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Abstract: FMEA is one of the most used methods to support risk analysis in business processes. 
Nonetheless, this method has some limitations, including the use of only three decision criteria, 
whose weights are not considered. With the objective of adding new features to FMEA, some 
studies combine it with multicriteria decision methods. This study proposes a model based on 
FMEA and Fuzzy TOPSIS to support risk prioritization in industrial production processes. A pilot 
application was performed to analyze and prioritize the risks of potential failures in a nodular iron 
melting and casting process. Based on the opinion of four company experts, potential failure 
modes were defined and assessed. The experts also chose the criteria and their respective 
weights. The pilot application results suggest that “fading time exceeded” and “chemical 
composition outside of the specified” should be treated with highest priority. The sensitivity 
analysis test results corroborate the relevance of these failures and demonstrate the effect of 
criteria weight variation. The proposed model is useful to support the formulation of actions plans 
focused on minimizing or eliminating priority failures. Other contributions from this study consist 
of: considering criteria weight; allowing the use of linguistic terms to express the decision makers’ 
judgments; considering the costs relating to the failures; and supporting group decisions. 

Keywords: Risk assessment; FMEA; Fuzzy TOPSIS; Multicriteria decision-making. 

Resumo: O FMEA é um dos métodos mais utilizados para apoiar a análise de riscos em 
processos empresariais. Apesar disso, esse método apresenta algumas limitações, incluindo o 
uso de apenas três critérios de decisão, cujos pesos não são considerados. Com o objetivo de 
incrementar novos recursos ao FMEA, alguns estudos o combinam com métodos de decisão 
multicritério. Este estudo propõe um modelo baseado em FMEA e Fuzzy-TOPSIS para apoiar a 
priorização de riscos em processos de produção industrial. Uma aplicação piloto foi executada a 
fim de analisar e priorizar os riscos de falhas potenciais em um processo de fusão e vazamento 
de ferro nodular. Baseando-se na opinião de quatro especialistas da empresa, os modos de 
falhas potenciais foram definidos e avaliados. Os especialistas também escolheram os critérios 
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e seus respectivos pesos. Os resultados da aplicação piloto sugerem que as falhas “tempo de 
fading excedido” e “composição química fora do especificado” sejam tratadas com maior 
prioridade. Os resultados dos testes de análise de sensibilidade ratificam a relevância destas 
falhas e evidenciam o efeito da variação dos pesos nos critérios. O modelo proposto é útil para 
apoiar a formulação de planos de ação focados na minimização ou eliminação das falhas 
prioritárias. Outras contribuições deste estudo consistem em: considerar os pesos dos critérios; 
permitir o uso de termos linguísticos para expressar os julgamentos dos decisores; considerar 
os custos referentes às falhas; e apoiar decisões em grupo. 

Palavras-chave: Avaliação de riscos; FMEA; Fuzzy-TOPSIS; Tomada de Decisão multicritério. 

1 Introduction 
Aven & Renn (2009) define risk as “a situation or event where something of human 

value is at stake and the outcome of this situation is uncertain”. On the other hand, the 
NBR ISO 31000 (ABNT, 2018) standard, which establishes guidelines on risk 
management, conceptualizes risk as “the effect of uncertainty on objectives”. By 
systematizing knowledge and analyzing uncertainty in attaining a system, it becomes 
possible to predict potential problems, their causes, and probable consequences, 
creating conditions to classify and mitigate the risks identified (Aven, 2011). 

In the literature, several methodologies are found to support risk analysis in different 
contexts, including industrial processes, product design, transport, among others 
(Tixier et al., 2002). Tixier et al. (2002) identified 62 methodologies for risk 
identification, assessment, and ranking. This set includes methodologies based on 
qualitative and quantitative approaches, as well as deterministic and probabilistic. 
According to Tixier et al. (2002), one of the most used methods is called Failure Mode 
and Effect Analysis (FMEA), which allows a qualitative risk analysis by also using 
scores represented by deterministic values. In the traditional version of FMEA, potential 
failures modes are assessed based on severity, occurrence, and detection criteria, 
using a numerical scale ranging from 1 to 10. The multiplication of scores of each failure 
mode in relation to these three criteria determines the risk priority number (RPN), which 
indicates the failure’s priority (Liu et al., 2013). 

Notwithstanding the broad use of FMEA over more than 50 years, this method still 
has some limitations, which contributes to the development of new versions by 
combining it with other techniques. One of these limitations consists in using 
deterministic numerical values, which do not allow the quantification of uncertain or 
inaccurate measurements, which are inherent to the risk assessment process (Kutlu & 
Ekmekçioğlu, 2012). A second limitation is the fact that the levels of relative importance 
(weights) of the assessed criteria are not considered (Xiao et al., 2011). Another 
problem is related to the use of only three criteria, as important aspects, such as 
economic factors, are not considered (Liu et al., 2013; Zhao et al., 2017). 

With the objective of adding new features to FMEA, some studies propose decision 
models by combining it with existing multicriteria methods (Multicriteria Decision 
Making, MCDM). For Almeida (2013, p. 2), a decision model is “[...] a formal 
representation and with simplification of the problem faced, with the support of a 
multicriteria decision support method”. One of these methods is called Fuzzy TOPSIS 
(Technique for Order of Preference by Similarity to Ideal Solution), which was proposed 
by Chen (2000) from the combination between TOPSIS and fuzzy logic. One of the 
advantages of Fuzzy TOPSIS over traditional multicriteria techniques is allowing the 
use of linguistic values, given by one or more experts, to assess the score of 
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alternatives in relation to multiple criteria, whose weight is also assessed by way of 
linguistic judgments (Chen, 2000; Lima & Carpinetti, 2015). 

With the objective of circumventing the limitations of FMEA outlined in this section, 
the present study proposes a decision model that combines Fuzzy TOPSIS with FMEA 
to support risk prioritization in industrial production processes. A pilot application was 
performed based on judgments provided by experts from a metalworking company, 
manufacturer of cast iron parts used in the automotive industry. The focus of the 
application was to prioritize the failures of a production process called melting and 
casting of nodular iron. The study is organized as follows: section 2 describes the 
research’s methodological procedures; section 3 presents the theoretical framework; 
section 4 details the proposed model and the results of its application and sensitivity 
analysis. Finally, section 5 presents the conclusions and suggestions for future studies. 

2 Methodological procedures 
Following the definitions proposed by Bertrand & Fransoo (2002), the present study 

can be classified as normative quantitative empirical modeling research. In this 
approach, the model is built from data collection, with causal relationships between the 
input variables and the output variable. The purpose is to obtain solutions from the 
model developed to eliminate or mitigate the problems identified. For the development 
of this study, the following procedures were adopted: 

a) Bibliographical research: the bibliographical survey of the previous models was 
performed by way of the following steps: (1) entering the keywords and acronyms 
“FMEA” AND “RPN” AND “Multicriteria” in the search fields of the Science Direct, 
Scopus, Taylor & Francis, and Google Scholar databases. The search was 
performed considering the title, abstract and keywords of the articles; (2) using the 
filter to select only those studies published from 2000 onwards, whose choice was 
made for being the year of the advent of Fuzzy TOPSIS; (3) selecting only studies 
published in scientific journals; (4) selecting studies published only in English and 
Portuguese; (5) selecting studies which address decision models based on FMEA 
for risk analysis in industrial production processes; (6) eliminating studies which are 
repeated in more than one database. Table 1 shows the results obtained after 
performing this procedure. Additionally, books and journal articles related to the 
central themes of the study were used, such as risk analysis, FMEA, MCDM and 
Fuzzy-TOPSIS models. This step provided the theoretical and empirical 
foundations for preparing and applying the decision model; 

Table 1. Results of the bibliographical research. 

Databases Number of resulting studies in each step 
(1) (2) (3) (4) (5) (6) 

Science Direct 14 14 11 11 5 1 
Scopus 5 5 5 4 0 0 

Taylor & Francis 8 8 8 7 0 0 
Google Scholar 270 263 205 188 13 12 

Total number of selected studies 13 
Source: The authors. 
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b) Computational Modeling: the computational modeling was developed using 
Microsoft Excel to allow model replication to be performed in an effective and 
simplified manner. The equations implemented were based on Chen (2000). The 
linguistic scales used in the modeling were defined from Wang (2011) and Chen 
(2017). The criteria, on the other hand, were chosen based on Liu et al. (2013) and 
Banduka et al. (2018). The spreadsheet containing the computational model 
implemented is available in the Mendeley Data database; 
c) Pilot application: the model was applied in prioritizing risks in a nodular iron 
melting and casting process of a metalworking company. The assessed 
application’s failure modes were defined by four experts from a metalworking 
company, active in the areas of engineering, quality, and production. The failure 
scores and criteria weight were provided by them. The application of the model 
resulted in a ranking for prioritizing potential risks, whose sorting was also assessed 
by the experts. In addition, some sensitivity analysis tests were performed to assess 
the effect of weight variation on failure classification. The results are presented in 
Section 4. 

3 Theoretical framework 

3.1 The FMEA method 
FMEA is one of the most applied methods to identify and eliminate potential or 

known failures in a system, project, or process. Its application allows to improve 
security, reliability, and support the decision-making process (Liu et al., 2013). FMEA 
supports risk analysis and the development of preventive and corrective actions to 
systematize failure analysis. It is usually applied in the automotive, aerospace, arms, 
electronic, medical technologies, among others industries (Carpinetti, 2016). The IATF 
16949:2016 standard, which deals with requirements for the application of ISO 9001 in 
the automotive chain, establishes FMEA as a quality management requirement. 
According to Banduka et al. (2018), this method has been applied since 1993 by Ford, 
Chrysler, and General Motors. 

Maleki & Saadat (2013) and Carpinetti (2016) suggest that FMEA be applied 
according to the three steps indicated in Chart 1. In step 1, the experts employ the 
available information and perform “brainstorming” sessions about possible failure 
modes in a system, project, or process under study. In this way, they identify potential 
and known failure modes, as well as analyze and describe the effects of these failure 
modes. Next, the experts discuss the probable causes and existing means for detecting 
the failure mode if it occurs. For each failure mode identified, a score related to the 
criteria must be assigned: severity (S), which quantifies the severity of the effect; 
occurrence (O), related to the frequency and cause; and detection (D), which assesses 
the existing means of control. These scores are given using integer numerical values 
distributed between 1 and 10. The last step of phase I consists of calculating the RPN 
(Risk Priority Number) by means of Equation 1. 

RPN S  O  D = × ×  (1) 
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Chart 1. Description of the FMEA application steps. 

Step I 

a) Specify the system, design, or process under study; 
b) Establish the team of experts; 
c) Define process requirements or the functions of the product’s components; 
d) Identify potential or known failure modes; 
e) Analyze and describe the effects of each failure mode and assess its severity; 
f) Investigate and define the probable causes of each failure mode and assess the occurrence of these causes; 
g) Verify the existing controls and assess the failure mode detection capacity by these resources; 
h) Calculate the RPN using Equation 1. 

Step II 
a) Sort RPN values in descending order. Failure modes with the highest RPN results are assumed as the most 
important and will have higher priority for taking actions. 
b) Develop a prioritized corrective or preventive action plan. 

Step III 
a) Implement the action plan; 
b) Assess the effectiveness of these actions, performing a new failure mode assessment considering the severity, 
occurrence, and detection criteria. If the actions have been effective, the reduction of the RPN value is expected to 
take place in relation to the initial result. 

Source: Adapted from García & Gilabert (2011) and Liu et al. (2013). 

In step II, the values resulting from calculating the RPN for each failure are ranked 
in descending order. RPN classification determines the failure’s priority level. The 
experts and other personnel involved in the process analyzed must develop and 
implement action plans to eliminate or mitigate the potential causes of priority failures. 
Finally, in step III, the failure modes are reassessed using Equation 1 to verify the 
effectiveness of the actions implemented. The new failure mode ranking guides the 
next process improvement actions (Maleki & Saadat, 2013; Carpinetti, 2016). 

Although it is a widely accepted and broadly used method, FMEA has been criticized in 
several studies that point out some deficiencies in step I, related to the method’s risk analysis 
procedure and failure mode prioritization. Some of these deficiencies are listed below: 
i. Use of deterministic numerical values, which do not allow the quantification of 

uncertain or imprecise measures, inherent to the risk assessment process 
(Liu et al., 2011; Bozdag et al., 2015); 

ii. Different sets of “S”, “O” and “D” classifications can produce the same RPN value, but their 
hidden risk implications may be entirely different (Pillay & Wang, 2003; Liu et al., 2011); 

iii. The relative importance among “S”, “O”, and “D” is not taken into consideration. This 
may not be the case when one considers a practical implementation of FMEA 
(Liu et al., 2011; Xiao et al., 2011); 

iv. The mathematical formula for calculating the RPN is questionable. No arguments 
are found to justify the fact that the RPN is calculated by multiplying the scores of 
each criterion (Liu et al., 2011; Mahmoodi & Mirzazadeh, 2014); 

v. Small variations in a classification may lead to effects on the RPN, depending on 
the values of other factors. For example, if the scores of “O” and “D” are 10, the 
difference of 1 point in “S” will cause a difference of 100 points in the RPN. If the 
values of “O” and “D” were equal to 2, the same difference of 1 point in “S” would 
generate a variation of only 4 points in the RPN (Liu et al., 2011); 
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vi. The RPN considers only three factors in the analysis, whereas other important 
aspects, such as economic factors, environmental impacts, and production losses 
are ignored (Liu et al., 2013; Zhao et al., 2017); 

vii. Failure scores in the three factors are difficult to determine accurately. A lot of 
information can be expressed in the form of linguistic judgments, such as 
“probable”, “important” or “very high” (Pillay & Wang, 2003; Liu et al., 2011). 
To overcome FMEA limitations and improve its performance, studies have 

increasingly been proposing to combine it with multicriteria decision methods (MCDM), 
as the following section discusses (Zhao et al., 2017). 

3.2 FMEA applications combined with MCDM methods 
MCDM methods present themselves as a solution for decision problems in which qualitative 

and quantitative criteria and at least two alternatives are involved (Guarnieri, 2015). According to 
Ahmadi et al. (2017), MCDM methods can be subdivided into two types: MODM (Multi-Objectives 
Decision Making) and MADM (Multi-Attribute Decision Making). While MODM methods focus on 
optimization problems, MADM methods rank predefined alternatives. 

Chart 2 shows the preliminary studies found by way of a bibliographic survey, highlighting 
the decision techniques used in each of them. All these studies use FMEA combined with 
MCDM methods to support risk analysis based on the ranking of RPN values. Due to the cuts 
incurred by this research, only studies focused on industrial production processes were 
included. In these applications, some of the most common objectives are the prevention 
and/or reduction of accidents, defective parts, production downtime, and waste of resources. 

Chart 2. Decision models for FMEA risk analysis. 

Proposed by: Technique(s) Used Application 

Ekmekçioğlu & Kutlu 
(2012) 

Fuzzy AHP (Analytic Hierarchy Process) and Fuzzy 
TOPSIS (Fuzzy Technique for Order of Preference by 
Similarity to Ideal Solution) 

Assembly process of an 
automotive industry 

Kutlu & Ekmekçioğlu 
(2012) Fuzzy AHP and Fuzzy TOPSIS Manufacturing process of an 

automotive industry 

Chang et al. (2013) GRA (Grey Relational Analysis) and DEMATEL 
(Decision making and Trial Evaluation Laboratory) 

Manufacturing and assembly 
process of electronic 
components 

Maleki & Saadat 
(2013) AHP and REMBRANDT System Manufacturing process of 

hydraulic pumps 
Mahmoodi & 
Mirzazadeh (2014) 

Fuzzy TODIM (Iterative Multicriteria Decision Making) 
and FTF (Fuzzy Time Function) 

Process of an automotive 
industry 

Bozdag et al. (2015) Interval Type 2 Fuzzy Sets Assembly process 

Haq et al. (2015) FST (Fuzzy Set Theory) Assembly line at the Ford 
Motor Company 

Ahmadi et al. (2017) TOPSIS Steel Manufacturing Process 

Certa et al. (2017) ELECTRE TRI (Elimination and Choice Expressing 
Reality) Processes at a dairy industry 

Chen (2017) Fuzzy ISM (Interpretive Structural Model), DEMATEL 
and ANP (Analytic Network Process) Notebook manufacturing 

Hajimolaali et al. 
(2017) Fuzzy TOPSIS Pharmaceutical industry 

manufacturing 

Zhao et al. (2017) 
IVIFS (Interval-valued Intuitionistic Fuzzy Set) and 
MULTIMOORA (Multi-Objective Optimization by Ratio 
Analysis) 

Steel Manufacturing Process 

Banduka et al. (2018) FST Manufacturing process of an 
automotive industry 

Source: The authors. 
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Among the 13 studies described in Chart 2, 12 consider only the three criteria 
traditionally used in FMEA: severity, occurrence, and detection. The only exception is 
the model proposed by Banduka et al. (2018), which also includes a factor related to 
the failure’s internal and external costs. In relation to decision techniques, eight studies 
use approaches based on the fuzzy sets theory (FST), which seems to be related to 
their ability to support decisions under uncertainty. Unlike the studies proposed by 
Chang et al. (2013), Ahmadi et al. (2017) and Certa et al. (2017), the models based on 
FST enable the use of linguistic variables to assess the elements of the problem. It is 
also noted a wide diversity of combinations between decision techniques. Chen (2017) 
combined FMEA with Fuzzy ISM, DEMATEL and ANP methods. Mahmoodi & 
Mirzazadeh (2014) applied Fuzzy TODIM with FTF. Ekmekçioğlu & Kutlu (2012) and 
Kutlu & Ekmekçioğlu (2012) suggest the combined use of Fuzzy AHP with Fuzzy 
TOPSIS. 

Although the models based on fuzzy TOPSIS (Ekmekçioğlu & Kutlu, 2012; Kutlu & 
Ekmekçioğlu, 2012) have brought significant contributions to the literature on this 
subject, the combined use with Fuzzy AHP to determine criteria weights may involve 
limitations, such as: (1) difficulty of guaranteeing consistency by means of comparative 
judgments, requiring the performance of various consistency tests; (2) the need for a 
greater number of judgments, which implies investing more data collection efforts; (3) 
possibility of obtaining null weights for criteria, which makes failure scores in the 
criterion with zero weight not be considered in calculating the RPN. It is worth 
mentioning that the first two limitations pointed out are also valid for models based on 
other techniques that require paired comparisons between criteria and alternatives, 
such as AHP (Maleki & Saadat, 2013) and ANP (Chen, 2017). 

The model proposed by Hajimolaali et al. (2017), which uses only the Fuzzy-
TOPSIS method for assessing criteria weight and alternatives scores, does not suffer 
these limitations. However, alike the models developed by Ekmekçioğlu & Kutlu (2012) 
and Kutlu & Ekmekçioğlu (2012), Hajimolaali et al. (2017) consider only the three 
criteria traditionally used by FMEA, without including the failure-related costs. 
Therefore, the development of the decision model proposed by this study aims to 
circumvent these limitations. 

3.3 The Fuzzy-TOPSIS method 

3.3.1 Basics of the method 

The Fuzzy set theory - FST was created by Zadeh (1965) to allow the modeling of systems 
with categories of elements whose boundaries are considered uncertain (Lima & Carpinetti, 
2015). Chen (2000) was the first to propose the combination of the TOPSIS method with FST 
with the objective of adapting TOPSIS for decisions in scenarios of uncertainty, characterized 
by the absence of information, inaccurate data, qualitative variables, and subjective 
judgments. Lima & Carpinetti (2015) emphasize that the adequacy of the FST to such 
scenarios is related to the logic that defines the degree of belonging of elements in fuzzy sets. 
A fuzzy set is modeled by a function of relevance ( )A xµ : X → [0.0, 1.0], which allows partial 
relevance levels. While in the classical sets theory, each set is defined using a characteristic 
function  ( )A xµ  :  X  →{0.0,  1.0}, in the fuzzy logic, function ( )A xµ  includes values in the 
continuous interval [0.0, 1.0]. In this way, it is considered the existence of intermediate levels 
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between the “false” ( ( )A xµ = 0) and the “true” ( ( )A xµ = 1) (Zadeh, 1965; Lima & Carpinetti, 
2015; Pedrycz & Gomide, 2007). 

In the Fuzzy-TOPSIS method developed by Chen (2000), the judgments from 
experts to quantify the score of the alternatives and criteria weight are modeled by 
linguistic variables. A linguistic variable is that whose values are defined sentences in 
natural or artificial language (Zadeh, 1973). Its use implies the choice of a set of 
linguistic terms to quantify its values appropriately. In this sense, upon analyzing 
failures using FMEA and Fuzzy TOPSIS, the value of the linguistic variable “Severity” 
can be measured by means of the linguistic terms “low”, “medium”, and “high”. 

Linguistic terms are represented by fuzzy numbers, whose function of 
relevance can have different formats, such as triangular, sigmoid, or trapezoidal. 
As shown in Figure 1, a triangular fuzzy number Ã can be written by means of its 
vertices (l, m, u), where m represents a crisp central value, l is the lower limit, 
and u is the upper limit. The triangular numbers are often used due to the greater 
simplicity in the calculations involved. Moreover, the functions of the triangular 
type are more sensitive than trapezoidal functions to respond to changes in the 
values of x (Pedrycz & Gomide, 2007; Kahraman, 2008; Lima & Carpinetti, 2015). 
Pedrycz & Gomide (2007) explain that the algebraic operations involving two 
triangular numbers are made based on the l, m, and u values. So, to sum the 
triangular numbers A  and B , Equation 2 is used. Equation 3 is applied for 
subtraction, while Equations 4 and 5 perform the multiplication and division 
operations, respectively. 

 
Figure 1. Triangular fuzzy number. Source: Pedrycz & Gomide (2007). 

A A A B B B A B A B A BA B    l ,  m ,  u l ,  m ,  u l l ,   m m ,  u u+ = + = + + +             (2) 

A A A B B B A B A B A BA B l ,  m ,  u l ,  m ,  u l u  ,  m m  ,  u l − = − = − − −       
   (3) 

A A A B B B A B A B A BA*B   l ,  m ,  u * l ,  m ,  u l *l  ,  m *m  ,  u *u = =       
   (4) 

A A A B B B A B A B A BA /  B l ,  m ,  u / l ,  m ,  u l / u  ,  m / m  ,  u / l = =       
   (5) 
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3.3.2 Fuzzy-TOPSIS steps 

Based on Chen (2000) and Lima & Carpinetti (2015), the steps of the Fuzzy-
TOPSIS method are described below: 
a) Add the linguistic values of each decision maker (DMr), referring to the scores of the 

alternatives, by applying Equation 6. In this equation, r
ijx  describes the score of the 

alternative Ai (i =1,...,n), in relation to the criterion Cj (j = 1,…,m), provided by the 
decision maker DMr (r =1,..., k). The assessments referring to the criteria weights 
are aggregated using Equation 7, where r

jw  describes the weight of CJ in 
accordance with DMr; 

1 r k
ij ij ij ij

1x x x   x
K
 = + +… +  

     (6) 

1 2 k
j j j j

1w w w   w
K
 = + +… +  

     (7) 

ii) Using the results obtained in the previous step, the decision matrix D  should be 
assembled, containing the aggregate scores of the alternatives, as well as a vector 
W  for the criteria aggregated weights, according to Equations 8 and 9, respectively; 

1 2 j m

1j 1m1 11 12

i i1 i2 ij im

n n1 n2 nj nm

  C C      ..  C  ..     C

x .. xA x x ..
D : : : : :

A x x .. x .. x
: : : :

x

   

:
A x ..x ..

       

x

 

 
 
 
 
 
 =
 
 
 
 
 
 

 

 



  



 

 

 (8) 

1 2 mW     [ w , w , , w ]   = …

    (9) 

iii) Normalize the values of the D  matrix. The normalized matrix R  is calculated using 
Equation 10, where ijr  should be obtained using Equations 11 or 12; 

ij m x n
R r =  



 (10) 

ij ij ij
ij

j j j

l m u
r , ,   ,

u u u+ + +

 
 =
 
 

  and j iju max u
i

+ =  (benefit criteria) (11) 

j j j
ij

ij ij ij

l l l
r , ,  

u m l

− − − 
 =
 
 

 , and j ijl min l
i

− =  (cost criteria) (12) 



A model based on FMEA and Fuzzy TOPSIS... 

10/20 Gestão & Produção, 28(4), e5535, 2021 

iv) Obtain the weighted matrix V , represented by Equation 13. The component values 
of this matrix are obtained according to Equation 14, which multiplies the jw weights 
by the ijr  elements of the normalized matrix R ; 

ij m x n
V v =  



 (13) 

ij ij jv r *w=    (14) 

v) Obtain the Fuzzy Positive Ideal Solution, ,  )FPIS A+  and the Fuzzy Negative Ideal 
Solution, ,  )FNIS A−  as shown in Equations 15 and 16. According to Chen (2000), 
component values of ideal solutions can be defined as ( )1,1  ,1 jv+ =  and ( )0, 0, 0jv− = ; 

{ }1 j mA   v ,  v , , v+ + + += …    (15) 

{ }1 j mA   v ,  v , , v− − − −= …    (16) 

vi) Calculate iD+ , which indicates the distance between the values of FPIS and the 
alternatives scores. Similarly, obtain the distance iD−  between the values of FNIS 
and the alternatives scores. To that end, Equations 17 and 18 are applied, in which 
d(., .) indicates the distance between two fuzzy numbers according to the vertex 
method. In cases in which fuzzy numbers of the triangular type are adopted, 
Equation 19 should be applied to obtain the values of d(., .); 

( )n
i v ij jj 1

D d v , v+ +
=

=∑    (17) 

( )n
i v ij jj 1

D d v , v− −
=

=∑    (18) 

(2 2 2
x z x z x z

1x, z) [(l l ) (m m ) u u )
3

(d = − + − + − 
   (19) 

vii) Using Equation 20 and the values of  i iD e D+ − , one must calculate the approximation 
coefficient CCi, which represents the overall performance of each of the alternatives 
assessed. Finally, it is necessary to draw up an alternatives ranking by means of 
the descending order of the values of CCi. The closer the value of CCi is to 1.0, the 
better is the alternative’s overall performance. 

i
i

i i

DCC   
(D D )

−

+ −=
+

 (20) 
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4 Decision model proposed for prioritizing risks in processes 
Figure 2 shows the decision model proposed to support risk prioritization in 

production processes. The model was developed by combining FMEA (Carpinetti, 
2016) with the Fuzzy-TOPSIS technique (Chen, 2000), being composed by three main 
steps. While step 2 consists of applying Fuzzy TOPSIS, steps 1 and 3 combine 
activities based on this method and on FMEA. Step 1 begins with the formation of a 
multidisciplinary team, comprised of experts in the process under study and managers 
from the organization, who will act as decision makers. Depending on the nature of the 
process under study, this team may involve professionals from the areas of 
engineering, quality, supply, manufacturing, among others. The first assignment of the 
decision makers is to define the scope of the application, i.e., to choose which process 
will be assessed, to explain its function and to analyze the activities that comprise it. 
By way of brainstorming sessions and analyzing process documentation and records, 
the decision makers must also identify and describe the potential or known failure 
modes. 

 

Figure 2. Model to support the analysis and prioritization of risks in processes. 
Source:  The  authors. 

Still in step 1, based on the preferences of the experts and/or in literature studies, it 
is necessary to build a fuzzy linguistic scale to score failures and another one to define 
criteria weights. It is the responsibility of the decision makers to choose the failure 
assessment criteria, as well as to define the relative importance (weight) of each one 
of them. The chosen criteria must be related to factors capable of measuring the impact 
of the failures to the end customer and the organization. Such criteria should also be 
associated with factors that direct the implementation of actions to eliminate or mitigate 
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the risks involved. After defining the criteria, the decision makers must individually 
assess each failure mode described and assign the corresponding scores to each 
criterion. This assessment must be based on the decision makers’ experience and 
other available information. 

Step 2 follows the procedure defined by the Fuzzy-TOPSIS method (Chen, 2000). The 
values assigned to failures and the criteria weights are entered into the Fuzzy TOPSIS 
computational model. At first, the aggregation of the judgments delivered by the decision 
makers is made. While the failure score aggregation is performed according to Equation 6, 
the criteria weight aggregation is performed using Equation 7. The failure scores should be 
normalized and weighted by applying Equations 13 and 14, respectively, to then define the 
positive and negative ideal solutions. Subsequently, the distances of each alternatives score 
in relation to the values of FPIS and FNIS are calculated using Equations 17 and 18. At the 
end of this step, Equation 20 is applied to obtain the approximation coefficients CCi which 
allow failure mode classification. 

Finally, in step 3, the values of CCi are classified in descending order, creating a 
ranking in which the alternatives with the higher overall scores represent the most 
undesirable failure modes. Therefore, based on this ordering, failures are prioritized to 
develop the actions necessary to eliminate or mitigate the major risks of the process 
under analysis. After the implementation of these actions, the model can be once again 
applied to assess the effectiveness of the solutions developed. To do this, it is 
necessary to assign new scores to the failure modes, insert them into the computational 
model and order the results. 

4.1 Pilot application 
The model was applied to a melting and pouring process of a domestic 

metalworking company, supplier of gray and nodular cast iron parts for the automotive 
market. This company adopts FMEA as the main risk analysis tool at the initial stage 
of its process development. The manager responsible for production was requested to 
assemble a cross-functional team composed by experts involved with the process in 
question. There was no restriction as to the number of experts, leaving it up to the 
manager the definition of this team. In addition to the knowledge of the process in 
question, they should have prior experience in the application of FMEA. The manager 
then presented a list with four decision makers, from the areas of engineering, quality, 
and production. 

In relation to the process analyzed, an induction furnace and manual refractory pots 
suspended on monorails are used as resources. This process is mapped in a flowchart 
and features four steps, which are described in auditable procedures. From a 
brainstorming session that involved the analysis of existing documents and records 
concerning the process, the decision makers identified 13 potential failure modes. Next, 
they chose the criteria considering their ability to identify and measure the impact of 
the failure modes. The following criteria (also understood here as risk factors) were 
defined: Cost (C), Severity (S), Frequency (F) and Control (CO). The Cost (C) criterion 
was selected based on Banduka et al. (2018). This factor refers to internal costs, 
associated with rework, scrap, line downtime, among other types of losses, as well as 
external costs, which are incurred when the failure affects the end customer and results 
in expenses with warranties, lawsuits, returns and/or loss of market share. The Severity 
(S), Frequency (F) and Control (CO) criteria derive from the traditional FMEA. The 
linguistic scales to assess criteria weights and failure mode scores were defined 
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according to Wang (2011) and Chen (2017). According to Chen (2000), fuzzy triangular 
numbers were adopted to quantify the linguistic terms. Chart 3 presents the linguistic 
scales developed. 

Chart 3. Linguistic scales for the assessment of criteria and alternatives. 

Criteria weight assessment Alternative score assessment 

Linguistic Term Fuzzy Number Linguistic 
Term Fuzzy Number 

Very Low Importance 
(VLI) 0.01 0.03 0.25 Very Low (VL) 0.10 0.10 2.50 

Low Importance (LI) 0.01 0.25 0.50 Low (L) 0.10 2.50 5.00 
Medium Importance (MI) 0.25 0.50 0.75 Moderate (M) 2.50 5.00 7.50 

High Importance (HI) 0.50 0.75 1.00 High (H) 5.00 7.50 10.00 
Very High Importance 

(VHI) 0.75 1.00 1.00 Very High 
(VH) 7.50 10.00 10.00 

Source: Adapted from Wang (2011) and Chen (2017). 

Using the scales presented, the experts scored each of the failure modes identified. Chart 
4 shows the linguistic scores of the failure modes in relation to the criteria assessed, as well 
as the weights of these criteria. The decision makers attributed the linguistic terms that best 
represent the actual condition of the process, based on their knowledge, experience, and 
other available information. The linguistic terms were converted into fuzzy numbers as per 
Chart 3. These values were aggregated using fuzzy arithmetic mean, in accordance with 
Equations 6 and 7, respectively. The results are presented in Table 2. 

The fuzzy numbers shown in Table 2 were normalized considering the particularities 
of each criterion. From the modeling point of view, Cost (C), Severity (S) and Frequency 
(F) were normalized as benefit criteria (Equation 11), since the higher the score of a 
failure in these criteria, the greater will its RPN be. In the case of the Control (CO) 
criterion, a high score indicates that there are already mechanisms for risk monitoring 
and mitigation, which implies a lower RPN. Therefore, Equation 12 was applied. After 
normalization, the decision matrix was weighted using Equation 14, which multiplies 
the values normalized by their respective aggregated weights. The normalized and 
weighted matrix was omitted due to size limitations of this article. 

Chart 4. Linguistic judgments of the decision makers. 

Process 
step 

Failure 
Mode 

Decision maker 
1 

Decision maker 
2 

Decision maker 
3 

Decision maker 
4 

C S F C
O C S F C

O C S F C
O C S F C

O 

Melting 

(F1) Metallic 
load 

composition 
error 

V
L L H H V

L L M M L L M M V
L L H H 

Metal 
treatment 

(F2) 
Insufficient 

alloys 
M H L H M H L H M V

H L M M H L H 

Metal 
cleaning 

(F3) 
Deficient 

bath 
cleanliness 

M M M M M M M M M M L L M M M H 
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Process 
step 

Failure 
Mode 

Decision maker 
1 

Decision maker 
2 

Decision maker 
3 

Decision maker 
4 

C S F C
O C S F C

O C S F C
O C S F C

O 

Pouring 

(F4) Bath 
weighing 

error 
M H V

L 
V
H M M V

L H M M M L M M V
L H 

(F5) Deficient 
inoculation M H M L L M L M L M M M M H M L 

(F6) Pouring 
start delay M L L H L M L H L M M M L M L H 

(F7) 
Furnace 

temperatur
e below the 

specified 

M H L H M H L V
H M M L M M H L H 

(F8) 
Deficient 

pot heating 
L L L H L L L M V

L M L M L L L M 

(F9) 
Pouring 

time above 
the 

specified 

M V
H M H M H M M M M L M M V

H M H 

(F10) 
Incomplete 

pouring 
M H L H M H L H M M M L M H L H 

(F11) 
Interrupted 

pouring 
M M L L M M L L M M L L M M L L 

(F12) 
Chemical 

composition 
out of the 
specified 

M V
H M M M H M M M V

H L M M H M M 

(F13) 
Fading 

time 
exceeded 

M V
H L L M V

H L M M V
H L M M V

H L L 

Criteria weights 
V
H
I 

H
I 

H
I 

V
H
I 

H
I 

V
H
I 

V
H
I 

V
H
I 

H
I 

H
I 

M
I 

H
I 

V
H
I 

V
H
I 

H
I 

V
H
I 

Source: The authors. 

Table 2. Decision matrix with aggregate scores and criteria weight vector. 

 Cost (C) Severity (S)  Frequency (F)  Control (CO) 
l m u L m U l m u l m u 

F1 0.10 0.70 3.13 0.10 2.50 5.00 3.75 6.25 8.75 3.75 6.25 8.75 
F2 2.50 5.00 7.50 5.63 8.13 10.00 0.10 2.50 5.00 4.38 6.88 9.38 
F3 2.50 5.00 7.50 2.50 5.00 7.50 1.90 4.38 6.88 2.53 5.00 7.50 
F4 2.50 5.00 7.50 3.13 5.63 8.13 0.70 1.33 3.75 4.40 6.88 8.75 
F5 1.30 3.75 6.25 3.75 6.25 8.75 1.90 4.38 6.88 1.30 3.75 6.25 
F6 0.70 3.13 5.63 1.90 4.38 6.88 0.70 3.13 5.63 4.38 6.88 9.38 
F7 2.50 5.00 7.50 4.38 6.88 9.38 0.10 2.50 5.00 5.00 7.50 9.38 
F8 0.10 1.90 4.38 0.70 3.13 5.63 0.10 2.50 5.00 3.13 5.63 8.13 
F9 2.50 5.00 7.50 5.63 8.13 9.38 1.90 4.38 6.88 3.75 6.25 8.75 

F10 2.50 5.00 7.50 4.38 6.88 9.38 0.70 3.13 5.63 3.78 6.25 8.75 
F11 2.50 5.00 7.50 2.50 5.00 7.50 0.10 2.50 5.00 0.10 2.50 5.00 
F12 2.50 5.00 7.50 6.25 8.75 10.00 1.90 4.38 6.88 2.50 5.00 7.50 
F13 2.50 5.00 7.50 7.50 10.00 10.00 0.10 2.50 5.00 1.30 3.75 6.25 

Weight 0.63 0.88 1.00 0.63 0.88 1.00 0.50 0.75 0.94 0.69 0.94 1.00 

Source: The authors. 

Chart 4. Continued.... 
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The fuzzy positive ideal solutions (FPIS) and the fuzzy negative ideal solutions (FNIS) 
were defined according to Chen (2000) for each of the criteria. Using Equations  15  and  16, 
we get A+  = [(1.0, 1.0, 1.0), (1.0, 1.0, 1.0), (1.0, 1.0, 1.0), (1.0, 1.0, 1.0)] and A−   =  [(0.0, 
0.0,  0.0), (0.0, 0.0, 0.0), (0.0, 0.0, 0.0), (0.0, 0.0, 0.0)]. The distance between the scores of 
each alternative in relation to FPIS ( D+ ) was calculated using Equation 17. Next, the relative 
distance to FNIS ( D− ) was obtained using Equation 18. The results of the calculations of 
individual distances in each criterion (columns 2 to 5 and 7 to 10) and the sum of these 
distances (columns 6 and 11) are presented in Table 3. 

Table 3. Positive and negative distances in relation to FPIS and FNIS. 

 Criteria D+ Criteria D- C S F CO C S F CO 
F1 0.49 0.45 0.30 0.57 1.82 0.14 0.14 0.16 0.18 0.62 
F2 0.30 0.24 0.45 0.57 1.55 0.39 0.40 0.43 0.43 1.65 
F3 0.30 0.35 0.37 0.56 1.58 0.39 0.39 0.37 0.29 1.44 
F4 0.30 0.32 0.48 0.57 1.67 0.39 0.39 0.38 0.32 1.48 
F5 0.36 0.30 0.37 0.56 1.58 0.32 0.32 0.34 0.35 1.33 
F6 0.39 0.37 0.42 0.57 1.75 0.28 0.28 0.28 0.27 1.11 
F7 0.30 0.28 0.45 0.57 1.59 0.39 0.40 0.40 0.38 1.57 
F8 0.44 0.43 0.45 0.57 1.88 0.21 0.21 0.22 0.21 0.84 
F9 0.30 0.24 0.37 0.57 1.48 0.39 0.40 0.43 0.41 1.63 
F10 0.30 0.28 0.42 0.57 1.57 0.39 0.40 0.40 0.38 1.57 
F11 0.30 0.35 0.45 0.46 1.56 0.39 0.39 0.37 0.29 1.44 
F12 0.30 0.22 0.37 0.56 1.45 0.39 0.41 0.44 0.44 1.68 
F13 0.30 0.18 0.45 0.56 1.49 0.39 0.42 0.47 0.47 1.75 

Source: The authors. 

Finally, the approximation coefficient CCi of each alternative was generated using 
Equation 20. These values represent the overall score for each failure, thus indicating 
the risk priority level. As shown in Table 4, the values of the approximation coefficients 
were ordered from the largest to the smallest, thus obtaining a classification that allows 
us to guide the decision-making process about the more harmful risks to the process 
and support the preparation of action plans. 

Table 4. Failure mode classification result. 

Classification CCi Failure Mode 
1st 0.540 F13 Fading time exceeded 
2nd 0.536 F12 Chemical composition out of the specified 
3rd 0.525 F9 Pouring time above the specified 
4th 0.514 F2 Insufficient alloys 
5th 0.501 F10 Incomplete pouring 
6th 0.496 F7 Furnace temperature below the specified 
7th 0.481 F11 Interrupted pouring 
8th 0.477 F3 Deficient bath cleanliness 
9th 0.471 F4 Bath weighing error 

10th 0.457 F5 Deficient inoculation 
11th 0.387 F6 Pouring start delay 
12th 0.308 F8 Deficient pot heating 
13th 0.255 F1 Metallic load composition error 

Source: The authors. 
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The results obtained were endorsed by the company's experts. According to them, failure 
F13 (fading time exceeded), classified as priority, drastically affects the mechanical properties 
of the parts, causing the batches produced to be discarded. If any defective unit reaches the 
customer, the associated risks will be very high. Failure F1 (metallic load composition error), 
on the other hand, received the lowest CCi, value, thus considered of lower priority. According 
to the experts, this is justified by the fact that this failure can be detected and corrected during 
the operation, using mechanisms that already exist in the company. Therefore, experts should 
primarily focus on the development of actions to mitigate risks relating to fading time. If there 
are sufficient resources, they should also invest efforts in the elaboration and implementation 
of action plans related to failures F12 (chemical composition out of the specified), F9 (pouring 
time above the specified), F2 (insufficient alloys), F10 (incomplete pouring), and so forth. 

4.1 Sensitivity analysis 
With the objective of assessing the effects of criteria weight variation in failure mode 

classification and checking the consistency of the results obtained in implementing the 
proposed model, some sensitivity analysis tests were performed. Four scenarios were 
tested. In all of them, the failure scores shown in Chart 4 were considered. Chart 5 shows 
the criteria weight values tested in each scenario, assigned according to the linguistic scale 
from Chart 3. The “very high” importance (VHI) value was alternately assigned to each of 
the criteria, whereas the others were kept with “very low” importance (VLI). Table 5 shows 
the results obtained in the four sensitivity tests. To facilitate classification comparison, it also 
shows the results of the implementation in the company. 

Chart 5. Weights assigned to criteria in each scenario. 

Scenario 
Criteria 

Cost Severity Frequency Control 
1 VHI VLI VLI VLI 
2 VLI VHI VLI VLI 
3 VLI VLI VHI VLI 
4 VLI VLI VLI VHI 

Source: The authors. 

Table 5. Results of the sensitivity analysis tests. 

Classification Pilot application Scenario 1 Scenario 2 Scenario 3 Scenario 4 
CCi Failure CCi Failure CCi Failure CCi Failure CCi Failure 

1º 0.540 F13 0.3906 F12 0.3978 F13 0.1457 F12 0.1344 F13 
2o 0.536 F12 0.3897 F13 0.3700 F12 0.1435 F9 0.1343 F12 
3o 0.525 F9 0.3891 F9 0.3535 F2 0.1400 F13 0.1334 F2 
4o 0.514 F2 0.3891 F2 0.3513 F9 0.1395 F2 0.1321 F9 
5o 0.501 F10 0.3887 F11 0.3195 F10 0.1394 F10 0.1316 F10 
6o 0.496 F7 0.3881 F10 0.3190 F7 0.1374 F7 0.1313 F7 
7o 0.481 F11 0.3876 F7 0.2927 F5 0.1368 F3 0.1311 F11 
8o 0.477 F3 0.3848 F3 0.2782 F4 0.1335 F11 0.1270 F4 
9o 0.471 F4 0.3840 F4 0.2627 F11 0.1315 F4 0.1261 F3 
10o 0.457 F5 0.3354 F5 0.2596 F3 0.1249 F5 0.1153 F5 
11o 0.387 F6 0.3014 F6 0.2238 F6 0.1065 F6 0.1004 F6 
12o 0.308 F8 0.2397 F8 0.1712 F8 0.0840 F8 0.0802 F8 
13o 0.255 F1 0.1783 F1 0.1410 F1 0.0703 F1 0.0621 F1 

Source: The authors. 
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The results obtained in the four scenarios indicate a significant difference in the 
values of CCi in relation to the values of the implementation in the company. The 
biggest difference between these values is observed in scenario 4, where the “control” 
criterion receives the greatest weight. Generally, there are some changes in failure 
mode classification (alternatives) in all scenarios, although some similarities remain. In 
the four scenarios, failures F13 and F12 alternated between the top positions of the 
ranking, thus confirming that they are the ones that deserve greater attention. When a 
greater weight is assigned to the cost and frequency criteria, the priority failure 
becomes “chemical composition out of the specified”. 

Failures F2 and F9 also stood out, because while F9 varies between the 2nd and 4th 
position, F2 varies between the 3rd and 4th. F3 and F4 remain in an intermediate priority 
level, alternating respectively between 7th and 10th, and between the 8th and the 9th 
position. The most significant change occurred with F5, which jumped from the 10th to 
the 7th position in scenario 2. On the other hand, the failure modes of the last three 
positions in the ranking did not suffer classification changes. Therefore, it appears that 
the changes in the weights assigned to the criteria may cause some changes in the 
relative ranking between failures that are in close positions, even though that the 
failures situated at the extremes of the ranking remain the same. 

5 Conclusion 
This study presented a new approach to support risk prioritization and analysis in 

industrial production processes. The proposed decision model combines FMEA with 
the Fuzzy-TOPSIS method developed by Chen (2000). An application of the model was 
carried out in a metalworking process with the participation of four experts. The results 
suggest that the “fading time exceeded” and “chemical composition outside of the 
specified” failures should be treated with the highest priority. The sensitivity analysis 
tests corroborate these results. The outputs of the model provide subsidies to formulate 
and implement action plans focused on minimizing or eliminating priority failures. 
Another contribution of this study to the literature consists in mapping techniques used 
in risk prioritization models in FMEA based industrial processes. 

The proposed approach is an alternative to circumvent all FMEA limitations 
described in section 3.1. In this sense, some of the contributions of this study towards 
risk analysis and prioritization in processes are: (1) the possibility of considering the 
weights (level of importance) of different criteria; (2) it supports decisions in scenarios 
of uncertainty through the use linguistic terms and fuzzy numbers to express the 
decision makers’ judgments; (3) it allows the consideration of other risk factors, in 
addition to those traditionally used in FMEA; (4) it supports group decision making, so 
as to consider the knowledge and experience of experts from different areas. When 
compared to the multicriteria models proposed by Ekmekçioğlu & Kutlu (2012) and 
Kutlu & Ekmekçioğlu (2012), which use Fuzzy TOPSIS for assessing failure modes, 
but apply Fuzzy AHP to determine weights, the proposed model requires a smaller 
number of judgments from experts to assess weights. In addition, the weight 
determination procedure is simpler, easy to understand, does not require consistency 
tests nor generates null criteria weights. Another contribution is that, unlike most of the 
models shown in Chart 2, this study considers the internal and external costs of failures 
as a determinant factor in their prioritization. 

Future studies may apply the model in companies from other industrial sectors for 
prioritizing risks from potential and/or known failures. It can also be adapted to analyze risks 
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in service companies, to consider criteria which are specific for such environments, such as 
the existence of customer recovery mechanisms. In addition to process failure analysis, the 
model can be applied to analyze other types of risks, including work-related accidents. 
Although the computational implementation in MS Excel contributes towards calculation 
transparency and facilitates replication, the model can also be implemented in the form of 
software with graphical interface to promote its usability. Regarding the proposal’s limitations, 
since the model focuses on situations of uncertainty, it is not possible to use exact numerical 
values (such as number of failures expressed in ppm) as input scores. Another limitation of 
this study is to have used only four criteria for failure analysis, even though this was a choice 
made by the decision makers. Future studies may consider criteria related to environmental 
impacts and other risk factors relevant to the implementation environment. 
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