Acessibilidade / Reportar erro
Genetics and Molecular Biology, Volume: 47, Número: 2, Publicado: 2024
  • LTBP2 regulates cisplatin resistance in GC cells via activation of the NF-κB2/BCL3 pathway Human And Medical Genetics

    Wang, Jun; Liang, Wenjia; Wang, Xiangwen; Chen, Zhao; Jiang, Lei

    Resumo em Inglês:

    Abstract Gastric cancer (GC) often develops resistance to cisplatin treatment, but while latent transforming growth factor β-binding protein (LTBP2) is recognized as a potential regulator in GC, its specific role in cisplatin resistance is not fully understood. This study investigated LTBP2’s impact on cisplatin resistance in GC. LTBP2 expression was assessed in various GC cell lines, and its correlation with cisplatin sensitivity was determined through cell viability assays. Lentivirus-mediated LTBP2 silencing in HGC-27 cells demonstrated enhanced cisplatin sensitivity, reduced cell proliferation, and inhibition of the NF-κB2/Bcl-3/cyclin D1 pathway. Additionally, transient transfection overexpressed the NFκB2 gene in LTBP2-silenced HGC-27/DDPR cells, restoring cisplatin sensitivity and upregulating p52/Bcl-3/cyclin D1. In conclusion, silencing LTBP2 could effectively inhibit cell proliferation and mitigate cisplatin resistance via the NFKB noncanonical pathway NFKB2 p52/Bcl-3/cyclin D1. These findings propose LTBP2 as a potential therapeutic target for overcoming cisplatin resistance in GC patients.
  • GJB2 c.35del variant up-regulates GJA1 gene expression and affects differentiation of human stem cells Human And Medical Genetics

    Batissoco, Ana Carla; Cruz, Dayane Bernardino; Alegria, Thiago Geronimo Pires; Kobayashi, Gerson; Oiticica, Jeanne; Soares Netto, Luis Eduardo; Passos-Bueno, Maria Rita; Haddad, Luciana Amaral; Mingroni Netto, Regina Célia

    Resumo em Inglês:

    Abstract Pathogenic DNA alterations in GJB2 are present in nearly half of non-syndromic hearing loss cases with autosomal recessive inheritance. The most frequent variant in GJB2 causing non-syndromic hearing loss is the frameshifting c.35del. GJB2 encodes Cx26, a protein of the connexin family that assembles hemichannels and gap junctions. The expression of paralogous proteins is believed to compensate for the loss of function of specific connexins. As Cx26 has been involved in cell differentiation in distinct tissues, we employed stem cells derived from human exfoliated deciduous teeth (SHEDs), homozygous for the c.35del variant, to assess GJB2 roles in stem cell differentiation and the relationship between its loss of function and the expression of paralogous genes. Primary SHED cultures from patients and control individuals were compared. SHEDs from patients had significantly less GJB2 mRNA and increased amount of GJA1 (Cx43), but not GJB6 (Cx30) or GJB3 (Cx31) mRNA. In addition, they presented higher induced differentiation to adipocytes and osteocytes but lower chondrocyte differentiation. Our results suggest that GJA1 increased expression may be involved in functional compensation for GJB2 loss of function in human stem cells, and it may explain changes in differentiation properties observed in SHEDs with and without the c.35del variant.
  • Putative protective genomic variation in the Lithuanian population Human And Medical Genetics

    Žukauskaitė, Gabrielė; Domarkienė, Ingrida; Rančelis, Tautvydas; Kavaliauskienė, Ingrida; Baronas, Karolis; Kučinskas, Vaidutis; Ambrozaitytė, Laima

    Resumo em Inglês:

    Abstract Genomic effect variants associated with survival and protection against complex diseases vary between populations due to microevolutionary processes. The aim of this study was to analyse diversity and distribution of effect variants in a context of potential positive selection. In total, 475 individuals of Lithuanian origin were genotyped using high-throughput scanning and/or sequencing technologies. Allele frequency analysis for the pre-selected effect variants was performed using the catalogue of single nucleotide polymorphisms. Comparison of the pre-selected effect variants with variants in primate species was carried out to ascertain which allele was derived and potentially of protective nature. Recent positive selection analysis was performed to verify this protective effect. Four variants having significantly different frequencies compared to European populations were identified while two other variants reached borderline significance. Effect variant in SLC30A8 gene may potentially protect against type 2 diabetes. The existing paradox of high rates of type 2 diabetes in the Lithuanian population and the relatively high frequencies of potentially protective genome variants against it indicate a lack of knowledge about the interactions between environmental factors, regulatory regions, and other genome variation. Identification of effect variants is a step towards better understanding of the microevolutionary processes, etiopathogenetic mechanisms, and personalised medicine.
  • Investigating the shared genetic architecture between breast and ovarian cancers Genomics And Bioinformatics

    Shi, Xuezhong; Bu, Anqi; Yang, Yongli; Wang, Yuping; Zhao, Chenyu; Fan, Jingwen; Yang, Chaojun; Jia, Xiaocan

    Resumo em Inglês:

    Abstract High heritability and strong correlation have been observed in breast and ovarian cancers. However, their shared genetic architecture remained unclear. Linkage disequilibrium score regression (LDSC) and heritability estimation from summary statistics (ρ-HESS) were applied to estimate heritability and genetic correlations. Bivariate causal mixture model (MiXeR) was used to qualify the polygenic overlap. Then, stratified-LDSC (S-LDSC) was used to identify tissue and cell type specificity. Meanwhile, the adaptive association test called MTaSPUsSet was performed to identify potential pleiotropic genes. The Single Nucleotide Polymorphisms (SNP) heritability was 13% for breast cancer and 5% for ovarian cancer. There was a significant genetic correlation between breast and ovarian cancers (rg=0.21). Breast and ovarian cancers exhibited polygenic overlap, sharing 0.4 K out 2.8 K of causal variants. Tissue and cell type specificity displayed significant enrichment in female breast mammary, uterus, kidney tissues, and adipose cell. Moreover, the 74 potential pleiotropic genes were identified between breast and ovarian cancers, which were related to the regulation of cell cycle and cell death. We quantified the shared genetic architecture between breast and ovarian cancers and shed light on the biological basis of the co-morbidity. Ultimately, these findings facilitated the understanding of disease etiology.
Sociedade Brasileira de Genética Rua Cap. Adelmio Norberto da Silva, 736, 14025-670 Ribeirão Preto SP Brazil, Tel.: (55 16) 3911-4130 / Fax.: (55 16) 3621-3552 - Ribeirão Preto - SP - Brazil
E-mail: editor@gmb.org.br