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Abstract

An increasing number of genetic variants involved in dyslexia development were discovered during the last years,
yet little is known about the molecular functional mechanisms of these SNPs. In this study we investigated whether
dyslexia candidate SNPs have a direct, disease-specific effect on local expression levels of the assumed target gene
by using a differential allelic expression assay. In total, 12 SNPs previously associated with dyslexia and related phe-
notypes were suitable for analysis. Transcripts corresponding to four SNPs were sufficiently expressed in 28 cell
lines originating from controls and a family affected by dyslexia. We observed a significant effect of rs600753 on ex-
pression levels of DYX1C1 in forward and reverse sequencing approaches. The expression level of the rs600753
risk allele was increased in the respective seven cell lines from members of the dyslexia family which might be due to
a disturbed transcription factor binding sites. When considering our results in the context of neuroanatomical dys-
lexia-specific findings, we speculate that this mechanism may be part of the pathomechanisms underlying the dys-
lexia-specific brain phenotype. Our results suggest that allele-specific DYX1C1 expression levels depend on genetic
variants of rs600753 and contribute to dyslexia. However, these results are preliminary and need replication.
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Introduction

Dyslexia is a highly heritable disorder. The genetic

component contributes by up to 60% to this disorder

(Schulte-Körne, 2010) and several genes are suggested to

affect the development of dyslexia (see Tables S1 and S2).

Variants of well-validated genes such as DCDC2 (Dou-

blecortin Domain Containing 2), KIAA0319, ROBO1

(Roundabout Guidance Receptor 1) and DYX1C1 (Dys-

lexia Susceptibility 1 Candidate 1) are believed to be

involved in disturbed neuronal migration and axonal guid-

ance (Carrion-Castillo et al., 2013) as well as differences of

brain phenotypes such as alterations in white matter struc-

ture (Darki et al., 2012). In contrast to relatively well-

established knowledge on the gene level, information re-

garding the molecular mechanisms of dyslexia candidate

single nucleotide polymorphisms (SNPs) is still fragmen-

tary.

The molecular mechanism exerted by a certain SNP

can be of different nature. On the one hand, SNPs might af-

fect the structure of a gene-derived protein. For dyslexia,

however, only very few nonsynonymous SNPs affecting

protein structure and function are known (see Table S2 for

an overview). On the other hand, SNPs might influence the

protein quantitatively, e.g., by altering gene expression lev-

els, a phenomenon also referred to as expression quantita-

tive loci (eQTL). eQTLs are commonly differentiated in

cis-, as well as in trans-acting eQTLs. Trans eQTLs are lo-

cated distant to the gene which expression is affected and

cis eQTLs are located close to the affected gene.
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Only few studies specifically analyzed the impact of

dyslexia candidate SNPs on gene expression levels. Two

groups (Tapia-Páez et al., 2008; Tammimies et al., 2012)

reported a putative effect of rs3743205 on expression level

of DYX1C1. Tammimies et al. (2012) observed that a CpG

site results from the G-allele of this SNP. This might lead to

methylation of a transcription factor binding site, and, con-

sequently, in disturbed binding of transcription factors.

Paracchini et al. (2006) observed reduced expression levels

of KIAA0319 in carriers of the risk haplotype rs4504469-

rs2038137-rs2143340. In a second study, Dennis et al.

(2009) tested seven SNPs of the KIAA0319 promotor re-

gion and observed reduced KIAA01319 expression levels

for the minor allele rs9461045-T. However, these experi-

ments were all carried out in cells derived from donors

without dyslexia background. Such approaches might miss

effects resulting from a disease-specific genetic back-

ground. Previous results from dyslexia, but also from other

complex diseases, motivate to analyze such effects. For ex-

ample, Hannula-Jouppi et al. (2005) observed disease-

specific gene-expression levels in dyslexia and Furney et

al. (2011) identified an Alzheimer-specific effect for a SNP

within ZNF292 on entorhinal cortical volume. A disease-

specific molecular mechanisms can be understood as an ef-

fect which only emerges in affected individuals. This might

be due to different regulatory networks present in the af-

fected individuals. Consequently, certain molecular factor

might be active in the affected individuals, only, e.g., cer-

tain transcription factors. If a certain SNP would alter the

genomic binding site of such a disease specific factor, the

effect of this SNP would be also disease-specific, i.e., ob-

served only in the affected individuals (de la Fuente, 2010).

Another problem that may affect detection of an ef-

fect of a genetic variant on gene expression might result

from general heterogeneity across samples from a variety

of biological and technical sources, what can decrease

study power. However, these limitations can be addressed

by the direct measurement of cis-regulated allelic expres-

sion differences by differential allelic expression (DAE)

(Serre et al., 2008). In this approach, expression differences

resulting from the two different alleles of a SNP are ana-

lyzed within heterozygous individuals. Consequently, this

method is rather robust to biological or technical batch ef-

fects among individuals.

In our study we conducted a stepwise approach to

identify dyslexia-specific effects of SNPs on gene expres-

sion. We started with the identification of suitable dyslexia

candidate SNPs having a potential effect on local gene ex-

pression levels by assigning functional properties (Mc-

Laren et al., 2010) (Tables S1 and S2). Subsequently, all

these SNPs were genotyped in 10 cell lines derived from

multiple members of a family in which dyslexia frequently

occurred, thus providing a disease-specific background,

and in 18 control cell lines. Disease-specific DAE was as-

sessed in two replicates applying forward and reverse

Sanger sequencing of reverse transcribed cDNA. Results

were compared with publically available (dyslexia-uns-

pecific) eQTL-data.

Materials and Methods

SNP selection, cell lines and characterization steps

For the identification of dyslexia candidate SNPs, we

conducted a systematic screening using ‘PubMED’ and

‘Google Scholar’ for genetic candidate-studies related to

dyslexia. The identified SNPs had to map to an exonic,

5’-UTR or 3’-UTR location to have the potential to affect

local expression levels of the target genes. For each of these

SNPs, a minimum of four heterozygous cell lines per group

was required to maintain validity of our analyses (Serre et

al., 2008), and the general (non-allele specific) expression

of the SNP-corresponding transcripts was tested with

cDNA-specific primers in the sample cells of interest.

In total, 28 Epstein-Barr virus (EBV) immortalized

cell lines derived from B-cells were available. Ten cell lines

were derived from a three generational German family, in

which dyslexia segregation suggests a full-penetrance,

autosomal dominant inheritance. A genome-wide linkage

analysis revealed a haplotype of chromosome 12 co-segre-

gating with language impairment (Addis et al., 2010). For a

detailed description of the family see Addis et al. (2010). 18

cell lines that served as controls were derived from several

families with more details available elsewhere (Burkhardt

et al., 2012).

Extraction of genomic DNA (DNeasy Blood & Tis-

sue Kit, Qiagen, Hilden, Germany) and subsequent geno-

typing was performed by the matrix-assisted laser desor-

ption/ionization time-of-flight spectrometry system iPLEX

(Agena, Hamburg, Germany). SNPs had to fulfill Hardy-

Weinberg-Equilibrium criteria (HWE; p > 0.05 after Bon-

ferroni correction), and to exhibit a SNP-wise call rate >

97%, as well as a minor allele frequency (MAF) > 0.05.

SNPs had to be heterozygous in at least four individ-

ual cell lines to be eligible for analysis. Six SNPs fulfilled

this criterion and were considered for further analyses. Ap-

propriate cDNA-specific primers were designed and tested

for blood-specific expression. Gel electrophoresis demon-

strated sufficient expression of four SNPs in B-cells and

were therefore analyzed for DAE. Figure 1 illustrates the

workflow.

Heterozygous samples were quantified on cDNA and

gDNA level. cDNA was reverse-transcribed from RNA us-

ing Direct-zol RNA MiniPrep (Zymo Research, Irvine, CA,

USA) and Oligo(dT)15 primer (Promega, Madison, Wis-

consin, USA). Exonic, cDNA-specific PCR primers, and

gDNA-specific, intronic PCR primers were designed as

flanking the four SNPs. PCR was carried out with 45

rounds and 58 °C annealing temperature. For further de-

tails, see Wilcke et al. (2009) and Müller et al. (2016). To

quantify DAE, genomic and coding PCR products harbor-
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ing the SNP of interest were purified (Qiaquick PCR Purifi-

cation Kit, Qiagen, Hilden, Germany) and Sanger-sequen-

ced by Seqlab (Göttingen, Germany). Relative peak heights

of the SNP of interest were quantified using R software ver-

sion 3.2.4 (R Core Team, 2016) applying the add-on pack-

age sangerseqR version 1.4.0 (Hill et al., 2014). Allelic ra-

tios were calculated and log-transformed (see Figure 2).

For each SNP, the log-transformed allelic ratio was cor-

rected in an assay-specific manner (forward or reverse) by

subtracting the respective average transformed gDNA ra-

tio. Primer sequences can be found in Table S3.

Statistical analyses

To identify a genetic effect on gene expression, we

used the Kruskal-Wallis test to analyze significant differ-

ences between the allelic ratios of three groups: (i) affected

dyslexia family, (ii) controls, and (iii) gDNA. We used the

pairwise Wilcoxon rank sum test as post-hoc test, applying

the closed test procedure to account for multiple testing.

Results from forward and reverse sequencing were ana-

lyzed separately as well as combined by averaging allelic

log-ratios.

In silico characterization and comparison with
reported eQTLs

SNPs were characterized in silico according to

Ensembl annotations and prediction data (McLaren et al.,

2010). Furthermore, SNPs were annotated with known and

predicted regulatory elements including binding sites of

transcription factors and promoter regions using Regu-

lomeDB (Boyle et al., 2012). Publication-based (dyslexia-

unspecific) eQTLs comparison was performed by screen-

ing 24 published eQTL datasets (Dixon et al., 2007; Myers

et al., 2007; Veyrieras et al., 2008; Heinzen et al., 2008;

Ding et al., 2010; Liu et al., 2010; Murphy et al., 2010;

Zeller et al., 2010; Gibbs et al., 2010; Barreiro et al., 2011;

Borel et al., 2011; Fehrmann et al., 2011; Grundberg et al.,

2011; Kompass and Witte, 2011; Qiu et al., 2011; Innocenti

et al., 2011; Xia et al., 2012; Zou et al., 2012; Kim et al.,

2012; Kabakchiev and Silverberg, 2013; Westra et al.,

2013; Ramasamy et al., 2014; Kirsten et al., 2015; GTEx

Consortium, 2015). These publications cover a broad range

of 63 different tissues, including brain and neuronal tissues,

as well as cis and trans eQTL data.

The LD structure of the DYX1C1 locus was analyzed

via local association plots using LocusZoom software

(Pruim et al., 2011).

Results

Functional variant annotation and identification of
eligible SNPs

We identified 12 suitable SNPs with reported associa-

tions with dyslexia related phenotypes that have the poten-

tial to affect local expression levels: rs934634-CYP19A1,

rs10046-CYP19A1 and rs555879-MYO5B are located in the

3’-UTR, rs3743205- DYX1C1, rs2038137-KIAA0319 and

rs3178-NRSN1 are located in the 5’-UTR. Rs600753-

DYX1C1, rs17819126-DYX1C1, rs9467075-DCDC2,

rs3734972-FLNC and rs4504469-KIAA0319 are exonic

SNPs, and rs2143340-TDP2 is located in a non-coding

exon. Genotyping of these SNPs was performed in all 28

cell lines in order to identify heterozygous cell lines.

In a second step, SNPs were only considered for anal-

yses if a minimum of three heterozygous cell lines from the

dyslexia family as well as control cell lines were available.

Six of the preselected SNPs fulfilled this criterion

(rs10046-CYP19A1 (6 dyslexia and 11 controls),

rs934634-CYP19A1 (4 dyslexia and 9 controls),
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Figure 1 - Workflow of SNP characterization. Candidate SNPs used in this study had to be heterozygous in at least three immortalize B-cell lines originat-

ing from the dyslexia family and three cell lines originating from controls and expressed in the immortalized B-cells.

Figure 2 - Formula for calculating the log-transformed allelic ratio. The

allelic ratio is the difference between the natural logarithm-transformed

ratios of the allele heights of the cDNA and the gDNA.



rs9467075-DCDC2 (5 dyslexia and 8 controls),

rs600753-DYX1C1 (7 dyslexia and 10 controls),

rs555879-MYO5B (7 dyslexia and 14 controls),

rs2143340-TDP2 (4 dyslexia and 7 controls)).

In a third step, sufficient expression of the transcripts

corresponding to the SNPs in EBV cells was tested by

cDNA-specific PCR. Four SNPs fulfilled these three crite-

ria (rs10046-CYP19A1, rs600753-DYX1C1, rs934634-

CYP19A1, rs9467075-DCDC2) and, thus, were tested for

dyslexia-specific effects on gene expression (Figure 1).

Finally, sequences must have passed quality control.

Hence, for rs600753, data from up to six dyslexics and

seven controls, were included in differential allelic expres-

sion analysis. For detailed numbers see Table S4.

Differential allelic expression

No genetic effects on gene expression were observed

for variants rs10046-CYP19A1, rs934634-CYP19A1,

rs9467075-DCDC2. In contrast, we observed a significant

effect of rs600753 on DYX1C1 expression levels (Table 1

and Figure 3; raw-data is shown in Figure 4). In particular,

an effect of rs600753 on the forward sequencing based

measurement was observed (p=0.016). The post-hoc test

revealed significant differences between the cDNA levels

of the dyslexia family and the controls. The significant dif-

ference could be confirmed in data from reverse sequenc-

ing (p=0.013), as well as within the combined analyses of

both approaches (p=0.021). This showed that the reported

dyslexia risk-allele (rs600753-C) was expressed higher

than the protective allele (T) in the dyslexia family. The

control cell lines revealed the opposite effect, as the T-

allele was higher expressed compared to the C-allele (Table

1).

Since a single previous study reported sex-specific

association of rs600753 with dyslexia (Dahdouh et al.,

2009), we stratified our DAE analysis of rs600753 for sex.

However, we did not observe any sex-specific effect. The

risk and non-risk individuals revealed a similar genetic ef-

fect on gene expression for both sexes.

Functional annotation

Rs600753 was annotated with regulatory elements

using RegulomeDB which includes the identification of

transcription factor binding sites and their disturbance by

position weight matrix (PWM). PWM indicates the distur-

bance of binding sites the transcription factor Srf, Nanog,

Mtf1 by rs600753 (Matys et al., 2006; Badis et al., 2009;

Boyle et al., 2012). Furthermore, the publication-based an-

notation with eQTL-effects revealed an cis effect of

rs600753 on the expression levels of CCPG1 and PIGB in

blood derived cells (Xia et al., 2012; Westra et al., 2013;

Kirsten et al., 2015), and DYX1C1 in fibroblasts (GTEx

Consortium, 2015).
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Figure 3 - Differential allelic expression (DAE) of four dyslexia-related SNPs. Shown are allelic log-ratios measured in heterozygous samples adjusted

for the gDNA allelic ratio. a) Forward sequencing analysis of all four expressed SNPs stratified for cDNA allelic ratios for controls and the dyslexia af-

fected family and the logarithm of the gDNA allelic ratio. b) Reverse sequencing based replication of rs600753. c) Analysis of both sequencing ap-

proaches together. *p < 0.05 (Wilcoxon rank sum test). Global testing for genetic effects on gene expression of rs600753-DYX1C1 applying

Kruskal-Wallis test was always p < 0.05. For details see Table 1.

Figure 4 - Sequencing results of dyslexia family and controls. The rs600753 cDNA-sequences and the respective gDNA-sequences for six dyslexia fam-

ily members (a) and seven controls (b). Arrows indicate position of rs600753.



Discussion

This study analyzed dyslexia candidate SNPs with re-

gard to their disease-specific effect on the expression levels

of their respective gene. This was performed by applying a

DAE analysis of cells from a dyslexia family and controls.

SNP rs600753 indicated an effect on the expression level of

DYX1C1 with the reported risk allele rs600753-C (Dah-

douh et al., 2009; Matsson et al., 2015) being stronger ex-

pressed in cell lines derived from a dyslexia family as

compared to cell lines from controls.

Association of rs600753 with dyslexia related pheno-

types was first reported by Dahdouh et al. (2009) who iden-

tified an association of a haplotype spanning rs3743205,

rs3743204 and rs600753 in females. Variant rs600753 effi-

ciently tags this haplotype. Corroborating, a nominally sig-

nificant single-marker association of SNP rs600753 with

spelling was identified in German dyslexia families (Mats-

son et al., 2015). Our study further supports a role of

rs600753 in dyslexia as we found disease-specific effects

of rs600753 on expression levels of DYX1C1.

A distinction must be drawn between disease-specific

effects, such as those investigated here, and general, non-

disease-specific effects. The disease-specific effect of

rs600753 identified in this study can be explained by the

complex genetic background underlying the disease. Af-

fected individuals might exhibit changes in regulatory net-

works. This may lead, e.g., to the activation of transcription

factors that are not active in unaffected controls. If a SNP

causes a differential allelic expression of a binding site of a

such factor, the effect of the SNP can be disease-specific.

To the best of our knowledge, there is only one report of a

SNP affecting gene expression levels in a dyslexia-specific

manner. Hannula-Jouppi et al. (2005) observed allele-

specific expression of a SNP in the 3’-UTR of ROBO1

(6483T > A) in a dyslexic Finnish family. The expression

of the A-allele was absent or attenuated in four individuals.

However, the same group was unable to directly replicate

this finding in a more recent study (Massinen et al., 2016),

but the conclusion remained that adequate ROBO1 expres-

sion is a prerequisite for a normal crossing of the auditory

pathway (Lamminmäki et al., 2012; Massinen et al., 2016).

We aimed to control for such variations by analyzing both

strands.

Other studies investigated an effect of dyslexia candi-

date SNPs on gene expression levels in non-dyslexic sam-

ples, only. For instance, two studies reported effects of

rs3743205 on the expression levels of DYX1C1 (Tapia-

Páez et al., 2008; Tammimies et al., 2012). Similar results

were reported for KIAA0319. Reduced expression levels

were observed for the haplotype rs4504469-rs2038137-

rs2143340 (Paracchini et al., 2006) and for rs9461045

(Dennis et al., 2009). We tested the expression of

KIAA0319 with rs2038137, yet this gene was not expressed

in the available cell lines. Furthermore, risk allele fre-

quency of rs3743205-DYX1C1 was not sufficient in our

sample. Consequently, from our study we cannot draw con-

clusions concerning genetic effects on gene expression of

these SNPs.

In cell lines from the dyslexia family we observed

significantly increased expression associated with the re-

ported risk variant rs600753-C. Thereby we observed indi-

vidual differences in the effect size (Figures 2), which is

potentially due to a number of reasons. These include envi-

ronmental factors and the presence of additional genetic

factors modulating DYX1C1 expression levels. It certainly

would be of interest to see whether a generally increased

DYX1C1 expression level is present in the investigated dys-

lexia family including the non-carriers of the rs600753 risk

variants. However, this comparison is not available due to

the low number of available homozygous individuals.

The impact of altered gene expression levels on

neuronal function was repeatedly observed for the best rep-

licated dyslexia candidate genes (DCDC2, DYX1C1 and

KIAA0319). Knockdown experiments for these genes in

rats revealed disrupted neuronal migration to the neocortex

(Adler et al., 2013). Particularly, neurons from Dyx1c1

knockdown rats exhibited bimodal ectopic locations by re-

maining at the white matter border or migrating beyond

their expected position (Currier et al., 2011). Similar ecto-

pic neuronal locations were also observed in brains of dys-

lexic individuals (Galaburda et al., 1985). We speculate

that rs600753-DYX1C1 is part of the pathomechanism un-

derlying the characteristic dyslexia phenotype described by

Galaburda et al. (1985): Expression levels of genes being

relevant for neurogenesis need to be strictly controlled, and

too low as well as too high expression can be deleterious

(Francesconi and Lehner, 2014). Thus, allele-specific alter-

ations of DYX1C1 expression levels linked to rs600753

might have the potential to disturb downstream effects of

DYX1C1, such as neuronal migration and neuronalplace-

ment, and thereby affecting functionality of the resulting

neural networks.

PWM-assays support this hypotheses as they indi-

cated a disturbance of binding sites of three different tran-

scription factors (Srf, Nanog, Mtf1) by rs600753 (Matys et

al., 2006; Badis et al., 2009; Boyle et al., 2012). Altered

binding of these transcription factors might provide a mo-

lecular mechanism for the observed genetic regulation. Srf

(OMIM 600589) is an ubiquitous nuclear protein known to

be involved in cell growth, Mtf1 (OMIM 600172) is in-

volved in metal homeostasis and Nanog (OMIM 607937) is

involved in embryonic stem cell proliferation and renewal.

Hence, among these three putative affected transcription

factors we consider Nanog as the most interesting candi-

date in the context of the molecular pathomechanism of

dyslexia as its function provides a direct link to early devel-

opmental processes critical in dyslexia.

We analyzed published eQTL-data of unaffected

populations to obtain further insights into the observed

rs600753-DYX1C1 effect. Rs600753 directly affects the
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expression levels of CCPG1 and PIGB in blood derived

cells (Xia et al., 2012; Westra et al., 2013; Kirsten et al.,

2015), and DYX1C1 in fibroblasts (GTEx Consortium,

2015). The reported effect direction is in line with the direc-

tion we observed for the control cell lines (higher expressed

T-allele). This strengthens the hypothesis that the effect of

rs600753 is dyslexia-specific since we observed a signifi-

cant opposite effect direction in cells from the dyslexia

family (higher expressed C-allele).

However, rs600753 is not the strongest reported

eQTL at this locus (Figure S1), as reported effects of

rs12324434 are stronger (p=4.510-16). This variant is in

moderate linkage disequilibrium (R2=0.67) with rs600753

(GTEx Consortium, 2015). Notably, two studies analyzed

an association of rs12324434 with dyslexia but found no

association (Bates et al., 2010; Paracchini et al., 2011).

Therefore, in contrast to rs600753, a putative relevance of

rs12324434 for dyslexia remains to be shown.

Limitations

We investigated DAE in immortalized B-cells and

not in neuronal cell lines. However, it is well known that

most cis eQTL are ubiquitous, as typically more than 50%

are replicable among tissues (Van Nas et al., 2010; GTEx

Consortium, 2015). All investigated affected individuals

originated from a single, large dyslexia family, which lim-

its the generalizability of our observation. Hence, our find-

ings should be considered as preliminary and provocative

and should be replicated in larger numbers of affected and

unaffected individuals. Nevertheless, this family was very

well characterized for any medical conditions, and dyslexia

was the primary characteristic. Hence, we expect that the

described genetic effects on gene expression is likely of

dyslexia-specific nature. In line with this, when stratifying

our data of rs600753 for affection with dyslexia, an even

higher DAE was observed in cells originating from family

members with reported dyslexia compared with family

members without reported dyslexia (Figure S2). Moreover,

all investigated cell lines originated from individuals of

Caucasian ancestry. Although this eliminates an important

source of false positives due to population stratification,

this limits at the same time the transferability of our find-

ings to other ethnicities.

Conclusion

We identified allele-specific DYX1C1 expression lev-

els related to rs600753 in dyslexics, a variant previously re-

ported to be associated with dyslexia. Our findings are

among the first for dyslexia candidate SNPs suggesting an

effect on gene expression in a dyslexia-specific manner.

The results are in line with reported eQTL data and provide

further insights into the molecular pathomechanisms of

dyslexia.

Acknowledgments

We would like to thank all members of the Legas-

creen consortium for their support during this study. The

consortium consists of: Prof. Dr. Dr. h.c. Angela D. Frie-

derici, Prof. Dr. Frank Emmrich, Dr. Jens Brauer, Dr. Arndt

Wilcke, Dr. Nicole Neef, Prof. Dr. Dr. Johannes Boltze, Dr.

Michael Skeide, Dr. Holger Kirsten, Dr. Gesa Schaadt, Dr.

Bent Müller, Dr. Indra Kraft, Ivonne Czepezauer, and Lia-

ne Dörr. The Legascreen Project is funded by the Fraun-

hofer Society and the Max-Planck-Society as a project

within the framework of the “Pakt für Forschung und Inno-

vation”. The authors are grateful to Prof. Dr. Svante Pääbo,

Birgit Nickel and Prof. Dr. Frank Albert for providing ma-

terial and expert support regarding cell culture experi-

ments.

References

Addis L, Friederici AD, Kotz SA, Sabisch B, Barry J, Richter N,

Ludwig AA, Rübsamen R, Albert FW, Pääbo S et al. (2010)

A locus for an auditory processing deficit and language im-

pairment in an extended pedigree maps to 12p13.31-q14.3.

Genes Brain Behav 9:545-561.

Adler WT, Platt MP, Mehlhorn AJ, Haight JL, Currier TA,

Etchegaray MA, Galaburda AM and Rosen GD (2013) Posi-

tion of neocortical neurons transfected at different gesta-

tional ages with shRNA targeted against candidate dyslexia

susceptibility genes. PLoS One 8:e65179.

Badis G, Berger MF, Philippakis AA, Talukder S, Gehrke AR,

Jaeger SA, Chan ET, Metzler G, Vedenko A, Chen X et al.

(2009) Diversity and complexity in DNA recognition by

transcription factors. Science 324:1720.

Barreiro LB, Tailleux L, Pai AA, Gicquel B, Marioni JC and Gilad

Y (2011) Deciphering the genetic architecture of variation in

the immune response to Mycobacterium tuberculosis infec-

tion. Proc Natl Acad Sci U S A 109:1204-1209.

Bates TC, Lind PA, Luciano M, Montgomery GW, Martin NG

and Wright MJ (2010) Dyslexia and DYX1C1: Deficits in

reading and spelling associated with a missense mutation.

Mol Psychiatry 15:1190-1196.

Borel C, Deutsch S, Letourneau A, Migliavacca E, Montgomery

SB, Dimas AS, Vejnar CE, Attar H, Gagnebin M, Gehrig C

et al. (2011) Identification of cis- and trans-regulatory varia-

tion modulating microRNA expression levels in human

fibroblasts. Genome Res 21:68-73.

Boyle AP, Hong EL, Hariharan M, Cheng Y, Schaub MA,

Kasowski M, Karczewski KJ, Park J, Hitz BC, Weng S et al.

(2012) Annotation of functional variation in personal geno-

mes using RegulomeDB. Genome Res 22:1790-17977.

Burkhardt J, Kirsten H, Wolfram G, Quente E and Ahnert P

(2012) Differential allelic expression of IL13 and CSF2

genes associated with asthma. Genet Mol Biol 35:567-574.

Carrion-Castillo A, Franke B and Fisher SE (2013) Molecular ge-

netics of dyslexia: An overview. Dyslexia 19:214-240.

Currier TA, Etchegaray MA, Haight JL, Galaburda AM and

Rosen GD (2011) The effects of embryonic knockdown of

the candidate dyslexia susceptibility gene homologue

Dyx1c1 on the distribution of GABAergic neurons in the ce-

rebral cortex. Neuroscience 172:535-546.

Differential expression of DYX1C1 47



Dahdouh F, Anthoni H, Tapia-Páez I, Peyrard-Janvid M,

Schulte-Körne G, Warnke A, Remschmidt H, Ziegler A,

Kere J, Müller-Myhsok B et al. (2009) Further evidence for

DYX1C1 as a susceptibility factor for dyslexia. Psychiatr

Genet 19:59-63.

Darki F, Peyrard-Janvid M, Matsson H, Kere J and Klingberg T

(2012) Three dyslexia susceptibility genes, DYX1C1,

DCDC2, and KIAA0319, affect temporo-parietal white mat-

ter structure. Biol Psychiatry 72:671-676.

de la Fuente A (2010) From “differential expression” to “differen-

tial networking” - identification of dysfunctional regulatory

networks in diseases. Trends Genet 26:326-333.

Dennis MY, Paracchini S, Scerri TS, Prokunina-Olsson L, Knight

JC, Wade-Martins R, Coggill P, Beck S, Green ED and Mo-

naco AP (2009) A common variant associated with dyslexia

reduces expression of the KIAA0319 gene. PLoS Genet

5:e1000436.

Ding J, Gudjonsson JE, Liang L, Stuart PE, Li Y, Chen W,

Weichenthal M, Ellinghaus E, Franke A, Cookson W et al.

(2010) Gene expression in skin and lymphoblastoid cells:

Refined statistical method reveals extensive overlap in cis-

eQTL signals. Am J Hum Genet 87:779-789.

Dixon AL, Liang L, Moffatt MF, Chen W, Heath S, Wong KCC,

Taylor J, Burnett E, Gut I, Farrall M et al. (2007) A ge-

nome-wide association study of global gene expression. Nat

Genet 39:1202-1207.

Fehrmann RSN, Jansen RC, Veldink JH, Westra H-JJ, Arends D,

Bonder MJ, Fu J, Deelen P, Groen HJM, Smolonska A et al.

(2011) Trans-eQTLs reveal that independent genetic vari-

ants associated with a complex phenotype converge on in-

termediate genes, with a major role for the HLA. PLoS

Genet 7:e1002197.

Francesconi M and Lehner B (2014) The effects of genetic varia-

tion on gene expression dynamics during development. Na-

ture 505:208-211.

Furney SJ, Simmons A, Breen G, Pedroso I, Lunnon K, Proitsi P,

Hodges A, Powell J, Wahlund LL-O, Mecocci P et al.

(2011) Genome-wide association with MRI atrophy mea-

sures as a quantitative trait locus for Alzheimer’s disease.

Mol Psychiatry 16:1130-1138.

Galaburda AM, Sherman GF, Rosen GD, Aboitiz F and

Geschwind N (1985) Developmental dyslexia: Four consec-

utive patients with cortical anomalies. Ann Neurol 18:222-

233.

Gibbs JR, van der Brug MP, Hernandez DG, Traynor BJ, Nalls

MA, Lai S-L, Arepalli S, Dillman A, Rafferty IP, Troncoso J

et al. (2010) Abundant quantitative trait loci exist for DNA

methylation and gene expression in human brain. PLoS

Genet 6:e1000952.

Grundberg E, Adoue V, Kwan T, Ge B, Duan QL, Lam KCL,

Koka V, Kindmark A, Weiss ST, Tantisira K et al. (2011)

Global analysis of the impact of environmental perturbation

on cis-regulation of gene expression. PLoS Genet

7:e1001279.

GTEx Consortium (2015) Human genomics. The Genotype-

Tissue Expression (GTEx) pilot analysis: Multitissue gene

regulation in humans. Science 348:648-660.

Hannula-Jouppi K, Kaminen-Ahola N, Taipale M, Eklund R,

Nopola-Hemmi J, Kääriäinen H and Kere J (2005) The axon

guidance receptor gene ROBO1 is a candidate gene for de-

velopmental dyslexia. PLoS Genet 1:0467-0474.

Heinzen EL, Ge D, Cronin KD, Maia JM, Shianna K V, Gabriel

WN, Welsh-Bohmer KA, Hulette CM, Denny TN and

Goldstein DB (2008) Tissue-specific genetic control of

splicing: Implications for the study of complex traits. PLoS

Biol 6:e1000001.

Hill JT, Demarest BL, Bisgrove BW, Su YC, Smith M and Yost

HJ (2014) Poly peak parser: Method and software for identi-

fication of unknown indels using sanger sequencin of poly-

merase chain reaction products. Dev Dyn 243:1632-1636.

doi: 10.1002/dvdy.24183.

Innocenti F, Cooper GM, Stanaway IB, Gamazon ER, Smith JD,

Mirkov S, Ramirez J, Liu W, Lin YS, Moloney C et al.

(2011) Identification, replication, and functional fine-

mapping of expression quantitative trait loci in primary hu-

man liver tissue. PLoS Genet 7:e1002078.

Kabakchiev B and Silverberg MS (2013) Expression quantitative

trait loci analysis identifies associations between genotype

and gene expression in human intestine. Gastroenterology

144:1488-1496.

Kim S, Cho H, Lee D and Webster MJ (2012) Association be-

tween SNPs and gene expression in multiple regions of the

human brain. Transl Psychiatry 2:e113.

Kirsten H, Al-Hasani H, Holdt L, Gross A, Beutner F, Krohn K,

Horn K, Ahnert P, Burkhardt R, Reiche K et al. (2015) Dis-

secting the genetics of the human transcriptome identifies

novel trait-related trans-eQTLs and corroborates the regula-

tory relevance of non-protein coding loci. Hum Mol Genet

24:4746-4763.

Kompass KS and Witte JS (2011) Co-regulatory expression quan-

titative trait loci mapping: method and application to endo-

metrial cancer. BMC Med Genomics 4:6.

Lamminmäki S, Massinen S, Nopola-Hemmi J, Kere J and Hari R

(2012) Human ROBO1regulates interaural interaction in au-

ditory pathways. J Neurosci 32:966-971.

Liu C, Cheng L, Badner JA, Zhang D, Craig DW, Redman M and

Gershon ES (2010) Whole-genome association mapping of

gene expression in the human prefrontal cortex. Mol Psychi-

atry 15:779-784.

Massinen S, Wang J, Laivuori K, Bieder A, Tapia Paez I, Jiao H

and Kere J (2016) Genomic sequencing of a dyslexia sus-

ceptibility haplotype encompassing ROBO1. J Neurodev

Disord 8:4.

Matsson H, Huss M, Persson H, Einarsdottir E, Tiraboschi E,

Nopola-Hemmi J, Schumacher J, Neuhoff N, Warnke A,

Lyytinen H et al. (2015) Polymorphisms in DCDC2 and

S100B associate with developmental dyslexia. J Hum Genet

60:399-401.

Matys V, Kel-Margoulis O V, Fricke E, Liebich I, Land S, Barre-

Dirrie A, Reuter I, Chekmenev D, Krull M, Hornischer K et

al. (2006) TRANSFAC and its module TRANSCompel:

Transcriptional gene regulation in eukaryotes. Nucleic

Acids Res 34:D108-D110.

McLaren W, Pritchard B, Rios D, Chen Y, Flicek P and Cunnin-

gham F (2010) Deriving the consequences of genomic vari-

ants with the Ensembl API and SNP Effect Predictor.

Bioinformatics 26:2069-2070.

Müller B, Wilcke A, Czepezauer I, Ahnert P, Boltze J, Kirsten H

and LEGASCREEN consortium (2016) Association, char-

acterisation and meta-analysis of SNPs linked to general

reading ability in a German dyslexia case-control cohort. Sci

Rep 6:27901.

48 Müller et al.



Murphy A, Chu JH, Xu M, Carey VJ, Lazarus R, Liu A, Szefler

SJ, Strunk R, DeMuth K, Castro M et al. (2010) Mapping of

numerous disease-associated expression polymorphisms in

primary peripheral blood CD4+ lymphocytes. Hum Mol

Genet 19:4745-4757.

Myers AJ, Gibbs JR, Webster JA, Rohrer K, Zhao A, Marlowe L,

Kaleem M, Leung D, Bryden L, Nath P et al. (2007) A sur-

vey of genetic human cortical gene expression. Nat Genet

39:1494-1499.

Paracchini S, Ang QW, Stanley FJ, Monaco AP, Pennell CE and

Whitehouse AJO (2011) Analysis of dyslexia candidate ge-

nes in the Raine cohort representing the general Australian

population. Genes Brain Behav 10:158-165.

Paracchini S, Thomas A, Castro S, Lai C, Paramasivam M, Wang

Y, Keating BJ, Taylor JM, Hacking DF, Scerri T et al.

(2006) The chromosome 6p22 haplotype associated with

dyslexia reduces the expression of KIAA0319, a novel gene

involved in neuronal migration. Hum Mol Genet 15:1659-

1666.

Pruim RJ, Welch RP, Sanna S, Teslovich TM, Chines PS, Gliedt

TP, Boehnke M, Abecasis GR, Willer CJ and Frishman D

(2011) LocusZoom: Regional visualization of genome-wide

association scan results. Bioinformatics 27:2336-2337.

Qiu W, Cho MH, Riley JH, Anderson WH, Singh D, Bakke P,

Gulsvik A, Litonjua AA, Lomas D a., Crapo JD et al. (2011)

Genetics of sputum gene expression in chronic obstructive

pulmonary disease. PLoS One 6:e24395.

R Core Team (2016) R: A Language and Environment for Statisti-

cal Computing. R Foundation for Statistical Computing, Vi-

enna, Austria.

Ramasamy A, Trabzuni D, Guelfi S, Varghese V, Smith C, Wal-

ker R, De T, Coin L, de Silva R, Cookson MR et al. (2014)

Genetic variability in the regulation of gene expression in

ten regions of the human brain. Nat Neurosci 17:1418-1428.

Schulte-Körne G (2010) The prevention, diagnosis, and treatment

of dyslexia. Dtsch Arzteblatt Int 107:718-727.

Serre D, Gurd S, Ge B, Sladek R, Sinnett D, Harmsen E, Bibikova

M, Chudin E, Barker DL, Dickinson T et al. (2008) Differ-

ential allelic expression in the human genome: A robust ap-

proach to identify genetic and epigenetic cis-acting mecha-

nisms regulating gene expression. PLoS Genet 4:e1000006.

Tammimies K, Tapia-Páez I, Rüegg J, Rosin G, Kere J,

Gustafsson J-Å and Nalvarte I (2012) The rs3743205 SNP is

important for the regulation of the dyslexia candidate gene

DYX1C1 by estrogen receptor � and DNA methylation. Mol

Endocrinol 26:619-629.

Tapia-Páez I, Tammimies K, Massinen S, Roy AL and Kere J

(2008) The complex of TFII-I, PARP1, and SFPQ proteins

regulates the DYX1C1 gene implicated in neuronal migra-

tion and dyslexia. FASEB J 22:3001-3009.

Van Nas A, Ingram-Drake L, Sinsheimer JS, Wang SS, Schadt

EE, Drake T and Lusis AJ (2010) Expression quantitative

trait loci: Replication, tissue- and sex-specificity in mice.

Genetics 185:1059-1068.

Veyrieras J-B, Kudaravalli S, Kim SY, Dermitzakis ET, Gilad Y,

Stephens M and Pritchard JK (2008) High-resolution map-

ping of expression-QTLs yields insight into Human Gene

Regulation. PLoS Genet 4:e1000214. doi: 10.1371/jour-

nal.pgen.1000214.

Westra H-J, Peters MJ, Esko T, Yaghootkar H, Schurmann C,

Kettunen J, Christiansen MW, Fairfax BP, Schramm K,

Powell JE et al. (2013) Systematic identification of trans

eQTLs as putative drivers of known disease associations.

Nat Genet 45:1238-1243.

Wilcke A, Weissfuss J, Kirsten H, Wolfram G, Boltze J and

Ahnert P (2009) The role of gene DCDC2 in German dys-

lexics. Ann Dyslexia 59:1-11.

Xia K, Shabalin AA, Huang S, Madar V, Zhou YH, Wang W, Zou

F, Sun W, Sullivan PF and Wright FA (2012) SeeQTL: A

searchable database for human eQTLs. Bioinformatics

28:451-452.

Zeller T, Wild P, Szymczak S, Rotival M, Schillert A, Castagne R,

Maouche S, Germain M, Lackner K, Rossmann H et al.

(2010) Genetics and beyond - the transcriptome of human

monocytes and disease susceptibility. PLoS One 5:e10693.

Zou F, Chai HS, Younkin CS, Allen M, Crook J, Pankratz VS,

Carrasquillo MM, Rowley CN, Nair AA, Middha S et al.

(2012) Brain expression genome-wide association study

(eGWAS) identifies human disease-associated variants.

PLoS Genet 8:e1002707.

Supplementary material

The following online material is available for this article:

Table S1: Overview of considered SNPs.

Table S2: Overview of SNPs related to dyslexia but not an-

alyzed.

Table S3: Primer sequences.

Table S4: Number of sequences surviving quality control.

Figure S1: Local association plot of rs600753.

Figure S2: The effect of rs600753 stratified for gDNA

Associate Editor: Mara H. Hutz

License information: This is an open-access article distributed under the terms of the
Creative Commons Attribution License (type CC-BY), which permits unrestricted use,
distribution and reproduction in any medium, provided the original article is properly cited.

Differential expression of DYX1C1 49

http://www.scielo.br/pdf/gmb/v41n1/1415-4757-GMB-41-01-2017-0165-s001.pdf
http://www.scielo.br/pdf/gmb/v41n1/1415-4757-GMB-41-01-2017-0165-s002.pdf
http://www.scielo.br/pdf/gmb/v41n1/1415-4757-GMB-41-01-2017-0165-s003.pdf
http://www.scielo.br/pdf/gmb/v41n1/1415-4757-GMB-41-01-2017-0165-s004.pdf
http://www.scielo.br/pdf/gmb/v41n1/1415-4757-GMB-41-01-2017-0165-s005.pdf
http://www.scielo.br/pdf/gmb/v41n1/1415-4757-GMB-41-01-2017-0165-s006.pdf



