigators were able to integrate

biological knowledge and automated execution of applica-

tions, without manual manipulations of the intermediate

files.

Each step of this testing operation can be compared to

a single filter. The filter determines the better information

and aggregates quality gauges on the data. The combination

of all filters comprising the whole system qualifies

GenFlow as an generic flow system.

Acknowledgments

This paper is part of the project entitled “Integration

of Data and Applications for computational molecular biol-

ogy”, funded by the Research Support Foundation of São

Paulo State (FAPESP), grant number 00/10062-3. H.A.A.

and A.D.O. are independently supported by FAPESP and

CNPq.

References

Achard F, Vaysseix G and Barillot E (2001) XML, bioinformatics

and data integration. Bioinformatics 17:115-125.

Altintas I, Bhagwanani S, Buttler D, Chandra S, Cheng Z,

Coleman M, Critchlow T, Gupta A, Han W, Liu L,

Ludäscher B, Pu C, Moore R, Shoshani A and Vouk MA

(2003) a modeling and execution environment for distrib-

uted scientific workflows. In: International Conference on

Scientific and Statistical Database Management pp 247-250.

Altschul SF, Madden TL, Schäffer AA, Zhang J, Zhang Z, Miller

W and Lipman DJ (1997) Gapped blast and psi-blast: A new

generation of protein database search programs. Nucleic

Acids Research 25:3389-3402.

Bonaldo MF, Lennon G and Soares MB (1996) Normalization

and subtraction: Two approaches to facilitate gene discov-

ery. Genome 6:791-806.

Ellis GR (1995) Managing complex objects. PhD Thesis, Univer-

sity of Queensland, Australia.

Gordon D, Desmarais C and Green P (2001) Automated finishing

with autofinish. Genome Research 11:614-625.

Gouet P and Courcelle E (2002) ENDscript: A workflow to dis-

play sequence and structure information. Bioinformatics

18:767-768.

Huang X (1996) A improved sequence assembly program.

Genomics 33:21-31.

Huang X and Madan A (1999) CAP3: A DNa sequence assembly

program. Genome Research 9:868-877.

Hubbard T (2002) Biological information: Making it accessible

and integrated (and trying to make sense of it).

Bioinformatics 18(90002):S140.

Koster R, Black AP, Huang J, Walpole J and Pu C (2001)

Infopipes for composing distributed information flows.

ACM International Workshop on Multimedia Middleware.

Liu L (1992) A formal approach to structure, algebra and commu-

nication of complex objects. PhD Thesis, Proefschrift

Katholieke Universiteit Brabant Tilburg, The Netherlands.

Paton NW, Khan SA, Hayes A, Moussouni F, Brass A, Eilbeck K,

Goble CA, Hubbard SJ and Oliver SG (2000) Conceptual

modelling of genomic information. Bioinformatics

16:548-557.

Payton J, Gamble R, Kimsen S and Davis L (2000) The opportu-

nity for formal models of integration. International Confer-

ence on Information Reuse and Integration, Hawaii, USA.

Peleg M, Yeh I and Altman RB (2002). Modelling biological pro-

cesses using workflow and Petri Net models. Bioinformatics

18:825-837.

Sheth A, Georgakopoulos D, Joosten SMM, Rusinkiewicz M,

Scacchi W, Wileden J and Wolf A (1996) State-of the-art

and future directions. NSF Workshop on Workflow and Pro-

cess Automation in Information System, Atlanta, USA.

http://lsdis.cs.uga.edu/activities/NSF-workflow.

Siepel A, Farmer A, Tolopko A, Zhuang M, Mendes P, Beavis W

and Sobral B (2001) ISYS: A decentralized, compo-

nent-based approach to the integration of heterogeneous

bioinformatics resources. Bioinformatics 17:83-94.

Singh MP and Huhns MN (1994) Automating workflows for ser-

vice order processing: Integrating AI and database technolo-

gies. IEEE Expert 9:19-23.

W3C-World Wide Web Consortium (2004) Extensible Markup

Language (XML) Specifications and translations.

http://www.w3.org/XML. Last visit on Sep 27, 2004.

National Center for Biotechnology Information - NCBI (1988)

Entrez help document. http://www.ncbi.nlm.nih.gov/

entrez/query/static/help/helpdoc.html. Last visit on Sep 27,

2004.

The RIKEN Genome Exploration Research Group Phase II Team

and the FANTOM Consortium (2001), Functional annota-

tion of 21,076 sequenced mouse cDNAs prepared from

full-length enriched libraries. Nature 409:685-690.

Integrating molecular biology data and applications 695


